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Gaussian mixture regression (GMR)

Nadaraya-Watson
kernel regression

Least squares
linear regression
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Nonlinear 
regression I



Gaussian process (GP)
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Gaussian process - Informal interpretation
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Å A joint distribution represented by a bivariate Gaussian forms 
marginal distributions P(y1) and P(y2) that are unidimensional.

ÅObserving y1 changes our belief about y2, giving rise to a 
conditional distribution. 

Å Knowledge of the covariance lets us shrink uncertainty in one 
variable based on the observation of the other.
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Å This bivariate example can be extended to an arbitrarily large 
number of variables.

Å Indeed, observations in an arbitrary dataset can always be 
imagined as a single point sampled from a multivariate 
Gaussian distribution.

Gaussian process - Informal interpretation



How to construct this joint distribution in GP?
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By looking at the similarities in the continuous x space, 
representing the locations at which we evaluate y = f(x) 



Graphical model of a Gaussian process
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Χ

Note that with GPs, we do not build
a distribution on {x1,x2ΣΧxN}!

x can be multivariate 



Gaussian process (GP)
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ÅGaussian processes (GPs) can be seen as an infinite-dimensional 
generalization of multivariate normal distributions.

ÅThe infinite joint distribution over all possible variables is 
equivalent to a distribution over a function space y = f(x).

Åx can for be a vector or any object, but y is a scalar output. 

ÅTo understand GPs, N observations of an arbitrary data set 
y = {y1,..., yN} should be imagined as a single point sampled 
from an N-variate Gaussian.



Gaussian process (GP)
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ÅAcovariance over an arbitrarily large set of variables can be 
defined through the covariance kernel function k(xi, xj), 
providing the covariance elements between any two sample 
locations xi and xj.

If xN is similar to x3, 
we also expect yN

to be similar to y3.



Distribution over functions in GPs
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Stochastic sampling with Gaussians
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Distribution over functions in GPs - Sampling
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