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Gaussian process (GP)



Gaussian process - Informal interpretation

A A joint distribution represented by a bivariate Gaussian forms
marginal distribution$? 1) and P{y2) that are unidimensional.

A Observing ychanges oubeliefabout y, givingrise to a
conditional distribution. Uo = o + oSy (1 — 1)

A Knowledgeof the covariance lets us shrink uncertainty in one
variable based on the observation of the other
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Gaussian process - Informal interpretation

A Thisbivariateexample can be extended @ arbitrarilylarge
numberof variables.

A Indeed observations in an arbitraatasetcan always be
Imagined as a single point sampled fraimultivariate
Gaussian distribution
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How to construct this joint distribution in GP?

By looking at the similarities in the continuoxispace,
representing the locations at which we evaluate yx¥F f(
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Graphical model of a Gaussian process
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x can be multivariate

Note that with GPs, we do not build

a distribution on {x,x22 X}!



Gaussian process (GP)

A Gaussian processéS8Ps) cabe seen as an infinitdimensional
generalization of multivariate normal distributions.

A Theinfinite joint distribution over all possible variables is
equivalent to adistribution over a functionspacey = fK).

A x canfor be avector or any object, buy is a scalar output

A To understand GPs, dbservationf an arbitrary data set
y = {\,...,yn} should be imagined as a single point sampled
from an Nvariate Gaussian
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Gaussian process (GP)

A Acovariance over an arbitrarily large set of variables can be
defined through thecovariancekernel function k(xi, x;j),
providingthe covariance elements between any two sample
locationsxi and x;.

{ { lyn="
_ { - If Xn IS Similarto xs,
J| {ygz flx3) we also expecyn
}y Fa) to be similarto ys.
2— 2
}91:f<951>




Distribution over functions in GPs

For a set of spatial or temporal locations @ = {x1,xs,..., TN},
a positive semidefinite covariance matrix (also known as the Gram
matrix) is defined as

Kz x) L2, L1 L2, L2 L2, LN
k(xy, 1) k(TN x2) -+ k(TN TN)

The entire function evaluation y, = f(x,) associated with the set
of inputs x,, is a draw from a multivariate Gaussian distribution

y ~ N (n@), K(z,)).

specifying a distribution over functions.



Stochastic sampling with Gaussians

The eigendecomposition of 22 is expressed in a matrix form as
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By using this notation, datapoints can be stochastically generated
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Distribution over functions in GPs - Sampling
™
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