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Abstract— In learning by exploration problems such as
reinforcement learning (RL), direct policy search, stochastic
optimization or evolutionary computation, the goal of an agent
is to maximize some form of reward function (or minimize a
cost function). Often, these algorithms are designed to find a
single policy solution. We address the problem of representing
the space of control policy solutions by considering exploration
as a density estimation problem. Such representation provides
additional information such as shape and curvature of local
peaks that can be exploited to analyze the discovered solutions
and guide the exploration. We show that the search process can
easily be generalized to multi-peaked distributions by employ-
ing a Gaussian mixture model (GMM) with an adaptive number
of components. The GMM has a dual role: representing the
space of possible control policies, and guiding the exploration
of new policies. A variation of expectation-maximization (EM)
applied to reward-weighted policy parameters is presented to
model the space of possible solutions, as if this space was a
probability distribution. The approach is tested in a dart game
experiment formulated as a black-box optimization problem,
where the agent’s throwing capability increases while it chases
for the best strategy to play the game. This experiment is used
to study how the proposed approach can exploit new promising
solution alternatives in the search process, when the optimality
criterion slowly drifts over time. The results show that the
proposed multi-optima search approach can anticipate such
changes by exploiting promising candidates to smoothly adapt
to the change of global optimum.

I. INTRODUCTION
When growing, gaining experience, recovering from an in-

jury or practicing a sport, our motor capabilities continuously
change. Similarly, the capabilities or objectives of a robot
agent can change over time, requiring learning strategies that
can continuously adapt to these fluctuations without requiring
the user to explicitly trigger exploration/exploitation behav-
iors. This form of continuous self-calibration is particularly
important for systems designed to work in unpredictable
environments where the agent needs to adapt an existing skill
to new situations.

Most search algorithms are designed to locate a single
optimum, which does not seem to match with the way
humans learn skills [1]. For example, elite sport athletes can
practice and improve their running performance by relying
on different policies, favoring two different categories of
local optima corresponding to either long strides or high
cadence [2]. Similarly, a parallel exploration of multiple
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policy options might provide a robotic agent with a robust
way to adapt to changing environments, changing body mor-
phology or changing perception-action capabilities through
its developmental lifespan.

We propose to study the multi-optima search issue in a
simulated dart game experiment formulated a black-box op-
timization problem (the policy consists here of a single state
with an action parameterized by two variables). The agent
progressively increases its throwing skills while looking for
appropriate strategies to win the game. A variety of skillful
games characterized by throws of objects at a target have
been studied, by providing a simple way to formulate the
reward function as an explicit score. Most of the games
settings studied so far were characterized by given position(s)
to reach on the target [3]–[5]. Lawrence et al [3] studied darts
throwing by aiming at the bullseye. Kober et al [4] explored
the problem of throwing darts at pre-specified positions on
the dartboard (Around the clock game rule). Da Silva et
al [5] studied the problem of learning parameterized skills
by reaching for the center of a target placed at different
locations.

In this paper, we consider the problem of discovering
how to obtain the maximum score on an official dartboard
(Fig. 1), split into 20 sectors with scores arranged in a
given unordered sequence. The sectors are radially split with
two bands corresponding to areas doubling (outer band) and
tripling (inner band) the score of the sector. Two additional
rings at the center define regions of 25 and 50 points.
This arrangement is more interesting than radially increasing
scores because the best position that a player should target
takes various forms. One might think at first sight that aiming
at the area of maximum score on the board (the triple-20) is
the optimal strategy. In reality, this position varies with the
precision at which the player can throw the dart. Beginners
should aim at the bullseye. When improving their throwing
skills, this point is progressively displaced with a nonlinear
path to a region in the bottom-left part of the dartboard.
When the players become very skilled, this point ”jumps” to
the triple-20 score region.

This provides an interesting framework to study devel-
opmental learning perspectives, where the highly rewarded
regions vary from simple single peaked distributions to a
variety of multi-peaked distributions, see Fig. 1. For a given
throwing accuracy, the distribution of expected scores on the
dartboard can be analytically evaluated [6]. This provides us
with ground truth data to evaluate how the artificial agent
refines its policy by preserving alternative options.

The solution space of this problem is characterized by a
single global optimum at different locations on the dartboard,



Fig. 1. Evolution of the search process. The colored heatmaps (corresponding to steps 1, 1060, 1757 and 3000) represent the expected distribution for
the current throws accuracy of the agent, with colors from cyan to dark red linearly spread between lowest and highest scores. Steps 1060 and 1757 are
the steps when Gaussian splits occurred. The black dots show the last L=150 trials. The white ellipses represent the mixture of Gaussians representing
the promising options discovered by the agent (approximation of the unknown solution landscape by iterative exploration and adaptation).

where the multi-optima exploration process can be exploited
to keep track of promising alternative candidates to robustly
adapt to throwing skills improvement.

II. PROPOSED APPROACH
The search problem is formulated as an incremental

approximation of the space of control policy solutions,
represented in the form of a probability distribution. The
rewards act as likelihoods of the policy parameters, which
can be achieved by defining positive reward functions (e.g.,
formulated in exponential form). The distribution is ap-
proximated by a Gaussian mixture model (GMM) with an
adaptive number of Gaussians. The model has a dual role:
representing the space of possible control policy, and guiding
the exploration of new policies.

In order to estimate such distribution, we present
an expectation-maximization (EM) algorithm applied to
weighted datapoints, and a split&merge procedure to adapt
the number of components in the model. It is used to fit the
best samples obtained so far (weighted by their rewards) and
generate new samples in an incremental manner.

A. EM-based search procedures
A tremendous effort within the machine learning and

robotics community has been directed to moving reinforce-
ment learning (RL) to continuous real-world domains. A
promising way is to define parameterized policies and ex-
plore directly in the policy parameters space, by transforming
the gradient estimation procedure into a probabilistic estima-
tion problem [7]–[10]. The principal idea is to treat positive
rewards as probabilistic weights, where an EM procedure can
then be used to iteratively optimize the policy parameters.

Dayan and Hinton originally suggested that a RL problem
can be tackled by EM to avoid gradient computation [11].
They introduced the core idea of treating immediate rewards
as probabilities of a fictitious event, in which case probabilis-
tic inference techniques can be used for optimization. From
this simple idea, various reward-weighted policy learning
approaches emerged. The reason of this success can be
attributed to the rapid convergence rate that is well suited to
real-world operational requirements, and to the compatibility
with other research perspectives aimed at designing compact
and robust representation for parameterized policy [5], [7],
[12]–[16].

In policy learning by weighting exploration with the re-
turns (PoWER) [10], the action is treated as an unobserved
variable and the returns are considered as a probability
distribution. It relies on the following insight: a safe way to
generate new policies is to look in the convex combination
of sampled policies. PoWER estimates a policy Θ(n) at
iteration n, such as to maximize the lower bound on the
expected return from following the policy. In its simplest
form, and in the case of episodic rewards (single final
rewards), a new policy can be estimated and added to the
training set by following the update

Θ(n) = Θ(n−1) +

M∑
m

r(Θm)
[
Θm −Θ(n−1)

]
M∑
m

r(Θm)

, (1)

where an ordered set of the best policies {Θk}Mk=1 obtained
so far with r(Θ1)≥ r(Θ2)≥ . . .≥ r(ΘM ) is used at each
iteration n as a form of importance sampling [10].

The above equation is written in a form that empha-
sizes correspondences with gradient-based approach.

[
Θm−

Θ(n−1)
]

represents the relative exploration between the
policy parameters used in the m-th ordered trial and the
current best policy parameters. This difference is weighted
by the corresponding reward r(Θm), and normalized by
the sum of the other rewards. The equation above can
also be rewritten as a weighted sum of the best policies
obtained so far, thus making links with imitation learning
strategies where each iteration in the process corresponds to
the imitation of the most successful policy parameters. In the
case of episodic rewards, it also has direct links with state-of-
the-art algorithms in stochastic optimization and evolutionary
computation such as the cross-entropy method (CEM) [17]
and the covariance matrix adaptation evolution strategy
(CMA-ES) [18], see also [14].

B. Exploiting covariance information in the exploration
problem

When searching for new solutions, large exploration noise
can lead to faster convergence due to greater changes of the
mean policy. Low exploration noise can in contrast converge
to more accurate solutions, and avoid bringing the robot into



Fig. 2. Illustration of an exploration problem characterized by several
local optima. The solution landscape is represented by two policy parameters
Θ = [Θ1,Θ2]⊤ space, with the elevation proportional to the rewards r(Θ).
In this illustrative example, two local optima could be found by the robot,
characterized by centers {µ1,µ2} and covariance matrices {Σ1,Σ2}. A
standard gradient-ascent procedure starting from the green circle could
converge to one of the two peaks and possibly stop after attaining a
local maximum (green cross). We are interested in search procedures that
approximate regions of high rewards with a density function, such that
the algorithm does not only detect a peak and stops, but continues the
exploration to provide more information about the viability and spread of
the solution subspaces. In this example, the reward r(µ1) is slightly higher
than r(µ2). However, µ2 can be considered as a safer choice for the policy
because the larger covariance Σ2 results in higher tolerance to errors.

unsafe regimes. The exploration thus has to be sufficiently
rich to converge in a reasonable amount of time and avoid
getting stuck in poor local optima. A common practice is
to introduce decaying exploration terms, where the noise
is often generated independently for each variable (without
covariation). Alternatively, the EM process can be used to
optimize exploration noise together with policy parameters
[7], similarly as in stochastic optimization and evolutionary
search problems [17], [18].

The exploration noise can be expressed in the form of a
covariance matrix and updated with

Σ(n) =

M∑
m

r(Θm)
[
Θm −Θ(n−1)

][
Θm −Θ(n−1)

]⊤
M∑
m

r(Θm)

+Σ0,

(2)
where Σ0 is a regularization term (diagonal covariance
matrix) corresponding to a minimum exploration noise used
to avoid premature convergence to poor local optima.

Equations (1) and (2) form at each iteration a multivariate
normal distribution. The covariance information can serve
several purposes. First, it can guide the exploration by
defining an adaptive exploration-exploitation trade-off. Then,
it conveys important information about the neighborhood
of the policy solutions (e.g., shape, total surface, principal
directions, curvature), see Fig. 2.

In the case of human movements, it was shown that
redundancy provides a way to cope with noise at a motor

level by channeling the noise in directions that have minimal
effect on achieving the task goal [19]. Skilled performers
may take advantage of this redundancy and align their actions
with the solution manifold corresponding to a given task
goal, i.e., the space in which noise and variability have little
or no effect on the end result. Sternad et al [19] suggested
that variability may offer a way to quantify error tolerance via
the shape of the result function. Indeed, one reason to prefer
some locations over others in the task solution manifold is
the sensitivity of the result to variability (tolerance to errors).
In some tasks, the immediate neighborhood of the solution
manifold has different curvature for different local optima,
making some regions more tolerant to errors than others.
The solution manifold can for example be characterized
by a continuous portion of space in which the reward is
maximum. There is thus no global optimum based on the
reward information alone, but it is the local spread of the
region that determines the best solution that we would like
to reach, see Fig. 2.

The formulation of the search problem as a global ap-
proximation of the space of control policy solutions intro-
duces new possible considerations for the selection of policy
parameters. The selection does not only need to be driven
by the reward value but can also include other (possibly
context-dependent) factors such as tolerances to errors. The
EM-based RL framework appears to be a good candidate
to determine and evaluate the robustness of such solutions
by analyzing how the policy parameters can exploit the
redundancy and sensitivity to errors. It allows the study of
policy improvement strategies that do not only consist of
reaching a locally optimum solution, but that are capable
of approximating locally the solution space. This can be
used to determine the possible range of noise that can be
introduced without perturbing the outcome of the task, and
to analyze the correlations among the policy parameters for
the reproduction.

In the next section, we show that the problem can be
extended to a mixture of policy subspaces. Namely, to the
search of a solution space by fitting a density function that
does not (necessary) have a single optimum. More complex
solution space can thus be considered with multimodal
distributions learned in an adaptive and incremental manner.

The representation of density functions as mixture models
can be applied in various manners within an exploration
context. Botev and Kroese presented a generalized cross-
entropy (GCE) method applied to the problem of density es-
timation, by making links between kernel-based and mixture-
based approaches [20]. They tackled density estimation as
a functional optimization problem (in contrast to solving
a parametric optimization problem), and showed that by
selecting an appropriate divergence measure, the approach is
equivalent to choosing a discrete mixture of kernel functions
as sampling density. Kobilarov explored the use of GMM
for stochastic sampling in CEM [21], and showed that,
for exploration in a parameterized trajectory space, the use
of GMM can improve the performance of sampling-based
motion planning with a more global exploration of feasible



solutions.

C. Multi-optima exploration
The update equations in (1) and (2) are now extended

to the autonomous search of multiple local optima with an
EM procedure. Intuitively, the process can be visualized as
fitting a Gaussian mixture model (GMM) in which a set of
normal distributions characterized by centers µi, covariance
matrices Σi and priors (mixing coefficients) πi are iteratively
used for refinement and generation of new trials. The process
corresponds to a reward-weighted stochastic optimization
process, where each µi represents the best local guess of
the policy parameters, while Σi represents the spread of
the region in this policy parameters space. A prior (mixing
coefficient) πi is associated with each Gaussian to encode
the importance of each local solution subspace.

In contrast to the use of EM in a standard GMM fitting
mechanism, the weighting process does not only consider the
probability of belonging to one of the mixture component,
but also the rewards of the different samples. Namely, at
iteration n, we have for each component i ∈ {1, . . . ,K}

E-step:

hi(Θm) =
πi N

(
Θm| µ(n−1)

i ,Σ
(n−1)
i

)
∑K

k πk N
(
Θm| µ(n−1)

k ,Σ
(n−1)
k

) .
M-step:

µ
(n)
i = µ

(n−1)
i +

M∑
m

r(Θm)hi(Θm)
[
Θm − µ

(n−1)
i

]
M∑
m

r(Θm)hi(Θm)

,

Σ
(n)
i =

M∑
m

r(Θm)hi(Θm)
[
Θm−µ

(n−1)
i

][
Θm−µ

(n−1)
i

]⊤
M∑
m

r(Θm)hi(Θm)

+Σ0,

π
(n)
i =

M∑
m

r(Θm)hi(Θm)

K∑
k

M∑
m

r(Θm)hk(Θm)

. (3)

In the above equations, {Θm}Mm=1 is the ordered set of
the best policy parameters for each component i and for
the last L trials, with r(Θ1)hi(Θ1) ≥ r(Θ2)hi(Θ2) ≥
. . .≥r(ΘM )hi(ΘM ). M is the parameter of the importance
sampler (M can be set to the current number of trials to
disable the elite strategy). Σ0 is the regularization term
avoiding early convergence.

Such GMM representation can cope with two situations:
• When several local optima (separated in the policy

parameters space) perform similarly well in terms of
rewards. Fig. 2 presents an illustrative view of the
problem.

• When the local solution space has a complex, concave
or asymmetric shape that cannot be approximated effi-
ciently by a single Gaussian distribution.
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Fig. 3. Gaussian splitting process (in equal proportion). Left: Original
Gaussian with principal axis ai,1 depicted in dashed line and equiprob-
ability lines depicted in light grey color in the background . Center and
right: Influence of the parameter u on the splitting process (u= 0 would
correspond to a perfect match of equiprobability lines).

In the first case (Fig. 2), the search for multi-optima policy
subspaces can be exploited to evaluate different solutions
and select the most appropriate with respect to the current
situation (context-dependent selection process). Such choice
may for example depend on external factors such as space
restriction, occlusion, injured articulation or fatigued mus-
cles (or equivalently, broken or overheated motors). It also
allows the agent to robustly adapt to progressively changing
environment (slowly drifting reward functions). In this last
situation, the system can keep track of regions that might, at
a given time, have slightly lower reward, but that remain of
interest because they can potentially lead to optimal solutions
in the future, or because they can be used as an alternative
options if the ”best” policy is unavailable or too risky to be
used.

The policy space to be explored is initially assumed to
be unimodal (a single Gaussian distribution is used, as in
PoWER, CEM and CMA-ES). The number of Gaussians is
iteratively adapted with the approach described below.

D. GMM split&merge algorithm

Algorithm 1 GMM split&merge algorithm.
1: for n← 1 to N do ◃ Loop for each trial n
2: Θn ← randomSampling(Ω̂) ◃ Random sampling of a n-th point
3: Ω̂ ← EM(Ω̂,Θ) ◃ Refine policy and exploration noise
4: for i← 1 to K do ◃ Compute splitting candidates
5: Ωi ← splitGaussian(Ω̂,i)
6: LS

i ← evaluateLikelihood(Ωi)
7: end for
8: L̂ ← evaluateLikelihood(Ω̂)
9: if (max(LS)− L̂) > TS then

10: Ω̂ ← Ωargmax(LS) ◃ Split Gaussian (w.r.t. threshold)
11: end if
12: for i← 1 to K−1 do ◃ Compute merging candidates
13: for j ← i+1 to K do
14: Ωij ← mergeGaussians(Ω̂,i,j)
15: LM

ij ← evaluateLikelihood(Ωij)
16: end for
17: end for
18: L̂ ← evaluateLikelihood(Ω̂)
19: if (L̂−max(LM)) < TM then
20: Ω̂ ← Ωargmax(LM) ◃ Merge Gaussians (w.r.t. threshold)
21: end if
22: end for



We propose to exploit the split&merge mechanism pro-
posed by Zhang et al [22] together with the update rule
in (3) to adaptively approximate the multi-optima policy
solution space. During the learning process, Gaussians are
split along their principal axis if the increase of components
has a significant impact on the likelihood. Similarly, two
Gaussians are merged if the removal of one component only
slightly decreases the likelihood.

For a multi-optima policy search, the gradual resolution
decrease or increase of the solution space is achieved by
merging or splitting the Gaussian distributions and associated
priors in the current GMM. The merging of two Gaussians
j and k into a Gaussian i is characterized by πi = πj + πk

and πiP(Θ|i) = πjP(Θ|j) + πkP(Θ|k). It can be shown
that the closest result satisfies the relations (see Zhang et al
[22] for details)

πiµi = πjµj + πkµk, and (4)
πi(Σi + µiµ

⊤
i ) = πj(Σj + µjµ

⊤
j ) + πk(Σk + µkµ

⊤
k).

Solving the split equations is an ill-posed problem (there
are fewer equations than unknowns), which can however be
approximated through singular value decomposition (SVD)
of the covariance matrices. By defining the set of param-
eters l ∈ {1, 2, . . . , N}, α ∈ [0, 1], β ∈ [0, 1] and u ∈
[0, 1], a Gaussian N (µi,Σi) with prior πi is split into
two Gaussians N (µj ,Σj) and N (µk,Σk) with parameters

πj = πiα,

µj = µi −
√

πk

πj
u ai,l,

πk = πi(1− α),

µk = µi +

√
πj

πk
u ai,l,

Σj =
πk

πj
Σi + (β−βu2−1)

πi

πj
ai,la

⊤
i,l + ai,la

⊤
i,l,

Σk =
πj

πk
Σi + (βu2−β−u2)

πi

πk
ai,la

⊤
i,l + ai,la

⊤
i,l. (5)

In the above equations, Σi = AiA
⊤
i represents the or-

dered eigencomponents decomposition of Σi with Ai =

[ai,1,ai,2, . . . ,ai,D]. The parameters α = β = 1
2 , u =

√
3
4 ,

l = 1 and D = 1 are used in our application, corresponding
to equally weighted splitting operations by following the
principal direction of the Gaussians. Fig. 3 presents an
illustration of the split algorithm.

Algorithm 1 presents the pseudocode of the learning
process. In the pseudocode, Ω̂ = {πi,µi,Σi}Ki=1 represents
the current GMM (initialized with a single Gaussian).
Ωi and Ωij represent candidate GMMs for the splitting
and merging operations. The randomSampling() function
generates a datapoint Θn from the distribution N (µi,Σi),
with i stochastically drawn from π. The EM() function
is the expectation-maximization algorithm in (3), used to
refine the current GMM Ω̂ to fit the training dataset Θ. The
splitGaussian() and mergeGaussians() functions are defined
in (4) and (5). The evaluateLikelihood() function computes
the average log-likelihood of N weighted datapoints with

1∑N
n r(Θn)

∑N
n=1 r(Θn) log

(∑K
k=1 πkN (Θn|µk,Σk)

)
.

T S and TM are split and merge likelihood thresholds.
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Fig. 4. Left: Average number of Gaussians in the GMM at each iteration,
with standard deviation depicted as vertical bars. Right: Maximum reward
at each iteration averaged over 20 runs of the experiment. Each reward is
computed by using the centers of the Gaussians with r̂=maxi r(µi). The
simulator provides a controlled environment where the obtained rewards
can be compared to the theoretical global optimum computed for each
throws accuracy. The black points show the difference between this best
theoretical reward rmax and the reward r̂ computed from the discovered
policy option(s) (∆r= r̂−rmax). The red line shows the effect of stopping
the adaptation to the throwing skills improvement after 1500 iterations.

III. DART GAME EXPERIMENT

The learning process is tested in the context of a black-
box optimization problem (the policy corresponds to a single
action described by two parameters). An agent throws darts
at a target and refines its throwing skill while searching
for the regions of the dartboard where it should aim to
obtain high scores (horizontal and vertical coordinates of
the throws). In such configuration, the solution space is
progressively transformed from a single to a multi-peaked
distribution that needs to be determined to progress in
the game. The progressive reshaping of the solution space
requires the agent to balance exploration and exploitation in
a continuous manner, incorporating a developmental stance
to the exploration behavior.

We assume that the agent refines the precision of its throws
linearly in time and and space, which is described by a
Gaussian distribution N (0, σ2I) with standard deviation σ
linearly decreasing from 75 to 16 for 3000 iterations. The
average score for each position on the dartboard is com-
puted analytically by exploiting the spectral transformation
properties of normal distributions [6]. This provides us with
ground-truth data that can be used to evaluate qualitatively
and quantitatively the parameters subspaces discovered by
the robot.

The experiment is reiterated 20 times, with parameters
empirically set to L=150, M=15, Σ0=I ·8·10−4, T S =0.16
and TM =0.01. Fig. 1 presents the results of a typical run.
Fig. 4 shows the results averaged over 20 runs, and the
effect of stopping the continuous adaptation in the middle
of each run. Even though the complexity of the solution
space increases with the reduction of the throws variance
(from single to multi-peaked distribution, see heatmap in
Fig. 1), we can see with the black curve in Fig. 4 that the
agent is capable of maintaining a decent score while creating
policy alternatives (linear decay trend with low slope). These
alternatives can cope with the discontinuous switches of
global optima when the throws get more accurate. In contrast,
if the agent stops adapting the policy solution space (after
1500 steps) while still improving its throwing capability,



its performance in the game quickly degrades (exponential
decay trend of the red curve).

IV. CONCLUSION AND FUTURE WORK

We presented a multi-optima policy exploration approach
for continuous learning of skills. The approach relies on
a Gaussian mixture model to continuously keep track of
possible variants of a policy to enrich the agent’s skill and be
robust to environmental changes. The approach is tested in
a dart game where an agent tries to discover which position
on the dartboard maximizes its score while progressively
improving its throwing capability. The results showed that the
agent could adapt to this slow change of the reward function
by continuously driving the exploration/exploitation balance
within an expectation-maximization process.

Formulating the search problem as a global fitting of con-
trol policy solutions introduces new research perspectives.
It first provides additional information about the space of
possible solutions. The peaks of the possible solutions are
augmented with additional information such as the local
spread, shape or curvature of the distribution. Under some
conditions, policies with lower peaks and low curvatures may
be preferable to policies with higher peaks but high curva-
tures. The proposed representation provides a framework to
explore this research question in future work.

A potential weakness of the current method, that will re-
quire further investigation, concerns the threshold parameters
that need be set by the experimenter. Future work will study
the influence of these parameters on the final learning results,
and possible ways of automatically setting them (e.g., with
Bayesian information criterion). We plan in future work to
compare the incremental split&merge solution with other
methods for the online estimation of the model structure. In
particular, we will investigate the use of Dirichlet processes
and spectral clustering to estimate the number of peaks in
an online manner.

As a first study, the approach was tested in a dart game
experiment formulated as a black-box optimization problem.
We plan to study and evaluate in future work how the ap-
proach behaves in the case of parameterized policies relying
on statistical dynamical systems [16]. We expect that in
the case of episodic rewards, the extension to parameterized
policy will mostly differ in the dimensionality aspect of the
search process (but not in the intrinsic mechanism).

The proposed formulation opens roads for future studies
towards the search and selection of multiple policy alterna-
tives. It can for example provide robots with the capability to
switch between several policy options in a fast way, without
having to relearn the policy (e.g., when policies become
unavailable). The formulation also encapsulates additional
information about the shape and curvature of the regions of
high rewards, which can be exploited to assess how the policy
parameters can be disturbed without degrading the skill.
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