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Abstract—Bringing robots as collaborative partners into
homes and offices presents various challenges to human-robot
interaction. Robots will need to interact with untrained users
in environments that are originally designed for humans. Com-
pared to their industrial homologous form, humanoid robots
can not be preprogrammed with an initial set of behaviours.
They should adapt their skills to a huge range of possible tasks
without needing to change the environments and tools to fit
their needs. The rise of these humanoids implies an inherent
social dimension to this technology, where the end-users should
be able to teach new skills to these robots in an intuitive manner,
relying only on their experience in teaching new skills to other
human partners. In previous work, we developed a generic
Robot Programming by Demonstration (RPD) framework to
extract the task constraints from cross-situational observations.
In this paper, we present our ongoing research towards integrat-
ing information from various social cues such as joint attention
or vocal intonation to this probabilistic framework.

. INTRODUCTION

For an efcient collaborationwith human users,indoor
robotssuchas humanoidsshouldbe provided with adaptie
controllersthat can behae robustly in changingsituations.
Theserobots should be provided with naturalinterfacesto
interacteasilyandnaturallywith end-user$1], andit should
be possibleto reprogramthem in an intuitive manner[2].
Indeed astheserobotsaresupposedo usea very wide range
of infrastructuresand tools designedoriginally for humans,
it is not possibleto pre-encodeall the gesturesthat will
be requiredto perform skills such as manipulationtasks.
It is thereforecrucial to facilitate the skill transferprocess
by providing end-userswith natural teaching methodsto
reprogramtheserobotsin an intuitive manner

RobotProgrammingby Demonstratior(RPD) coverssuch
methodsby which a robot learnsnew skills throughhuman
guidance.This paperpresentour ongoingresearchowards
bringing userfriendly human-robotteaching systemsthat
would speedup the skill transfer process.To do so, we
suggestto use a genericprobabilistic framewnork gathering
information from cross-situationalobsenations of a skill
with information extracted from different social cues ob-
senedduringtheinteraction.Fig. 1 presentghe architecture
of the proposedramenork.
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Fig. 1. Information flow across the complete system, where the constraints
of a task are extracted through multiple demonstrations performed in slightly
different situations and by using various social cues to scaffold the teaching
interaction.

A. Robotprogrammingby demonstation

Genericapproachedo transfernew skills to a robot are
those that allow the robot to extract automatically what
are the important featurescharacterizingeachtask and to
searchfor a controller that optimizesthe reproductionof
thesecharacteristicfeatures.A key conceptat the bottom
of these approachesis that of determining a metric of
imitation performance One must rst determinethe metric,
i.e. determinethe weights one must attachto reproducing
eachof the componentsof the skill. It is then possibleto
nd anoptimal controllerfor imitation by trying to minimize
this metric (e.g.,by evaluatingseveral reproductionattempts
or by derving the metricto nd an optimum). The metric
acts as a cost function for the reproductionof the skill
[3]. In other terms, a metric of imitation provides a way
of expressingquantitatvely the users intentionsduring the
demonstrationsand to evaluate the robot's faithfulnessat
reproducingthose. To learn the metric (i.e. infer the task
constraints),one common approachconsistsof creatinga
modelof theskill basedn severaldemonstrationperformed
in slightly different conditions (cross-situationaktatistical



learning). This generalizatiomprocessconsistsof exploiting
the variability inherent to the various demonstrationsto
extractwhich arethe essentiatomponentsf thetask.These
essentialcomponentsshould be thosethat remaininvariant
acrossthe variousdemonstrations.

A large body of work explored the use of a symbolic
representatioto boththe learningandthe encodingof skills
andtasks,seee.g.[4], [5]. Themainadwantageof a symbolic
approachis that high-level skills (consistingof sequences
or hierarchiesof symbolic cues)can be learnedef ciently
through an interactve process.However, becauseof the
symbolic natureof their encoding,thesemethodsrely on a
large amountof prior knowledgeto prede ne the important
cuesandto segmentthoseef ciently.

Another body of work focusseson representinghe task
constraintsat a trajectory level to avoid putting too much
prior knowledgein the controllersrequiredto reproducea
skill, seee.qg.[6], [7].* We follow this approachin our work
by using GaussianMixture Model (GMM) and Gaussian
Mixture Regression(GMR) to respectiely encodea set of
trajectoriesandretrieve a smoothgeneralizediersionof these
trajectoriesand associatedrariabilities.

The remainderof this paperis organized as follows.
Sectionll presentghe statisticallearningframewvork usedto
encodethe skill (11-A), shaving how to generalizea learned
taskto varioussituationsby consideringsereral constraints
(11-B), andshaving how differentmodalitiescanbe usedto
demonstrata skill (11-C). Sectionlll thenillustrateshow the
statisticallearningapproachcanbe enhancedy socialcues
such as the orientation of the headwhile demonstratinga
manipulationskill involving objects(l1l-A) or the variations
of intonation in the vocal trace to bring the attention of
the robot to particulareventswhile demonstratinghe skill
(IN-B). SectionlV discusseshe resultsand presentdurther
work.

[I. EXTRACTING TASK CONSTRAINTS THROUGH
STATISTICAL LEARNING

A. Encodingand genealization

Through the use of GaussianMixture Model (GMM),
we shaved in previous work that a robot could extract
autonomouslyhe essentiatharacteristicef a setof trajecto-
riescapturedhroughthe demonstrationfl0], andthatGaus-
sian Mixture Regression(GMR) could be usedto retrieve a
generalizedversion of the trajectorieseitherin joint space
[11], or in task space[12]. Table | presentsthe procedure
for the encodingandgeneralizatiorof the skill. The optimal
numberof componentds estimatedhere through Bayesian
Information Criterion (BIC) [13].

B. Repoductionby consideringmultiple constaints

To nd a controllerfor the robot that takes into account
constraintsboth in joint spaceandin task spaceaswell as
thekinematicredundang of the humanoidarm, we proposed

IFor an exhaustive review and comparisons of the different methods
proposed in RPD, the interested reader can refer to [2], [8].

TABLE I
PROBABILISTIC ENCODING OF THE TASK CONSTRAINTS AND
GENERALIZATION THROUGH GAUSSIAN MIXTURE REGRESSION (GMR).

The dataset X = fngN:1 is defined by N observations X ; 2 RDP
of sensory data changing through time, where each demonstration
is rescaled to a fixed duration T. Each datapoint X; = ft jiX 39 g
consists of a temporal value t; 2 R and a spatial vector X f 2
R(P 1),

The dataset X is first modelled by a GaussianMixture Model
(GMM) of K components. Each datapoint X; is then defined by
its probability density function

p(x;) = EN(X5 & k)

k=1
where  are prior probabilities and N ( g; ) are Gaussian dis-

tributions defined by centers j and covariance matrices j, whose
temporal and spatial components can be represented separately as
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For each component k, the expected distribution of x ]S given the
temporal value t; is defined by
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By considering the complete GMM, the expected distribution is
defined by

p(xFjt;) = kg N (X528 " 25)

k=1

where 1 ; = p(Kjt;) is the probability of the component k to be
responsible for t;, ie.,

wi= P p(k)p(t;jk)
g - . .. - r
opptiin
By using the linear transformation property of Gaussian distribu-
tions, an estimation of the conditional expectation of X f given t;

is thus defined by p(ijtj) N (kf; N5S) where the parameters
of the Gaussian distribution are defined ‘t7)y
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By evaluating fkf; Afsg at different time steps t; 2 [0;T], a
generalized form of the trajectories ® = ft; kf}s g and associated
covariance matrices " = f 55 g representing the constraints along

the task can then be computed (see also [9]).

two inversekinematics(IK) approaches(l) a methodbased
on JacobiarcomputationusingLagrangeoptimizationwhich
allows to handleconstraintson multiple objectsin taskspace
andin joint spacesimultaneoushf10]; and (2) a geometric
inversekinematicsapproactor a4 DOFshumanoidarm, by
representinghe motion of the arm by the 3D Cartesiarpath
of the handand by an additionalparameterepresentinghe
elevation of the elbaw with respectto a vertical plane[12].
Here, the geometricinversekinematicsmethodis usedasit
is muchsimplerfor the 4 DOFsarm considered.

We illustrate the generalizatiorand reproductionmethods



Incremental refinement of the skill
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Fig. 2. Incremental refinement of the task depicted in Fig. 3, coded in
a frame of reference located on the objects that are manipulated (only a
subset of the variables are shown, see Fig. 3 for the frame of reference).
The three columns correspond respectively to a representation of the task
constraints after 1, 3 and 6 demonstrations. The first two rows show the
refinement of the GaussianMixture Regression(GMR) model representing
the constraints for the cylinder (first row) and for the cube (second row)
along the movement. After a few demonstrations, we see that the trajectories
relative to the two objects are highly constrained for particular subparts of
the task, namely when reaching for the cylinder (thin envelope around time
step 30) and when placing it on top of the cube (thin envelope around time
step 100). The last row shows the robot’s reproduction attempts (after 1, 3
and 6 demonstrations) for a new situation that has not been demonstrated.
We see that after 6 demonstrations, the robot correctly reproduces the
essential characteristics of the skill, namely reaching for the cylinder and
dropping it on the cube (see [12] for a complete description of the results).

with an experimentinvolving manipulationanddisplacement

of objects.In this experiment,the skill is representedas
constraintsin task space by consideringthe right hand
path relatve to two objects obsered by the robot in its
ervironment. The constraintsassociatedvith the position of

theright handwith respecto anobjectn arethusrepresented

by the generalizedrajectory2(") andassociatedovariance
matrices” (") (seeTablel).

Fig. 2 shavs hov GMR encapsulatethe task constraints
throughthegeneralizatioprocessFig. 3 shavs theresultsof
the generalizatiorprocesgafter six demonstrationsthrough
shapshot®f therobotreproducinghe learnedskill in a new
situation(new initial positionsof objects).

C. Incrementake nementof theskill, useof differentmodal-
ities and scafolding process

A trend of researchdraws the attentionon the role of the
teacheras being one of the mostimportantkey component
for an efcient transfer of the skill, where the teaching
interactionallows the userto becomean active participant
in the learning process(and not only a model of expert
behaiour), seee.g. [12], [14]-[18]. This active teaching
processallows the learner to experience and adapt the
skill for his/her particularbody capacities as suggestedy

Fig. 3. Example of a manipulation task using two objects, where
constraints on the hand-objects relationships along the motion are extracted
probabilistically, namely grasping the red cylinder, reaching for the yellow
cube (by using a bell-shaped trajectory to avoid hitting the cube), and
dropping the cylinder on top of the cube. The statistical representation of the
task constraints then allows the robot to reproduce the skill with different
initial positions of the objects. For this experiment, a Fujitsu HOAP-3
humanoid robot with 4 DOFs for the right arm and 1 DOF for the hand is
used.

Fig. 4. Different modalities are used to convey the demonstrations and
scaffolds required by the robot to learn a skill. The user first demonstrates
the whole movement while wearing motion sensors (top) and then helps
the robot refine its skill through kinesthetic teaching (bottom), that is, by
grasping the robot’s arms and moving them through the motion. 4 X-
Sensmotion sensors attached to the torso, right upper-arm, right lower-
arm, and back of the head are first used to decompose the 3D absolute
orientation of each segment into a set of joint angles. Through direct
kinematics, the position of the hand in the 3D Cartesian space is then
estimated. For kinesthetic teaching, the motor encoders of the robot are
used to record information while the teacher moves the robot’s arms. The
user first selects the motors to control manually by slightly moving the
corresponding limbs just a few milliseconds before the reproduction starts.
The selected motors are set to passive mode, which allows the user to move
freely the corresponding degrees of freedom while the robot executes the
task, thus providing partial demonstrations while the robot executes the
remaining motion. For these two methods, two webcams within the robot’s
head are used to track the 3D position of the objects (see [12] for details).



developmentalpsychologystudies[19].

Following this approachRiley et al [17] highlightedthe
importance of an active participation of the teachernot
only to demonstratea model of expert behaiour but also
to re ne the acquiredmotion by vocal feedback.Saunders
et al [4] provided experimentswhere a wheeledrobot is
teleoperatedhrougha screeninterfaceto simulatea mould-
ing processthatis, by letting the robot experiencesensory
information when exploring its ervironment through the
teachers support.Rohl ng et al highlightedthe importance
of having multimodal cuesto reduce the compleity of
human-roboskill transfer[18]. In their work, they consider
multimodalinformation as an essentiaklementto structure
the demonstratedasks. Through experiments,they shaved
that humanstransfertheir knovledgein a socialinteraction
by recognizingwhat current knowledge the learner lacks.
They then suggestedaking insights from thesestudiesto
reducethe learningcompleity of currentRPD frameworks.
Thus, sharinghumanadaptabilitywith the lessknowledge-
able becomesa centralissuewhen designingsocial robots,
andthey thereforehypothesizahata humanteachercanalso
adaptnaturallyto a robot equippedwith speci c abilities.

In [12], we adopteda similar stratgy andshavedthatthe
skill transferprocesscanbene t from the users capacityto
adapthis/herteachingstratgjiesto the particularcontet. We
extendedthe conceptto the learning of continuousmotion
trajectoriesand of actionson objects,and proposedexper
iments where a humanoidrobot learns nev manipulation
skills by rst observinga human demonstrator(through
motion sensorspandthengraduallyre ning its skill through
kinesthetic teaching (see Fig. 4). In this application, the
user provides scafolds to the robot for the reproductionof
the skill by moving kinestheticallya subsetof the motors.
Throughthe supervisionof the userwho progressiely dis-
mantlesthe scafolds after each reproductionattempt, the
robot can nally reproducethe skill on its own (seealso
Figs 3 and 2).

We thus suggestto use different modalitiesto produce
the demonstrationssimilarly to a teachingprocesswhere
a humanteacherwould rst demonstratehe completeskill
to the learner followed by practicetrials performedby the
learner under the supervisionof the teacher We take the
perspectie that unlike obserational learning, pedajogy is
requiredto facilitate the transfer of the skill, which is a
specialtype of communicatiorusedto manifestthe relevant
knowledgeof a skill.

As discussedby Gegely andCsibratheteacherrst needs
to analyzehis/herknowledgecontentto emphasizén his/her
demonstrationsghe aspectghat are relevant for the learner
[20]. In our experiments, obsenational learning is used
similarly asa rst methodfor the userto demonstrat@atural
gesturesby controlling simultaneouslya large number of
degrees of freedom (up to 14 joint anglesfor the tasks
consideredin our experiments).Kinesthetic teachingthen
providesa way of supportingthe robotin its reproductionof
the task. Throughthis scafolding processthe userprovides
supportto the robot by manually articulatinga decreasing

Encoding of Data

Fig. 5. Influence of the speech/gaze priors on constraints extracted
through statistical learning for an interaction with a naive user. The first
and second rows correspond to the trajectories relative respectively to the
cylinder and to the cube (see Fig. 3). First column: Data extracted from 5
demonstrations and encoding through a GaussianMixture Model (GMM)
of 5 components (the optimal number of components is estimated through
Bayesian Information Criterion (BIC) [13]). Secondcolumn: Generalization
of the trajectories through GaussiarMixture Regression(GMR) based solely
on cross-situational statistics. In this case, we see that five demonstrations
are not sufficient to extract interesting information concerning the task
constraints, i.e. the envelope thickness around the generalized trajectory does
not present much variations (see Fig. 2 for comparison). Third column: By
using GMR with the social priors defined in Eqs (1), (2) and (3), we see that
the envelopes become thinner in the relevant parts of the trajectories, namely
when grasping the cylinder and when dropping it on the cube (highlighted
by two circles in the graphs).

subsetof motors.The scafolds progressiely fadeaway and
the user nally lets the robot perform the task on its own,
allowing the robot to experiencethe skill independently

Oneadwantageof this approachs thattheusercanprovide
partial demonstrationdy using the robot's own kinematics
andcandemonstrat¢hetaskin therobot's own ervironment.
This kinestheticteaching processalso allows the user to
feel the robot's body limitations and provide appropriate
examplesthat take theselimitations into consideration.

To apply technically this teaching approach,we also
demonstratedin [11] that it was possible to use a
GMM/GMR framework to learn a skill incrementallyand
in an on-line mannerwithout having to keep eachdemon-
strationin memory Suchan incrementallearningapproach
allows theteachetto watchthe robot's reproductiorattempts
after eachdemonstrationand thus helpshim/her assesghe
robot's current understandingof the skill and preparethe
following demonstratioraccordingly

1. EXTRACTING TASK CONSTRAINTS
THROUGH SOCIAL CUES

The system presentedin the previous section requires
to obsere the skill in slightly different situations. Even
if this variation appearsnaturally when executing the skill
severaltimes,therobot's capacityto generalizeover different
contts also dependson the pedagogicalquality of the
demonstrationprovided (e.g. gradualvariability of the situ-
ationsand exaggerationf the key featuresto reproduce).

This fact sharessimilarities with the human way of
teaching.Indeed, a good teacheralso extendsthe demon-
strationsprogressiely so that the learnercan more easily



infer the connectionsbetweenthe different examples,and
the range of the possible situations where the skill may
apply is progressiely increasedThus, by usinga statistical
learning stratgy alone,we implicitly suggestthat one way
of increasingthe speedof the teachingprocessis to rely
on the users natural propensityfor teachingby structuring
the successie examplesprovided and guiding the learners
exploration.

Indeed,in our teachingscenarioup until now, an expert
user displacesprogressiely the objectsafter eachdemon-
strationto provide variability in the exposuresof the skill.
In sucha situation,it is nearlyalwayspossiblefor the robot
to extractthetaskconstraintswith only afew demonstrations
(from four to ten for most of the tasks that we have
considered) However, it may happenthat untrainedusers
provide a setof demonstrationsemainingeithertoo similar
or too different from one example to the other In this
case,a larger set of demonstrationsvould be requiredto
generalizehe skill. The rst two columnsof Fig. 5 shov an
experimentsimilar to the one performedby an expert user
(presentedn Fig. 2), wherethe untraineduserprovided ve
demonstrationshat were too similar to extract correctlythe
task constraintshroughstatistics.

To wealen the dravback of suchsituations,we follow a
learning approachwhere the joint use of cross-situational
obsenationsand social cuesensuresan ef cient transferof
the task throughinteractionwith the user We thus propose
to enhancehe statisticallearning strateyy with information
coming from various social cues,and shav that thesecues
canbe representedtatisticallyas priors in the GMM/GMR
framavork. We focus here on gaze and speechinformation
to demonstrat¢hatinteractionalcuesof differentnaturescan
be consideredlIt is importantto note that we do not aim at
developing state-of-the-argaze tracking systemsor speech
recognition systems.We only describehere prototypesof
thesesystemsto shawv that multimodal social cuescan be
integrated in our framework through generic probabilistic
approaches.

By usinga computemgame,ThomazandBreazeakxplored
the ways in which machinelearning can be designedto
take advantagesof natural humaninteractionand tutelage.
They demonstratethataugmentinga reinforcementearning
processwith the social mechanismsof attention direction
and gaze positively impactsthe dynamicsof the underlying
learning mechanismshighlighting the reciprocal nature of
the teaching-learningartnershig15]. They shavedthrough
their experimentsthat the teachers ability to guide the
learners attentionto appropriateobjectsat appropriatdimes
createsa signi cantly more robust and efcient learning
interaction.Our work follows a similar approactandextends
this conceptto the learning of continuousgesturesby a
humanoidrobot.

In the eld of speechacquisitionand word learning, Yu
and Ballard explored how humanscan learn words/objects
couplingsthroughstatisticallearning,and proposeda model
for earlyword acquisitionin a uni ed framework integrating
statisticaland social cues[21]. Their modellinks thesetwo

Fig. 6.  TIllustration of the use of gaze information to speed up the
learning process through a probabilistic measure of saliency when the head
is turned toward an object (see also Table II). Top: Estimation of gaze
direction by representing the position and orientation of the head (extracted
through X-Sensmotion sensors) as a cone of vision which intersects with a
surface. Bottom-left:Probabilistic representation of the intersection as a 2D
Gaussian distribution. Bottom-right: Estimation of the probability to focus
the attention of the robot at a particular time on a particular object i placed
on the table knowing its initial position x (9) (the object position is tracked
through the robot’s built-in stereoscopic vision system).

sourcesof information by consideringjoint attention and
prosodyon the onehand,andstatisticsfrom cross-situational
obsenationson the otherhand.Our work follows a similar
approachby extending the conceptto robot learning by
imitation.

A. Useof head/gazenformationas priors

A large body of work explored the use of gazedirection
and head orientationas a way to corvey the intention of
the user seee.g.[14], [22], [23]. In [24], we shaved that
we can roughly extract gaze information by measuringthe
orientationof the headthroughX-Senamotion sensorsEven
if this remainsa strongassumption(as headorientationcan
not be considereddirectly as a social cue), it affects gaze
following, i.e., the headnaturallyturnstowardsa goal when
thereis no other constraint.

Fig. 6 and Table Il presenta method to detect joint
attentionby representinggazedirection as a coneof vision
whose intersectionwith a table can be representedas a
Gaussiardistribution. Insteadof simply de ning anattention
point astheintersectiorof a gazedirectionline with a plane,
this method also evaluatesthe robustnessof the measure
through a covariance matrix. Following this method, the
last row of Fig. 7 presentsan example of the probability
p® extractedalong the task, representinghe probability of
bringing the robot's attentionto one of the objectsdetected
in the scene(eitherthe cylinder or the cube).

B. Use of vocal information as priors

Vocal deixis using speechrecognition engineshas been
exploredasa way for the userto highlight throughlinguistic
information the stepsof the demonstratiorthat are deemed



TABLE II
PROBABILISTIC ESTIMATION OF THE GAZE DIRECTION.

The gaze is modeled by a cone of vision with vertex point tq,
direction d; and half-cone angle . A point X on the cone satisfies

X i1
di - - = coy );
X ta) <)
or in a matrix form (I denotes the identity matrix)
x t)IMEx t1) = 0
with M = dyd]  (cos( ))?1:

The table is defined by a plane with origin tg, and directions da1
and dg2. A point X on the plane satisfies

X = ta+ X1 d21 + X2 dag:
The intersection of the cone and the plane defines a conic
C1 X3+ 202 X1X2 + C3 X2+ 2c4 X1 + 2C5 X2 + Cg = O;

with  t12 = tg ty, €1 = dglM do1, G2 = dglM doo, C3 =
d%;M dao, C4 = t{ZM do1, C5 = I{ZM doo and cg = t{QM tio.

This conic can be re-written in an homogenous matrix form

0 1
C1 Co Cyq
xTCx=0; C=@cy c3 c5 A= g% gt :
C4 Cs Cp t g

where X = (x1;%x2;1)T, Cr2 R2 2,C; 2 R! 2and C52 R.

The canonical form of the conic C. is determined by transforming
the conic matrix C through an Euclidean transformation H

0 1
Ca O 0
Cc=@ 0 Co 0 A = HTCH;
0 0 Ce
. _ R t
with H = of 1 ;

where the rotation R and translation t are found by diagonalizing
C R through Principal Componen#nalysis

Cr=R RT; t= R 'RTcy

By considering an elliptical intersection (see Fig. 6), the canonical
conic C1x2; + Coax2y + Ceg = O can be re-written as

s s
2 2

X X . Ce3 Ces
—el 4 22 = 1 with a= 2. b= .
a2 b2 Ce1 Ce2

which can also be represented as a 2D Gaussian distribution
N(; ) =N(@tR RT), where . is defined by

_ a2 o

cT 0 B

By considering this distribution in our experiments, the likelihood
L;,; at time step t; for an object i (located at initial position x (1)
can then be defined by

Lij= P G m)THTEN

2 )2 ;i

When considering M different objects, a probabilistic measure of
interest (level of saliency) for object i at each time step t; is thus
defined by (see also the bottom graph of Fig. 7)

L,
ng = PM’—j 2 [0;1]: @

n=1"-"m,]

TABLE III
DETECTION OF ATTENTIONAL UTTERANCES IN THE VOCAL TRACE.

OFFLINE TRAINING PHASE

A set of 10 short common attentional utterances used as vocal
spotlights (such as “Look here!” or ”Watch this!”) produced by
the user is first recorded in a training phase prior to the interaction.
A set of 10 random words and/or sentences spoken in a neutral way
(e.g. by reading an instruction) is also collected.

The pitch and energy of the sound signals are extracted, where the
pitch (corresponding to the fundamental frequency f ) is evaluated
by the subharmonic-to-harmonicatio method proposed by Sun
[25].

The two sets of pitch and energy traces are used to train two Hidden
Markov Models (HMMs) 4 and N (“attentional model” and
”neutral model”), where the number of states has been determined
empirically. Each HMM is thus defined by 3 states, where each ob-
servation output is defined by a 2D Gaussian distribution (to encode
the pitch and energy). The parameters are trained through the Baum-
Welch algorithm [26], estimating iteratively the HMM parameters
f ;A; ; 0, namely the initial state distribution , the matrix of
states transition probabilities A and the output distributions defined
by centers  and covariance matrices

ONLINE RECOGNITION PHASE

When demonstrating a skill, the vocal trace of the user is recorded
through the robot’s internal microphone. It is then used to detect
the probability of an attentional bid, i.e., when the user is bringing
the attention of the robot to a particular aspect of the skill during
the course of his/her demonstration.

To do so, a temporal window of fixed size W is used to keep
track of the pitch and energy signals during the last W seconds
(ift; < W, then W = t;). We use here W = 0:5 sec., which
has been determined empirically. The data in this window are then
tested with the two HMMs 4 and v at each time step t;
through the forward procedue [26]. L ' and L IV are thus computed,
corresponding to the likelihoods at time t ; of belonging respectively
to the “attentional model” 4 or to the “neutral model”
At each time step t;, the probability of detecting an attentional
utterance is finally defined by (see also fourth graph of Fig. 7)
LA
pf = 2 2 [0;1]: @)

A
La+ L

mostimportant,seee.g.[5], [27]. Anotherapproachfocuses
on the prosodyof the speechpatternratherthan the exact
content of the speech,which is used similarly to infer

informationon theusers communicatie intent,seee.g.[14],

[18], [28]. Someworks also combineboth information, see
e.g.[23].

In this paper we follow the prosodicapproachby using
Hidden Markov Models (HMMs) to detectparticular into-
nation patternswhile uttering attentionto particular events
during the demonstratiorof the task (e.g. emphasizinghe
useof a particularobject).

Tablelll presentsamethodfor thetrainingandrecognition
of attentionalcuesusingHMMSs, shaving how a vocal prior
pS can be retrieved from this model. The rst four rows
of Fig. 7 presentan example of the result for the objects
stackingtask.

C. Combiningseveral priors

We have seenin Sectionll that the statisticalconstraints
relatve to an objecti are representecby the generalized
trajectory (V) and associatectovariancematrices” (). By



<« youtake THIS andyuputt THERE >

speech signal

Pitch, fO (Hz)

Energy (dB)

time (sec)

Fig. 7. Extraction of priors from speech ( r St4 rows and gaze information
(last row) for the task depicted in Fig. 3. The first four graphs show the
probabilistic extraction of attentional events in the vocal trace by using
pitch and energy information (the temporal window of size W used to
detect attentional cues is represented in dashed line). The first row shows
the sound signal corresponding to the sentence "You take THIS and you
put it THERE” told by the user when executing the skill (while observed
by the robot, see left snapshot in Fig. 4). We see that the particular events
in the demonstration, corresponding respectively to the subparts when the
user grasps one object ("THIS” ) and drop it on the other object ("THERE"),
are highlighted through the user’s voice. These events correspond roughly to
local patterns characterized by a higher energy and a larger pitch amplitude
with consecutive rising and falling intonation contours, which are typical to
prosodic patterns serving as spotlights during the interaction [21], and which
are automatically captured in our system through the HMM encoding. The
third graph represents the probability pJS at time t; of hearing an attentional
utterance (see Table III). The bottom graph shows the probability pJG at
time t; of looking at the red cylinder (in solid line) or at the yellow cube
(in dashedline), which also implicitly informs the robot that the user is
conveying information on the relevance of these two objects at different
time steps (see Table II).

using this GMR representationywe can modify easily the
in uence of the constraintsby taking into considerationat
eachtime stept; gaze priors pﬁ on objecti and speech
priors pjs. To do so, we rst computethe mean values
p¢ andp® attime stept; by averagingover the different
demonstrationprovided to the robot (here, ve). Then,we
multiply by a weightingfactorthe covariancematricesof the
GMR representatiorsuchthat

AT A pS pS); 3)
where pﬁ pjS representghe joint probability at time step
tj (whenconsideringspeechand gazeas independentari-
ables),which senes as a spotlightto emphasizeparticular
eventsduring the demonstration. is a factorweightingthe
in uence of the social cuesover the constraintsextracted
through cross-situationastatistics(here, = 0:5 hasbeen
selectecempirically). Thus,for the reproductionof the task,

the in uence of the generalizedtrajectory with respectto
objecti is increasedvhenpf p? is high.

The imprecisiondue to the estimationof social cuesis
reducedby consideringdifferentdemonstrationsand differ-
ent modalities.For example,in the bottom graphof Fig. 7,
we seethat from time stept; = 8 sec.,the systemdetects
that the useris looking at the initial positionof the cylinder
(which is alreadystacled on the cube). This error may be
dueto trackingimprecisionor becausehe userdoesnotneed
to focuson a particularobject/positionarymore after he has
droppedthe cylinder. In both casesthis error disappeardy
taking into consideratiorthe joint probability of events(i.e.,
the vocal analysisdoesnot detecta particularevent at these
time steps),aswell asthe multiple demonstrationprovided
to the robot.

The right columnof Fig. 5 shavs the resultsof applying
speechand gazepriors as proposedn Eg. (3) to the extrac-
tion of the task constraints(thinner envelopewhen p,GJ pjS
is high). By using social cuesas priors, the robot can thus
generalizethe skill to different situationssimilarly to the
reproductionresultspresentedn Fig. 2.

V. DISCUSSION AND FURTHER WORK

The earlyresultspresentedbove shav thattheintegration
of social cues within our statistical learning approachis
promising.However, asonly a very limited datasehasbeen
usedso far, the robustnessof the approachstill needsto
be evaluatedwith untrained usersteachingnew skills in
real-world experimentalsetups.The weighting mechanism
de ned in Eqg. (3) to combineprosodicspotlightsand joint
attentionspotlightsis rathersimpleandsenesasa rst step
towards evaluating the integration of social cueswithin the
statistical framevork. One direction of further work is to
investicate the dependencieandrelevanceof thesedifferent
cuesin a human-roboteachinginteractioncontext.

The adwantageof using invasive devices such as the X-
Sensmotion sensorsto track the users gestureprincipally
concernghe precisionof the tracking procedureandrobust-
nessto occlusion.However, it is not anaim per seto usethis
modality, and a further step for userfriendly human-robot
interactionwill beto usethe proposedrameavork with more
human-equialentmodalitiessuchasvision, seee.g. [1].

Ongoing work also concernsthe joint use of this RPD
framavork with other methodssuchasa dynamicalsystem
in order to be rohust to changesin the ervironmentwhile
the robot reproduceghe learnedskill [29], [30], or by using
reinforcementlearning as a way to let the robot explore
its environmentand learn by itself, thus extendingthe skill
learned by imitation to a broader context than the one
obsered during the demonstration$31].

Furtherwork will extendthe proposedscenarioso more
compl interactionswhere the teachingphaseand repro-
ductionphasearemorecloselyintertwined,allowing aricher
interactionwheretherobotcouldrequesthe userfor advices
at ary time, where the user could provide adviceson the
robot's reproductionattempts,and where a more comple
scafolding processcould be used. In this direction, one



short-termgoal is to investigate how we could bene t from
the probabilistic representatiorof the task constraintsto
segmentthe whole taskinto subtaskghatcanbe reoiganized
differently to let the userprovide scafolds for eachsubpart
independenthat the desiredspeedandrhythm. Longerterm
goals focus on developing robots that would have the ca-
pability to understandhe users intentfrom demonstrations,
whichwould for exampleallow themto learnnew skills even
from failed attempts.

V. CONCLUSION

We presenteda probabilisticapproachin robot program-
ming by demonstratiorthat allows to extract incrementally
the constraintsof a taskin a continuousform andto repro-
ducea generalizatiorof the learnedskill in new situations.
We highlightedthe importanceof including the users teach-
ing abilities in the machinelearning processby using dif-
ferentmodalitiesto corvey thedemonstrationfobsenational
learningandkinestheticteaching),andby designinghuman-
robot interactve scenariogmimicking the humanprocessof
teaching.We then presentecur currentresearchtowardsa
socially driven statisticallearning framework to reducethe
compleity of the skill transferprocessThrougha manipu-
lation taskinteractionwith a humanoidrobot, we illustrated
how varioussocial cuescould be integratedin the proposed
probabilistic framewnork to disambiguateautomaticallythe
role of the differentvariables/objectsharacterizinghe task.
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