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Abstract— Bringing robots as collaborative partners into
homes and offices presents various challenges to human-robot
interaction. Robots will need to interact with untrained users
in environments that are originally designed for humans. Com-
pared to their industrial homologous form, humanoid robots
can not be preprogrammed with an initial set of behaviours.
They should adapt their skills to a huge range of possible tasks
without needing to change the environments and tools to fit
their needs. The rise of these humanoids implies an inherent
social dimension to this technology, where the end-users should
be able to teach new skills to these robots in an intuitive manner,
relying only on their experience in teaching new skills to other
human partners. In previous work, we developed a generic
Robot Programming by Demonstration (RPD) framework to
extract the task constraints from cross-situational observations.
In this paper, we present our ongoing research towards integrat-
ing information from various social cues such as joint attention
or vocal intonation to this probabilistic framework.

I . INTRODUCTION

For an ef�cient collaborationwith humanusers,indoor
robotssuchashumanoidsshouldbe provided with adaptive
controllersthat can behave robustly in changingsituations.
Theserobotsshouldbe provided with natural interfacesto
interacteasilyandnaturallywith end-users[1], andit should
be possibleto reprogramthem in an intuitive manner[2].
Indeed,astheserobotsaresupposedto usea very wide range
of infrastructuresand tools designedoriginally for humans,
it is not possibleto pre-encodeall the gesturesthat will
be required to perform skills such as manipulationtasks.
It is thereforecrucial to facilitate the skill transferprocess
by providing end-userswith natural teaching methodsto
reprogramtheserobotsin an intuitive manner.

RobotProgrammingby Demonstration(RPD)coverssuch
methodsby which a robot learnsnew skills throughhuman
guidance.This paperpresentsour ongoingresearchtowards
bringing user-friendly human-robotteaching systemsthat
would speedup the skill transfer process.To do so, we
suggestto use a genericprobabilistic framework gathering
information from cross-situationalobservations of a skill
with information extracted from different social cues ob-
servedduring the interaction.Fig. 1 presentsthearchitecture
of the proposedframework.
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Fig. 1. Information flow across the complete system, where the constraints
of a task are extracted through multiple demonstrations performed in slightly
different situations and by using various social cues to scaffold the teaching
interaction.

A. Robotprogrammingby demonstration

Genericapproachesto transfernew skills to a robot are
those that allow the robot to extract automatically what
are the important featurescharacterizingeach task and to
searchfor a controller that optimizes the reproductionof
thesecharacteristicfeatures.A key conceptat the bottom
of these approachesis that of determining a metric of
imitation performance. Onemust �rst determinethe metric,
i.e. determinethe weights one must attachto reproducing
eachof the componentsof the skill. It is then possibleto
�nd anoptimalcontrollerfor imitation by trying to minimize
this metric (e.g.,by evaluatingseveral reproductionattempts
or by deriving the metric to �nd an optimum). The metric
acts as a cost function for the reproductionof the skill
[3]. In other terms, a metric of imitation provides a way
of expressingquantitatively the user's intentionsduring the
demonstrationsand to evaluate the robot's faithfulnessat
reproducingthose.To learn the metric (i.e. infer the task
constraints),one common approachconsistsof creating a
modelof theskill basedonseveraldemonstrationsperformed
in slightly different conditions (cross-situationalstatistical



learning).This generalizationprocessconsistsof exploiting
the variability inherent to the various demonstrationsto
extractwhich aretheessentialcomponentsof thetask.These
essentialcomponentsshouldbe thosethat remain invariant
acrossthe variousdemonstrations.

A large body of work explored the use of a symbolic
representationto both the learningandtheencodingof skills
andtasks,seee.g.[4], [5]. Themainadvantageof a symbolic
approachis that high-level skills (consistingof sequences
or hierarchiesof symbolic cues)can be learnedef�ciently
through an interactive process.However, becauseof the
symbolic natureof their encoding,thesemethodsrely on a
large amountof prior knowledgeto prede�ne the important
cuesand to segmentthoseef�ciently .

Another body of work focusseson representingthe task
constraintsat a trajectory level to avoid putting too much
prior knowledge in the controllersrequiredto reproducea
skill, seee.g.[6], [7].1 We follow this approachin our work
by using GaussianMixture Model (GMM) and Gaussian
Mixture Regression(GMR) to respectively encodea set of
trajectoriesandretrieveasmoothgeneralizedversionof these
trajectoriesandassociatedvariabilities.

The remainder of this paper is organized as follows.
SectionII presentsthestatisticallearningframework usedto
encodethe skill (II-A), showing how to generalizea learned
task to varioussituationsby consideringseveral constraints
(II-B), andshowing how differentmodalitiescanbe usedto
demonstratea skill (II-C). SectionIII thenillustrateshow the
statisticallearningapproachcanbe enhancedby socialcues
such as the orientationof the headwhile demonstratinga
manipulationskill involving objects(III-A) or the variations
of intonation in the vocal trace to bring the attention of
the robot to particulareventswhile demonstratingthe skill
(III-B). SectionIV discussesthe resultsandpresentsfurther
work.

I I . EXTRACTING TASK CONSTRAINTS THROUGH
STATISTICAL LEARNING

A. Encodingand generalization

Through the use of GaussianMixture Model (GMM),
we showed in previous work that a robot could extract
autonomouslytheessentialcharacteristicsof asetof trajecto-
riescapturedthroughthedemonstrations[10], andthatGaus-
sian Mixture Regression(GMR) could be usedto retrieve a
generalizedversion of the trajectorieseither in joint space
[11], or in task space[12]. Table I presentsthe procedure
for theencodingandgeneralizationof theskill. Theoptimal
numberof componentsis estimatedhere throughBayesian
InformationCriterion (BIC) [13].

B. Reproductionby consideringmultiple constraints

To �nd a controller for the robot that takes into account
constraintsboth in joint spaceand in taskspace,aswell as
thekinematicredundancy of thehumanoidarm,we proposed

1For an exhaustive review and comparisons of the different methods
proposed in RPD, the interested reader can refer to [2], [8].

TABLE I
PROBABILISTIC ENCODING OF THE TASK CONSTRAINTS AND

GENERALIZATION THROUGH GAUSSIAN MIXTURE REGRESSION (GMR).

� The dataset x = f xjgN
j=1 is defined by N observations xj 2 RD

of sensory data changing through time, where each demonstration
is rescaled to a fixed duration T . Each datapoint x j = f tj ; xS

j g
consists of a temporal value t j 2 R and a spatial vector xS

j 2
R(D� 1).

� The dataset x is first modelled by a GaussianMixture Model
(GMM) of K components. Each datapoint xj is then defined by
its probability density function

p(xj ) =
KX

k=1

� k N (xj ; � k; � k);

where � k are prior probabilities and N (� k; � k) are Gaussian dis-
tributions defined by centers � k and covariance matrices � k , whose
temporal and spatial components can be represented separately as

� k = f � T
k ; � S

k g ; � k =
�

� TT
k � TS

k
� ST

k � SS
k

�
:

� For each component k , the expected distribution of xS
j given the

temporal value tj is defined by

p(xS
j jtj ; k) = N (xS

j ; x̂S
k ; �̂ SS

k );

x̂S
k = � S

k + � ST
k (� TT

k ) � 1(tj � � T
k );

�̂ SS
k = � SS

k � � ST
k (� TT

k ) � 1� TS
k :

� By considering the complete GMM, the expected distribution is
defined by

p(xS
j jtj ) =

KX

k=1

� k,j N (xS
j ; x̂S

k ; �̂ SS
k );

where � k,j = p(kjtj ) is the probability of the component k to be
responsible for tj , i.e.,

� k,j =
p(k)p(tj jk)

P K
i=1 p(i )p(tj j i )

=
� kN (tj ; � T

k ; � TT
k )

P K
i=1 � iN (tj ; � T

i ; � TT
i )

:

� By using the linear transformation property of Gaussian distribu-
tions, an estimation of the conditional expectation of xS

j given tj

is thus defined by p(xS
j jtj ) � N (x̂S

j ; �̂ SS
j ) , where the parameters

of the Gaussian distribution are defined by

x̂S
j =

KX

k=1

� k,j x̂S
k ; �̂ SS

j =
KX

k=1

� 2
k,j �̂ SS

k :

� By evaluating f x̂S
j ; �̂ SS

j g at different time steps t j 2 [0; T ], a
generalized form of the trajectories x̂ = f t j ; x̂S

j g and associated
covariance matrices �̂ = f �̂ SS

j g representing the constraints along
the task can then be computed (see also [9]).

two inversekinematics(IK) approaches:(1) a methodbased
on JacobiancomputationusingLagrangeoptimizationwhich
allows to handleconstraintson multiple objectsin taskspace
and in joint spacesimultaneously[10]; and (2) a geometric
inversekinematicsapproachfor a 4 DOFshumanoidarm,by
representingthemotionof thearmby the3D Cartesianpath
of the handandby an additionalparameterrepresentingthe
elevation of the elbow with respectto a vertical plane[12].
Here,the geometricinversekinematicsmethodis usedas it
is muchsimpler for the 4 DOFsarm considered.

We illustratethe generalizationandreproductionmethods
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Fig. 2. Incremental refinement of the task depicted in Fig. 3, coded in
a frame of reference located on the objects that are manipulated (only a
subset of the variables are shown, see Fig. 3 for the frame of reference).
The three columns correspond respectively to a representation of the task
constraints after 1, 3 and 6 demonstrations. The first two rows show the
refinement of the GaussianMixture Regression(GMR) model representing
the constraints for the cylinder (first row) and for the cube (second row)
along the movement. After a few demonstrations, we see that the trajectories
relative to the two objects are highly constrained for particular subparts of
the task, namely when reaching for the cylinder (thin envelope around time
step 30) and when placing it on top of the cube (thin envelope around time
step 100). The last row shows the robot’s reproduction attempts (after 1, 3
and 6 demonstrations) for a new situation that has not been demonstrated.
We see that after 6 demonstrations, the robot correctly reproduces the
essential characteristics of the skill, namely reaching for the cylinder and
dropping it on the cube (see [12] for a complete description of the results).

with anexperimentinvolving manipulationanddisplacement
of objects. In this experiment, the skill is representedas
constraints in task space by considering the right hand
path relative to two objects observed by the robot in its
environment.The constraintsassociatedwith the positionof
theright handwith respectto anobjectn arethusrepresented
by the generalizedtrajectoryx̂ (n ) andassociatedcovariance
matrices�̂ (n ) (seeTable I).

Fig. 2 shows how GMR encapsulatesthe taskconstraints
throughthegeneralizationprocess.Fig. 3 showstheresultsof
thegeneralizationprocess(aftersix demonstrations)through
snapshotsof therobot reproducingthe learnedskill in a new
situation(new initial positionsof objects).

C. Incrementalre�nementof theskill, useof differentmodal-
ities and scaffolding process

A trendof researchdraws the attentionon the role of the
teacheras being one of the most importantkey component
for an ef�cient transfer of the skill, where the teaching
interactionallows the user to becomean active participant
in the learning process(and not only a model of expert
behaviour), see e.g. [12], [14]–[18]. This active teaching
processallows the learner to experience and adapt the
skill for his/herparticularbody capacities,as suggestedby

Fig. 3. Example of a manipulation task using two objects, where
constraints on the hand-objects relationships along the motion are extracted
probabilistically, namely grasping the red cylinder, reaching for the yellow
cube (by using a bell-shaped trajectory to avoid hitting the cube), and
dropping the cylinder on top of the cube. The statistical representation of the
task constraints then allows the robot to reproduce the skill with different
initial positions of the objects. For this experiment, a Fujitsu HOAP-3
humanoid robot with 4 DOFs for the right arm and 1 DOF for the hand is
used.

Fig. 4. Different modalities are used to convey the demonstrations and
scaffolds required by the robot to learn a skill. The user first demonstrates
the whole movement while wearing motion sensors (top) and then helps
the robot refine its skill through kinesthetic teaching (bottom), that is, by
grasping the robot’s arms and moving them through the motion. 4 X-
Sensmotion sensors attached to the torso, right upper-arm, right lower-
arm, and back of the head are first used to decompose the 3D absolute
orientation of each segment into a set of joint angles. Through direct
kinematics, the position of the hand in the 3D Cartesian space is then
estimated. For kinesthetic teaching, the motor encoders of the robot are
used to record information while the teacher moves the robot’s arms. The
user first selects the motors to control manually by slightly moving the
corresponding limbs just a few milliseconds before the reproduction starts.
The selected motors are set to passive mode, which allows the user to move
freely the corresponding degrees of freedom while the robot executes the
task, thus providing partial demonstrations while the robot executes the
remaining motion. For these two methods, two webcams within the robot’s
head are used to track the 3D position of the objects (see [12] for details).



developmentalpsychologystudies[19].
Following this approach,Riley et al [17] highlightedthe

importanceof an active participation of the teachernot
only to demonstratea model of expert behaviour but also
to re�ne the acquiredmotion by vocal feedback.Saunders
et al [4] provided experimentswhere a wheeledrobot is
teleoperatedthrougha screeninterfaceto simulatea mould-
ing process,that is, by letting the robot experiencesensory
information when exploring its environment through the
teacher's support.Rohl�ng et al highlightedthe importance
of having multimodal cues to reduce the complexity of
human-robotskill transfer[18]. In their work, they consider
multimodal informationas an essentialelementto structure
the demonstratedtasks.Throughexperiments,they showed
that humanstransfertheir knowledgein a social interaction
by recognizingwhat current knowledge the learner lacks.
They then suggestedtaking insights from thesestudiesto
reducethe learningcomplexity of currentRPD frameworks.
Thus, sharinghumanadaptabilitywith the lessknowledge-
able becomesa central issuewhen designingsocial robots,
andthey thereforehypothesizethata humanteachercanalso
adaptnaturally to a robot equippedwith speci�c abilities.

In [12], we adopteda similar strategy andshowedthat the
skill transferprocesscanbene�t from the user's capacityto
adapthis/herteachingstrategiesto theparticularcontext. We
extendedthe conceptto the learningof continuousmotion
trajectoriesand of actionson objects,and proposedexper-
iments where a humanoidrobot learns new manipulation
skills by �rst observing a human demonstrator(through
motion sensors)andthengraduallyre�ning its skill through
kinesthetic teaching (see Fig. 4). In this application, the
userprovides scaffolds to the robot for the reproductionof
the skill by moving kinestheticallya subsetof the motors.
Throughthe supervisionof the userwho progressively dis-
mantlesthe scaffolds after each reproductionattempt, the
robot can �nally reproducethe skill on its own (seealso
Figs 3 and2).

We thus suggestto use different modalities to produce
the demonstrations,similarly to a teachingprocesswhere
a humanteacherwould �rst demonstratethe completeskill
to the learner, followed by practicetrials performedby the
learner under the supervisionof the teacher. We take the
perspective that unlike observational learning,pedagogy is
required to facilitate the transfer of the skill, which is a
specialtype of communicationusedto manifestthe relevant
knowledgeof a skill.

As discussedby GergelyandCsibra,theteacher�rst needs
to analyzehis/herknowledgecontentto emphasizein his/her
demonstrationsthe aspectsthat are relevant for the learner
[20]. In our experiments,observational learning is used
similarly asa �rst methodfor theuserto demonstratenatural
gesturesby controlling simultaneouslya large number of
degrees of freedom (up to 14 joint angles for the tasks
consideredin our experiments).Kinesthetic teachingthen
providesa way of supportingtherobot in its reproductionof
the task.Throughthis scaffolding process,the userprovides
supportto the robot by manually articulating a decreasing
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Fig. 5. Influence of the speech/gaze priors on constraints extracted
through statistical learning for an interaction with a naïve user. The first
and second rows correspond to the trajectories relative respectively to the
cylinder and to the cube (see Fig. 3). First column: Data extracted from 5
demonstrations and encoding through a GaussianMixture Model (GMM)
of 5 components (the optimal number of components is estimated through
Bayesian Information Criterion (BIC) [13]). Secondcolumn:Generalization
of the trajectories through GaussianMixtureRegression(GMR) based solely
on cross-situational statistics. In this case, we see that five demonstrations
are not sufficient to extract interesting information concerning the task
constraints, i.e. the envelope thickness around the generalized trajectory does
not present much variations (see Fig. 2 for comparison). Third column:By
using GMR with the social priors defined in Eqs (1), (2) and (3), we see that
the envelopes become thinner in the relevant parts of the trajectories, namely
when grasping the cylinder and when dropping it on the cube (highlighted
by two circles in the graphs).

subsetof motors.The scaffolds progressively fadeaway and
the user �nally lets the robot perform the task on its own,
allowing the robot to experiencethe skill independently.

Oneadvantageof thisapproachis thattheusercanprovide
partial demonstrationsby using the robot's own kinematics
andcandemonstratethetaskin therobot's own environment.
This kinesthetic teachingprocessalso allows the user to
feel the robot's body limitations and provide appropriate
examplesthat take theselimitations into consideration.

To apply technically this teaching approach,we also
demonstratedin [11] that it was possible to use a
GMM/GMR framework to learn a skill incrementallyand
in an on-line mannerwithout having to keepeachdemon-
strationin memory. Suchan incrementallearningapproach
allows theteacherto watchtherobot's reproductionattempts
after eachdemonstration,and thus helpshim/her assessthe
robot's current understandingof the skill and preparethe
following demonstrationaccordingly.

I I I . EXTRACTING TASK CONSTRAINTS
THROUGH SOCIAL CUES

The system presentedin the previous section requires
to observe the skill in slightly different situations.Even
if this variation appearsnaturally when executing the skill
severaltimes,therobot's capacityto generalizeoverdifferent
contexts also dependson the pedagogicalquality of the
demonstrationsprovided (e.g.gradualvariability of the situ-
ationsandexaggerationsof the key featuresto reproduce).

This fact sharessimilarities with the human way of
teaching.Indeed,a good teacheralso extends the demon-
strationsprogressively so that the learnercan more easily



infer the connectionsbetweenthe different examples,and
the range of the possible situations where the skill may
apply is progressively increased.Thus,by usinga statistical
learningstrategy alone,we implicitly suggestthat one way
of increasingthe speedof the teachingprocessis to rely
on the user's naturalpropensityfor teachingby structuring
the successive examplesprovided and guiding the learner's
exploration.

Indeed,in our teachingscenariosup until now, an expert
user displacesprogressively the objectsafter eachdemon-
stration to provide variability in the exposuresof the skill.
In sucha situation,it is nearlyalwayspossiblefor the robot
to extractthetaskconstraintswith only a few demonstrations
(from four to ten for most of the tasks that we have
considered).However, it may happenthat untrainedusers
provide a setof demonstrationsremainingeithertoo similar
or too different from one example to the other. In this
case,a larger set of demonstrationswould be required to
generalizetheskill. The �rst two columnsof Fig. 5 show an
experimentsimilar to the one performedby an expert user
(presentedin Fig. 2), wherethe untraineduserprovided � ve
demonstrationsthat weretoo similar to extract correctly the
taskconstraintsthroughstatistics.

To weaken the drawback of suchsituations,we follow a
learning approachwhere the joint use of cross-situational
observationsandsocial cuesensuresan ef�cient transferof
the task throughinteractionwith the user. We thus propose
to enhancethe statisticallearningstrategy with information
coming from varioussocial cues,and show that thesecues
canbe representedstatisticallyaspriors in the GMM/GMR
framework. We focus hereon gazeand speechinformation
to demonstratethat interactionalcuesof differentnaturescan
be considered.It is importantto note that we do not aim at
developing state-of-the-artgazetracking systemsor speech
recognition systems.We only describehere prototypesof
thesesystemsto show that multimodal social cuescan be
integrated in our framework through generic probabilistic
approaches.

By usingacomputergame,ThomazandBreazealexplored
the ways in which machine learning can be designedto
take advantagesof natural humaninteractionand tutelage.
They demonstratedthataugmentinga reinforcementlearning
processwith the social mechanismsof attention direction
andgazepositively impactsthe dynamicsof the underlying
learning mechanisms,highlighting the reciprocalnatureof
the teaching-learningpartnership[15]. They showedthrough
their experiments that the teacher's ability to guide the
learner's attentionto appropriateobjectsat appropriatetimes
createsa signi�cantly more robust and ef�cient learning
interaction.Our work follows a similar approachandextends
this concept to the learning of continuousgesturesby a
humanoidrobot.

In the �eld of speechacquisitionand word learning,Yu
and Ballard explored how humanscan learn words/objects
couplingsthroughstatisticallearning,andproposeda model
for earlyword acquisitionin a uni�ed framework integrating
statisticalandsocialcues[21]. Their model links thesetwo
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Fig. 6. Illustration of the use of gaze information to speed up the
learning process through a probabilistic measure of saliency when the head
is turned toward an object (see also Table II). Top: Estimation of gaze
direction by representing the position and orientation of the head (extracted
through X-Sensmotion sensors) as a cone of vision which intersects with a
surface. Bottom-left:Probabilistic representation of the intersection as a 2D
Gaussian distribution. Bottom-right: Estimation of the probability to focus
the attention of the robot at a particular time on a particular object i placed
on the table knowing its initial position x (i) (the object position is tracked
through the robot’s built-in stereoscopic vision system).

sourcesof information by consideringjoint attention and
prosodyon theonehand,andstatisticsfrom cross-situational
observationson the otherhand.Our work follows a similar
approachby extending the concept to robot learning by
imitation.

A. Useof head/gazeinformationas priors

A large body of work explored the useof gazedirection
and headorientationas a way to convey the intention of
the user, seee.g. [14], [22], [23]. In [24], we showed that
we can roughly extract gaze information by measuringthe
orientationof theheadthroughX-Sensmotionsensors.Even
if this remainsa strongassumption(asheadorientationcan
not be considereddirectly as a social cue), it affects gaze
following, i.e., the headnaturallyturnstowardsa goal when
thereis no otherconstraint.

Fig. 6 and Table II presenta method to detect joint
attentionby representinggazedirectionas a coneof vision
whose intersectionwith a table can be representedas a
Gaussiandistribution. Insteadof simply de�ning anattention
point astheintersectionof a gazedirectionline with a plane,
this method also evaluatesthe robustnessof the measure
through a covariance matrix. Following this method, the
last row of Fig. 7 presentsan example of the probability
pG extractedalong the task, representingthe probability of
bringing the robot's attentionto oneof the objectsdetected
in the scene(either the cylinder or the cube).

B. Useof vocal informationas priors

Vocal deixis using speechrecognitionengineshas been
exploredasa way for theuserto highlight throughlinguistic
information the stepsof the demonstrationthat are deemed



TABLE II
PROBABILISTIC ESTIMATION OF THE GAZE DIRECTION.

� The gaze is modeled by a cone of vision with vertex point t1,
direction d1 and half-cone angle � . A point x on the cone satisfies

d1

�
x � t1

jx � t1j

�
= cos(� );

or in a matrix form (I denotes the identity matrix)

(x � t1)T M (x � t1) = 0;

with M = d1dT
1 � (cos(� )) 2 I :

� The table is defined by a plane with origin t2, and directions d21

and d22. A point x on the plane satisfies

x = t2 + x1 d21 + x2 d22:

� The intersection of the cone and the plane defines a conic

c1 x2
1 + 2c2 x1x2 + c3 x2

2 + 2c4 x1 + 2c5 x2 + c6 = 0;

with t12 = t2 � t1, c1 = dT
21M d21, c2 = dT

21M d22, c3 =
dT
22M d22, c4 = tT

12M d21, c5 = tT
12M d22 and c6 = tT

12M t12.
� This conic can be re-written in an homogenous matrix form

xT Cx = 0 ; C =

0

@
c1 c2 c4

c2 c3 c5

c4 c5 c6

1

A =
�

CR Ct

CT
t Cδ

�
;

where x = (x1; x2; 1)T , CR 2 R2� 2, Ct 2 R1� 2 and Cδ 2 R.
� The canonical form of the conic Cc is determined by transforming

the conic matrix C through an Euclidean transformation H

Cc =

0

@
Cc1 0 0

0 Cc2 0
0 0 Cc3

1

A = H T CH ;

with H =
�

R t
0T 1

�
;

where the rotation R and translation t are found by diagonalizing
CR through Principal ComponentAnalysis

CR = R� RT ; t = � R� � 1RT Ct:

� By considering an elliptical intersection (see Fig. 6), the canonical
conic Cc1x2

c1 + Cc2x2
c2 + Cc3 = 0 can be re-written as

x2
c1

a2
+

x2
c2

b2
= 1 with a =

s

�
Cc3

Cc1
; b =

s

�
Cc3

Cc2
;

which can also be represented as a 2D Gaussian distribution
N (�; �) = N (t; R � c RT ) , where � c is defined by

� c =
�

a2 0
0 b2

�
:

� By considering this distribution in our experiments, the likelihood
L i,j at time step tj for an object i (located at initial position x (i))
can then be defined by

L i,j =
1

p
(2� )2j � j j

e
� 1

2

�
(x( i ) � µj )T Σ−1

j (x( i ) � µj )
�

:

� When considering M different objects, a probabilistic measure of
interest (level of saliency) for object i at each time step t j is thus
defined by (see also the bottom graph of Fig. 7)

pG
i,j =

L i,j
P M

n=1 L n,j

2 [0; 1]: (1)

TABLE III
DETECTION OF ATTENTIONAL UTTERANCES IN THE VOCAL TRACE.

OFFL I NE TRAI NI NG PHASE

� A set of 10 short common attentional utterances used as vocal
spotlights (such as ”Look here!” or ”Watch this!”) produced by
the user is first recorded in a training phase prior to the interaction.
A set of 10 random words and/or sentences spoken in a neutral way
(e.g. by reading an instruction) is also collected.

� The pitch and energy of the sound signals are extracted, where the
pitch (corresponding to the fundamental frequency f 0) is evaluated
by the subharmonic-to-harmonicratio method proposed by Sun
[25].

� The two sets of pitch and energy traces are used to train two Hidden
Markov Models (HMMs) � A and � N (”attentional model” and
”neutral model”), where the number of states has been determined
empirically. Each HMM is thus defined by 3 states, where each ob-
servation output is defined by a 2D Gaussian distribution (to encode
the pitch and energy). The parameters are trained through the Baum-
Welch algorithm [26], estimating iteratively the HMM parameters
f � ; A; �; � g, namely the initial state distribution � , the matrix of
states transition probabilities A and the output distributions defined
by centers � and covariance matrices � .

ONL I NE RECOGNI TI ON PHASE

� When demonstrating a skill, the vocal trace of the user is recorded
through the robot’s internal microphone. It is then used to detect
the probability of an attentional bid, i.e., when the user is bringing
the attention of the robot to a particular aspect of the skill during
the course of his/her demonstration.

� To do so, a temporal window of fixed size W is used to keep
track of the pitch and energy signals during the last W seconds
(if tj < W , then W = tj ). We use here W = 0:5 sec., which
has been determined empirically. The data in this window are then
tested with the two HMMs � A and � N at each time step tj

through the forward procedure [26]. L A
j and L N

j are thus computed,
corresponding to the likelihoods at time t j of belonging respectively
to the ”attentional model” � A or to the ”neutral model” � N .

� At each time step tj , the probability of detecting an attentional
utterance is finally defined by (see also fourth graph of Fig. 7)

pS
j =

L A
j

L A
j + L N

j

2 [0; 1]: (2)

mostimportant,seee.g.[5], [27]. Anotherapproachfocuses
on the prosodyof the speechpatternrather than the exact
content of the speech,which is used similarly to infer
informationon theuser's communicative intent,seee.g.[14],
[18], [28]. Someworks also combineboth information,see
e.g. [23].

In this paper, we follow the prosodicapproachby using
Hidden Markov Models (HMMs) to detectparticular into-
nation patternswhile uttering attentionto particularevents
during the demonstrationof the task (e.g. emphasizingthe
useof a particularobject).

TableIII presentsamethodfor thetrainingandrecognition
of attentionalcuesusingHMMs, showing how a vocal prior
pS can be retrieved from this model. The �rst four rows
of Fig. 7 presentan example of the result for the objects
stackingtask.

C. Combiningseveral priors

We have seenin SectionII that the statisticalconstraints
relative to an object i are representedby the generalized
trajectory �̂ ( i ) and associatedcovariancematrices�̂ ( i ) . By
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Fig. 7. Extraction of priors from speech (�r st 4 rows) and gaze information
(last row) for the task depicted in Fig. 3. The first four graphs show the
probabilistic extraction of attentional events in the vocal trace by using
pitch and energy information (the temporal window of size W used to
detect attentional cues is represented in dashed line). The first row shows
the sound signal corresponding to the sentence ”You take THIS and you
put it THERE” told by the user when executing the skill (while observed
by the robot, see left snapshot in Fig. 4). We see that the particular events
in the demonstration, corresponding respectively to the subparts when the
user grasps one object (”THIS” ) and drop it on the other object (”THERE” ),
are highlighted through the user’s voice. These events correspond roughly to
local patterns characterized by a higher energy and a larger pitch amplitude
with consecutive rising and falling intonation contours, which are typical to
prosodic patterns serving as spotlights during the interaction [21], and which
are automatically captured in our system through the HMM encoding. The
third graph represents the probability pS

j at time tj of hearing an attentional
utterance (see Table III). The bottom graph shows the probability pG

j at
time tj of looking at the red cylinder (in solid line) or at the yellow cube
(in dashedline), which also implicitly informs the robot that the user is
conveying information on the relevance of these two objects at different
time steps (see Table II).

using this GMR representation,we can modify easily the
in�uence of the constraintsby taking into considerationat
eachtime step t j gaze priors pG

i;j on object i and speech
priors pS

j . To do so, we �rst compute the mean values
�pG

i;j and �pS
j at time step t j by averagingover the different

demonstrationsprovided to the robot (here,� ve). Then,we
multiply by a weightingfactorthecovariancematricesof the
GMR representationsuchthat

�̂ ( i ) ′

j = �̂ ( i )
j (1 � � �pG

i;j �pS
j ); (3)

where �pG
i;j �pS

j representsthe joint probability at time step
t j (when consideringspeechand gazeas independentvari-
ables),which serves as a spotlight to emphasizeparticular
eventsduring the demonstration.� is a factorweightingthe
in�uence of the social cuesover the constraintsextracted
throughcross-situationalstatistics(here, � = 0:5 hasbeen
selectedempirically).Thus,for the reproductionof the task,

the in�uence of the generalizedtrajectory with respectto
object i is increasedwhen �pG

i;j �pS
j is high.

The imprecisiondue to the estimationof social cues is
reducedby consideringdifferent demonstrationsand differ-
ent modalities.For example,in the bottom graphof Fig. 7,
we seethat from time stept j = 8 sec.,the systemdetects
that the useris looking at the initial positionof the cylinder
(which is alreadystacked on the cube).This error may be
dueto trackingimprecisionor becausetheuserdoesnotneed
to focuson a particularobject/positionanymoreafter he has
droppedthe cylinder. In both cases,this error disappearsby
taking into considerationthe joint probability of events(i.e.,
the vocal analysisdoesnot detecta particularevent at these
time steps),aswell asthe multiple demonstrationsprovided
to the robot.

The right columnof Fig. 5 shows the resultsof applying
speechandgazepriors asproposedin Eq. (3) to the extrac-
tion of the task constraints(thinner envelopewhen �pG

i;j �pS
j

is high). By using social cuesas priors, the robot can thus
generalizethe skill to different situationssimilarly to the
reproductionresultspresentedin Fig. 2.

IV. DISCUSSION AND FURTHER WORK

Theearlyresultspresentedabove show thattheintegration
of social cues within our statistical learning approachis
promising.However, asonly a very limited datasethasbeen
used so far, the robustnessof the approachstill needsto
be evaluated with untrained users teaching new skills in
real-world experimentalsetups.The weighting mechanism
de�ned in Eq. (3) to combineprosodicspotlightsand joint
attentionspotlightsis rathersimpleandservesasa �rst step
towardsevaluatingthe integration of social cueswithin the
statistical framework. One direction of further work is to
investigatethe dependenciesandrelevanceof thesedifferent
cuesin a human-robotteachinginteractioncontext.

The advantageof using invasive devices such as the X-
Sensmotion sensorsto track the user's gestureprincipally
concernsthe precisionof the trackingprocedureandrobust-
nessto occlusion.However, it is not anaim per seto usethis
modality, and a further step for user-friendly human-robot
interactionwill be to usetheproposedframework with more
human-equivalentmodalitiessuchasvision, seee.g. [1].

Ongoing work also concernsthe joint use of this RPD
framework with other methodssuchas a dynamicalsystem
in order to be robust to changesin the environment while
the robot reproducesthe learnedskill [29], [30], or by using
reinforcementlearning as a way to let the robot explore
its environmentand learn by itself, thus extendingthe skill
learned by imitation to a broader context than the one
observed during the demonstrations[31].

Furtherwork will extend the proposedscenariosto more
complex interactionswhere the teachingphaseand repro-
ductionphasearemorecloselyintertwined,allowing a richer
interactionwheretherobotcouldrequesttheuserfor advices
at any time, where the user could provide adviceson the
robot's reproductionattempts,and where a more complex
scaffolding processcould be used. In this direction, one



short-termgoal is to investigatehow we could bene�t from
the probabilistic representationof the task constraintsto
segmentthewholetaskinto subtasksthatcanbereorganized
differently to let the userprovide scaffolds for eachsubpart
independentlyat the desiredspeedandrhythm. Longer-term
goals focus on developing robots that would have the ca-
pability to understandthe user's intent from demonstrations,
whichwould for exampleallow themto learnnew skills even
from failed attempts.

V. CONCLUSION

We presenteda probabilisticapproachin robot program-
ming by demonstrationthat allows to extract incrementally
the constraintsof a task in a continuousform and to repro-
ducea generalizationof the learnedskill in new situations.
We highlightedthe importanceof including theuser's teach-
ing abilities in the machinelearningprocess,by using dif-
ferentmodalitiesto convey thedemonstrations(observational
learningandkinestheticteaching),andby designinghuman-
robot interactive scenariosmimicking the humanprocessof
teaching.We then presentedour currentresearchtowardsa
socially driven statisticallearning framework to reducethe
complexity of the skill transferprocess.Througha manipu-
lation task interactionwith a humanoidrobot,we illustrated
how varioussocialcuescould be integratedin the proposed
probabilistic framework to disambiguateautomaticallythe
role of thedifferentvariables/objectscharacterizingthe task.
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