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1. Introduction

The fast technological evolution and dissemination of
multimodal sensors and compliant actuators bring a new
human-centric perspective to robotics. The variety of
human-robot interactions that stem from these new capa-
bilities unveil compelling challenges for machine learn-
ing.

An attractive approach to the problem of transferring
skills to robots is to take inspiration from the way hu-
mans learn by imitation, adaptation and self-refinement.
Such learning strategies require various types of interac-
tion with the end-users and with the robot’s environment.
The overall skill acquisition process can hardly be seg-
mented or sequenced in a specific way in advance. This
indicates the importance of finding a representation of
skills that can be shared by different learning strategies
and that can accommodate multimodal continuous data
streams for both analysis and synthesis purposes.

I will show that a variety of approaches such as dy-
namic movement primitives, optimal control and stochas-
tic optimization can contribute to the skill transfer prob-
lem, and that they can be combined together by ensur-
ing that a shared statistical treatment of these processes is
provided.

The aim is to provide robots with a representation of
rich motor skills able to handle recognition, prediction,
synthesis and refinement in a continuous and synergistic
way. It also requires to be robust to various sources of
perturbation, persistently arising from the environment,
from the user, and from the robot. One important chal-
lenge in this direction is to devise an encoding scheme
that is able to generalize tasks to new situations, that can
potentially act in multiple coordinate systems, and that
can exploit the modern compliant control capabilities of
robots to generate natural, efficient and safe movements
for the surrounding users.

I will present an approach exploiting the variability of
multiple demonstrations and the co-variability of senso-
rimotor signals to extract the important characteristics of
a task/skill. This information is used within an optimal
control strategy to provide the robot with a minimal in-
tervention controller regulating the stiffness and damp-
ing characteristics of the robot’s actions according to the
estimated precision and coordination requirements. For
example, the robot is controlled stiffly only when it re-
quires to be accurate, and otherwise remains compliant
(for safety and energy efficiency).
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Examples of applications with a compliant humanoid,
a continuum flexible surgical robot and a set of gravity-
compensated manipulators will be showcased.

2. Proposed approach
Tasks in robotics are traditionally decomposed into

motion phases (in which robots freely move in the air),
and contact phases (in which robots apply desired force
patterns to objects/environment with hard contacts). Dif-
ferent controllers are often used to treat one or the other
case. This decomposition is however incompatible with
applications requiring contacts with soft objects, tools or
surfaces. It could restrain the development of versatile
systems that could adapt to a wider range of applications,
within environments that would be better characterized
by local levels of pressures rather than binary contact
states (surgical robots moving in-between organs, robots
for ocean seabed/space exploration, humanoids walking
on carpets and sitting on sofas, etc.).

From this observation, the proposed approach aims
at representing movement/force profiles as the behav-
ior/path of a virtual spring-damper system pulling the
robot, where a Gaussian mixture model (GMM) is used
to encode the attractor manifold, with the variability be-
ing used to infer the impedance parameters of the spring-
damper system (with the noticeable difference that stiff-
ness and damping parameters are represented as full ma-
trices in order to react to perturbations in a coordinated
manner).

We introduced in [1] a probabilistic formulation of
dynamic movement primitives (DMPs) [2] encoding the
joint evolution of the input (decay term) and the out-
put (forcing terms) within a multivariate GMM, where
Gaussian mixture regression (GMR) is used to retrieve
at each iteration the forcing terms corresponding to the
current input (that can be either time-dependent or time-
invariant). In this approach, the movement is not consid-
ered as a set of univariate outputs as in standard DMPs.
Instead, it also models local correlations among and in-
between inputs-outputs (e.g., to discover and re-use local
sensorimotor patterns or synergies).

We showed in [3] that the above model can be ex-
tended to a task-parameterized model, in which several
frames of reference interact together to describe the path
of virtual springs in several coordinate systems, where the
variations from these different perspectives are used to
determine how strong (or correlated) these springs should
be. In the resulting model, the predicted task variations
and couplings are exploited to regulate the impedance
of the virtual spring-damper systems acting in several
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Fig. 1 Illustration of the overall approach combining statistical mixture models, dynamical systems and optimal control
to learn and reproduce movement skills. The complete procedure consists of a demonstration phase, a learning phase,
an online planning phase and an impedance regulation phase.

frames of reference. The approach shares links with opti-
mal feedback control strategies in which deviations from
an average trajectory are corrected only when they inter-
fere with task performance, also known as minimal inter-
vention principle [4]. Similarly to the solution proposed
by Medina et al. in the context of risk-sensitive control
for haptic assistance [5], the predicted variability can be
exploited to form a linear quadratic regulator (LQR) in
task space or in joint space, providing a formal way of
adapting the impedance parameters, see [3] for details.

Fig. 1 illustrates the overall approach. In the demon-
stration phase in Fig. 1 - (a), a set of movements is
recorded as position and orientation of the robot end-
effector. The position and orientation of a set of candidate
frames (related to objects in the robot workspace) is also
collected. The bottom part illustrates the generalization
challenge. Fig. 1 - (b) shows the movements observed
from the different frames (recording of the same move-
ment from multiple viewpoints). Input and output vari-
ables are concatenated for each frame, forming a third
order tensor dataset. In this example, time is used as in-
put variable, but a decay term, the robot state or other
external object position variables can similarly be em-
ployed, see [1] for details. In this learning phase, a task-
parameterized mixture model is fit to the tensor dataset by
following an expectation-maximization (EM) procedure.
This training set can then be discarded.

Fig. 1 - (c) shows the reproduction phase, for a situa-
tion involving new position and orientation of objects, the
learned model is first used to estimate a temporary Gaus-
sian mixture model (GMM), that is automatically updated
if the position/orientation of objects changes. Depending
on the application, this temporary GMM either needs to
be updated at each time step (e.g., adapting movements
to moving targets), or for each new reproduction attempt
(planning approach). In Fig. 1 - (d), Gaussian mixture
regression (GMR) is then used to retrieve information
about the reference to track in a statistical manner, rep-
resented as the expected path of a virtual spring-damper
system. This strategy of encoding the attractor manifold
can be used in free space to encode a movement, but it
can also be used to encode reactive behaviors and skills

requiring a desired force profile to be applied, as well
as other skills in-between (e.g., soft contacts). Finally,
the predicted variability information is used by a linear
quadratic regulator to form a minimal intervention con-
troller, see [3] for details.

3. Conclusion
This abstract presented an approach capable of adapt-

ing the centers and covariance matrices of a GMM to ex-
ternal task parameters represented as frames of reference.
This task-parameterized model can be applied to different
learning contexts, such as learning from demonstration or
direct policy search, with the goal of compactly encoding
and generalizing a task to new situations with both inter-
polation and extrapolation capability. The model can then
be extended to a virtual spring-damper system with vari-
able impedance gains. For new position and orientation
of the frames, the system generates a probabilistic flow
tube predicting the path of the virtual spring and its vari-
ations. This covariance information is exploited within
an optimal control strategy to locally reduce the control
commands according to the varying precision and coordi-
nation required throughout the task. The general goal of
the approach is to devise learning and control strategies
that allow end-users and robots to safely collaborate and
interact in a shared workspace.
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