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Abstract

When data are organized in matrices or arrays of higher dimensions (tensors), classical regression methods first transform
these data into vectors, therefore ignoring the underlying structure of the data and increasing the dimensionality of the
problem. This flattening operation typically leads to overfitting when only few training data is available. In this paper,
we present a mixture-of-experts model that exploits tensorial representations for regression of tensor-valued data. The
proposed formulation takes into account the underlying structure of the data and remains efficient when few training
data are available. Evaluation on artificially generated data, as well as offline and real-time experiments recognizing
hand movements from tactile myography prove the effectiveness of the proposed approach.
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1. Introduction

The data collected by a robot are often naturally rep-
resented as matrices or tensors, i.e., generalization of ma-
trices to arrays of higher dimensions [1]. Examples include
video streams [2], movements in multiple coordinate sys-
tems [3], electroencephalography (EEG) [4, 5] or tactile
myography (TMG) data [6]. Most approaches described in
the literature consist of reorganizing the elements of these
tensors into vectors before applying learning algorithms
based on linear algebra operating on vector spaces. This
flattening operation ignores the underlying structure of the
original data. Moreover, the dimensionality of the result-
ing problem dramatically increases, creating high compu-
tational and memory requirements. Finally, the number
of model parameters to estimate in the learning method
may become high, which constitutes an important issue in
the cases where only few training data are available.

With the burst of multidimensional data available in
various fields of research, important efforts were turned
toward extending standard dimensionality reduction and
learning techniques to tensor data. In this context, Zare et
al. [7] proposed a review of tensor decomposition methods
by dividing them into three categories of problems usually
targeted by principal component analysis (PCA), namely
low-rank tensor approximation, low-rank tensor recovery,
and feature extraction. In particular, multilinear PCA
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(MPCA) [8] and weighted MPCA [5] were proposed to ex-
tract features from tensor objects as a preprocessing step
for classification. Similarly, linear discriminant analysis
was extended to multilinear discriminant analysis in [9]
and factor analysis was adapted to tensor data in [10]. In
the context of regression, Guo et al. [11] proposed gener-
alizations of ridge regression (RR) and support-vector re-
gression (SVR) methods to tensor data, where they showed
the superiority of tensor-based algorithms over the vector-
based algorithms in various applications. A similar ex-
tension of RR to tensor data was proposed in [12] with
an application in magnetic resonance imaging (MRI). Fol-
lowing a similar process, tensor-variate logistic regression
(LR) was proposed in [13, 14] for the classification of mul-
tidimensional data. Moreover, kernel-based frameworks
such as Gaussian processes (GPs) [2] were also adapted to
tensors [15].

In this paper, we introduce a tensor-variate mixture-of-
experts (TME) model for regression. Mixture-of-experts
(ME) models, first introduced by Jacobs et al. [16], com-
bine the predictions of several experts based on their prob-
ability of being active in a given region of the input space.
Each expert acts as a regression function, while a gate
determines the regions of the input space where each ex-
pert is trustworthy. The output of the model is a weighted
sum of the experts predictions. Over the years, ME models
were widely improved with different gates, regression and
classification models for the experts (see [17] for a review
of applications). Notably, for wrist movements recogni-
tion based on electromyographic (EMG) signals, the ME
model with linear experts can achieve similar performance
as more complex nonlinear methods, at a lower computa-
tional cost [18].
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The contributions of this paper are two-fold: (i) we
propose a tensor-variate mixture-of-experts model that ex-
ploits tensorial representations to take into account the
structure of the data in the regression process; and (ii) we
demonstrate the efficiency of tensor-based approaches in
the context of prosthetic hands to recognize hand move-
ments from tactile myography. In particular, we present
a teleoperation experiment based on tactile myography to
control a robotic arm and hand.

In order to handle tensor data in a ME model, we pro-
pose to use tensor-variate models for both the experts and
the gates. In Section 3, we show that the experts can be
defined as tensor linear models and that the gates can be
set as tensor-variate softmax functions. Both elements are
based on the inner product between the input tensor data
and model parameters (presented in Section 2). The re-
sulting TME model is trained with an EM algorithm using
the CANDECOMP/PARAFAC (CP) decomposition, also
called canonical polyadic decomposition [19, 20].

The functionality of the proposed approach is first eval-
uated and compared to the corresponding vector-based ap-
proach using artificially generated data (Sections 4.1, 4.2).
The TME model is then exploited in the context of pros-
thetic hands to recognize hand movements from tactile
myography (TMG).

Our TMG sensor is made of 320 cells organized in a
8× 40 array forming a bracelet [6], therefore providing in-
trinsically matrix-valued data. Despite our data contains
patterns that could be treated by deep learning strate-
gies such as convolutional neural networks, the use of such
approaches would require large training datasets to be ef-
ficient, which does not fit with the requirement of our ap-
plication, targeting personalized calibration of prosthetic
hands from very small datasets.

The effectiveness of our approach is tested in an of-
fline experiment with the aim of detecting finger and wrist
movements from TMG data (Section 4.3). We show that
the TME model outperforms the standard ME model and
achieves similar performance as a GP at a lower compu-
tational cost, with the advantage of being easily inter-
pretable due to the tensor structure. We finally validate
the use of the proposed approach in a real-time teleoper-
ation experiment, where participants controlled a robotic
arm and hand by moving their wrist and closing/opening
their hand (Section 4.4).

2. Preliminaries

Tensors are generalization of matrices to arrays of higher
dimensions [1], where vectors and matrices correspond to
1st and 2nd-order tensors. Tensor representation permits
to represent and exploit the intrinsic structure of multidi-
mensional arrays. We introduce here the tensor operations
necessary for the proposed TME, as well as the extensions
of two forms of the generalized linear model, namely ridge
regression and logistic regression, to tensor-variate data.

2.1. Tensor operations

For the reader familiar with tensor methods, also called
multilinear algebra, the tensor notations and operations
introduced in the following are summarized in Table 1.

The inner product of two tensors X , Y ∈ RI1×I2×...×IM

is defined as the sum of the products of their entries, so
that

〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IM∑
iM=1

xi1,i2,...iM yi1,i2,...iM . (1)

Note that the inner product of two tensors is equiva-
lent to the Frobenius inner product of their m-mode matri-
cization or unfoldingX(m),Y(m) ∈ RIm×(I1...Im−1Im+1...IM )

and to the inner product of their vectorization vec(X ),
vec(Y) ∈ RI1...IM , namely

〈X ,Y〉 = 〈X(m),Y(m)〉 = 〈vec(X ), vec(Y)〉. (2)

A rank-one tensor Y of order M is a tensor that can
be written as the outer product of M vectors, i.e.,

Y = u(1) ◦ u(2) ◦ . . . ◦ u(M), (3)

with ◦ the outer product between vectors, so that each

element of Y is equal to xi1,i2,...,iM = u
(1)
i1
u
(2)
i2
. . . u

(M)
iM

and
M the number of dimensions or modes of the tensor.

The CANDECOMP/PARAFAC (CP) decomposition
(also called canonical polyadic decomposition) factorizes a
tensor Y ∈ RI1×I2×...×IM as a sum of R rank-one tensors,
i.e.,

Y ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦ . . . ◦ u(M)
r . (4)

The smallest number of rank-one tensors that generate Y
as their sum is defined as the rank of the tensor Y . It
corresponds to the smallest number of components R =
rank(Y) in the CP decomposition. The CP decomposition
can also be expressed in terms of them-mode matricization
and vectorization of the tensor Y(m) and vec(Y) as

Y(m) ≈ U (m)U (−m)>, (5)

vec(Y) ≈ (U (M) � . . .�U (1))1R, (6)

where � denotes the Khatri–Rao product, U (m) ∈ RIm×R

are factor matrices defined as

U (m) = [u
(m)
1 . . .u

(m)
R ],

U (−m) = (U (M) � . . .�U (m+1) �U (m−1) � . . .�U (1)),

and 1R ∈ RR is a vector containing R ones. The Khatri–
Rao product of two matrices A ∈ RI×K and B ∈ RJ×K

results in a matrix A � B ∈ RIJ×K whose columns are
equal to the Kronecker product of the columns of A and
B, i.e., A�B = [a1 ⊗ b1 . . . aK ⊗ bK ].
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Table 1: Tensor notations and operations.

Variable / operation Description

M Number of dimensions or modes of a tensor

x ∈ RI1 Vector variable

X ∈ RI1×I2 Matrix variable

X ∈ RI1×···×IM Tensor variable

X(m) ∈ RIm×(I1...Im−1Im+1...IM ) m-mode matricization or unfolding of a tensor

(u(1) ◦ u(2) ◦ . . . ◦ u(M))i1,i2,...,iM = u
(1)
i1
u
(2)
i2
. . . u

(M)
iM

Outer product

A�B = [a1 ⊗ b1 . . . aK ⊗ bK ] ∈ RIJ×K Khatri–Rao product of two matrices A ∈ RI×K and
B ∈ RJ×K

U (m) = [u
(m)
1 . . .u

(m)
R ] Factor matrix

U (−m) = (U (M) � . . .�U (m+1) �U (m−1) � . . .�U (1)) Khatri–Rao products without factor matrix U (m)

Y = u(1) ◦ u(2) ◦ . . . ◦ u(M) Rank-one tensor

Y =
∑R

r=1 u
(1)
r ◦ u(2)

r ◦ . . . ◦ u(M)
r Rank-R tensor

Y ≈
∑R

r=1 u
(1)
r ◦ u(2)

r ◦ . . . ◦ u(M)
r CP decomposition

Y(m) ≈ U (m)U (−m)> m-mode matricization of the CP decomposition

vec(Y) ≈ (U (M) � . . .�U (1))1R Vectorization of the CP decomposition

〈X ,Y〉 =
∑I1

i1=1

∑I2
i2=1 . . .

∑IM
iM=1 xi1,i2,...iM yi1,i2,...iM Inner product of two tensors X , Y

〈X ,Y〉 = 〈X(m),Y(m)〉 = 〈vec(X ), vec(Y)〉 Inner product equivalences

〈X ,Y〉 = 〈X(m), U
(m)U (−m)>〉 = 〈X(m)U

(−m), U (m)〉 Inner product equivalence when Y follows exactly a
CP decomposition

If Y follows exactly a CP decomposition (4), the inner
product (2) can equivalently be written as

〈X ,Y〉 = 〈X(m), U
(m)U (−m)>〉

= 〈X(m)U
(−m), U (m)〉, (7)

by exploiting (5) and the properties of the Frobenius norm
and matrix trace.

2.2. Generalized linear model for tensors

Given a vector-valued input data x, the generalized
linear model (GLM) is given by

y = f(x>w + b) = f(〈x,w〉+ b), (8)

where y is the predicted output, w is a vector of weights,
b is the bias and f(·) is a function, see Figure 1-top. This
model can be naturally extended to matrix-valued data X
with

y = f(w(1)>Xw(2) + b)

= f
(
〈X,w(1) ◦w(2) 〉+ b

)
, (9)

where w(1) and w(2) are vectors of weights. Following
a similar procedure, the model can be generalized to M -
dimensional tensor-valued data with

y = f
(
〈 X ,w(1) ◦ . . . ◦w(M) 〉+ b

)
, (10)

as shown in Figure 1-middle. The key advantages of this
representation, compared to vector-valued representation
y = f(vec(X )>w + b), are that the underlying struc-
ture of the tensor-valued data is taken into account in the
model and that the number of parameters is reduced from∏M

m=1 Im to
∑M

m=1 Im. Moreover, more complex features
can be represented by encoding the weight tensor as a sum
of R rank-one tensors with

y = f

(〈
X ,

R∑
r=1

w(1)
r ◦ . . . ◦w(M)

r

〉
+ b

)
. (11)

This model is represented in Figure 1-bottom.
Similarly to the vector case, we obtain the tensor-valued

linear and logistic regression models by defining the func-
tion f(·) as identity and as the softmax function, respec-
tively.
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Figure 1: (Top) GLM for vector-valued data. The data and
model parameters are depicted in blue and orange, respectively.
(Middle and bottom) Extensions of GLM to tensor-valued data.
The bottom representation allows the encoding of more complex
behaviors as the weight tensor is encoded as a sum of rank-1
tensors.

2.3. Tensor ridge regression (TRR)

Given a vector-valued input data x, the classical re-
gression model is of the form

y = x>w + b+ ε = 〈x,w〉+ b+ ε, (12)

where y is the predicted output, w is a vector of weights,
b is the bias and ε is a zero-mean Gaussian noise variable.
Following (11), and as shown in [11, 12], the model can be
generalized to M -dimensional tensor-valued data

y = 〈 X ,

R∑
r=1

w(1)
r ◦ . . . ◦w(M)

r 〉+ b+ ε

= 〈 X ,W 〉+ b+ ε, (13)

therefore taking the underlying structure of the data into
account.

Given a dataset of M -dimensional tensor inputs and
corresponding outputs {Xn, yn}Nn=1, the parameters of the
tensor ridge regression (TRR) model (13) are learned by
maximizing its likelihood, or equivalently its correspond-
ing log-likelihood

`(W , b, σ) =

N∑
n=1

logN
(
yn
∣∣〈 Xn,W 〉+ b, σ2

)
, (14)

where σ2 is the variance of the zero-mean Gaussian ran-
dom variable ε. By using the inner product equality (7),
one can observe that the model (13) is linear in W (m) =

[w
(m)
1 . . .w

(m)
R ] individually, so that the parameters

{W (1), . . . ,W (M), b} can be learned by optimizing a se-
quence of generalized linear models (see [11, 12] for de-
tails). Therefore, by adding to the log-likelihood function

a zero-mean Gaussian prior on the weight tensor, equiva-
lent to the regularization term −λW

∑M
m=1 ‖W (m)‖2F, the

bias b and factor matrices W (m) are updated at each iter-
ation until convergence with

vec(W (m)) ← (Φ>Φ + λWI)−1Φ>(y − b1), (15)

b ← 1

N

N∑
n=1

yn − 〈Xn,W〉, (16)

where the n-th row of the matrix Φ is equal to
vec
(
Xn,(m)W

(−m)
)
, the n-th element of the vector y is yn,

1 ∈ RN is a vector of N ones and ‖ · ‖F is the Frobenius
norm. Note that other types of regularization are also
proposed in [11].

2.4. Tensor logistic regression (TLR)

In the classical multi-class logistic regression model,
the posterior probability of the class Ci is given by the
softmax function

p(Ci|x,θ) =
exp(x>vi + ai)∑C

j=1 exp(x>vj + aj)
, (17)

where θ denotes the parameters of the model and C the
number of classes. Similarly as ridge regression, the lo-
gistic regression model can be extended to tensor-valued
data by encoding the tensor of weights as a sum of R rank-
one tensors, leading to the tensor-valued softmax function
[13, 14]

πi = p(Ci|X ,θ) =
exp

(
〈X ,Vi〉+ ai

)
∑C

j=1 exp
(
〈X ,Vj〉+ aj

) , (18)

where Vi =
∑R

r=1 v
(1)
i,r ◦ . . . ◦ v

(M)
i,r . Similarly to TRR, the

tensor logistic regression (TLR) model takes into account
the underlying structure of the data and reduces the num-
ber of parameters in the model compared to a vector-based
representation of the tensor-valued data.

Given a dataset of inputs and corresponding unit vector
outputs {Xn, yn}Nn=1, where yn,i = 1 indicates that the n-
th data belong to the i-th class, the log-likelihood of the
multivariate tensor logistic regression model is

`
(
{Vi, ai}Ci=1

)
= log

N∏
n=1

C∏
i=1

π
yn,i

i

=

N∑
n=1

( C∑
i=1

yn,i

(
〈Xn,Vi〉+ai

)
− log

C∑
i=1

exp
(
〈Xn,Vi〉+ai

))
.

(19)

Note that a regularization term−λV
∑C

i=1

∑M
m=1 ‖V

(m)
i ‖2F

can be added to the log-likelihood function to avoid over-

fitting. The parameters {V (1)
i , . . . ,V

(M)
i , ai}Ci=1 can be

learned by minimizing the negative log-likelihood of the
model via any gradient-based optimizer, e.g., Newton’s

4



method or limited memory BFGS. By exploiting (7), the
gradients of the regularized negative log-likelihood used in
the optimization process can be computed as

δ
(
− `({Vi, ai}Ci=1)

)
δV

(m)
i

=

N∑
n=1

(πn,i − yn,i)vec(Xn,(m)V
(−m)
i )

+ 2λV vec(V
(m)
i ), (20)

δ
(
− `({Vi, ai}Ci=1)

)
δai

=

N∑
n=1

(πn,i − yn,i), (21)

where πn,i = p(Ci|Xn, θ).

3. Tensor-variate mixture of experts

A mixture-of-experts (ME) regression model [16] aims
at solving a nonlinear supervised learning problem by com-
bining the predictions of a set of experts. The model is
composed of a gate determining a soft division of the in-
put space, and several experts making predictions in the
different regions of the input space. In this section, we
propose to generalize the ME regression model to tensor-
variate data by using tensor-variate models for the experts
and for the gate.

3.1. TME model

Given a tensor-variate input X and an output y, the
tensor-variate mixture distribution is

p(y|X ,θ) =

C∑
i=1

p(i|X ,θg) p(y|i,X ,θe), (22)

where C is the number of experts, p(i|X ,θg) is the proba-
bility of the i-th expert to be activated (gate’s rating) and
p(y|i,X ,θe) is the model of the i-th expert. We define
θ = {θg,θe}, where θg and θe denote the parameters of
the gate and the set of experts, respectively.

Similarly to the original ME model, we define the gate
of the TME model by the tensor-variate softmax function,
so that

p(i|X ,θg) = πi, (23)

with πi defined by (18), Vi =
∑Rg

r=1 v
(1)
i,r ◦ . . . ◦ v

(M)
i,r and

Rg the rank of the weight tensors Vi. The experts follow
the Gaussian model

p(y|i,X ,θe) = N
(
y
∣∣ψi(X ) + bi,Σi

)
, (24)

where ψi(X ) =

( 〈 X ,Wi,1 〉
...

〈 X ,Wi,D 〉

)
, Wi,d =

∑Rei
r=1w

(1)
i,d,r ◦ . . . ◦

w
(M)
i,d,r and Rei is the rank of the weight tensors Wi,d. Note

that one weight tensor Wi,d is defined for each element of
y ∈ RD. This is similar to the vector case, where different
vectors wi weight the input for each element of the output,

so that y =

w>1
...

w>D

x+ b.

Figure 2: Proposed TME model. The gate is represented in
the green box and the experts are represented in orange boxes.

Figure 2 illustrates the proposed model. Single predic-
tions are computed by using the expectation of the TME
model (22), so that

ŷ =

C∑
i=1

πi(ψi(X ) + bi). (25)

3.2. Training of TME

Similarly to ME, the TME model can be trained using
the expectation-maximization (EM) algorithm. By intro-
ducing a set of binary latent variables {zn} where zn,i = 1
indicate that the data n was generated by the i-th mix-
ture component, the expected complete data log-likelihood
is given by

Q(θ) =

N∑
n=1

C∑
i=1

rn,i log
(
πn,iN

(
yn
∣∣ψi(Xn) + bi,Σi

))
,

(26)
where rn,i denotes the responsibility of the i-th component
for the n-th data point so that rn,i = p(zn,i = 1|Xn,θ).
In the E-step, the responsibilities rn,i are computed using

rn,i =
πn,i N

(
yn
∣∣ψi(Xn) + bi,Σi

)∑C
j=1 πn,j N

(
yn
∣∣ψj(Xn) + bj ,Σj

) . (27)

In the M-step, the parameters are updated to maximize
the expected complete data log-likelihood (26). First, the
parameters of the experts θe are updated iteratively until
convergence, based on (15) and (16), with

vec(W
(m)
i,d )← (Φ̃>i,dΦ̃i,d + λWI)−1Φ̃>i,d(ỹd − bi,d1), (28)

b← 1

N

N∑
n=1

ỹn,d − 〈X̃n,Wi,d〉, (29)

where the n-th row of the matrix Φ̃i,d is equal to

vec
(
X̃n,(m)W

(−m)
i,d

)
, the n-th element of the vector ỹ is

ỹn,d and X̃n =
√
rnkXn, ỹn =

√
rnkyn are the scaled
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input tensors and output vectors, respectively. The co-
variance of the experts Gaussian model is then updated
as

Σi ←
∑N

n=1 rn,i
(
yn −ψi(Xn)− bi

)>(
yn −ψi(Xn)− bi

)∑N
n=1 rn,i

.

(30)
Finally, the gate parameters θg are updated by maxi-

mizing the log-likelihood of the multivariate tensor logistic
regression model

`
(
{Vi, ai}Ci=1

)
= log

N∏
n=1

C∏
i=1

π
rn,i

n,i − λV
C∑
i=1

M∑
m=1

‖V (m)
i ‖2F,

(31)
based on (19). Similarly to tensor logistic regression, a
gradient-based optimizer is used to minimize the negative
log-likelihood with gradients given by (20) and (21), where
yn,i is replaced by rn,i.

Note that regularization terms have been added in the
M-step to avoid overfitting. The E-step and M-step are
iterated until convergence of the algorithm.

3.3. Model selection and initialization

Selecting the number of experts in ME is known to be
a difficult problem [17]. When the structure of the ap-
plication allows it, as in the experiments of Section 4, the
number of experts can be determined by the experimenter.
Otherwise, standard strategies used for ME, such as ex-
haustive search, growing or pruning models, or Bayesian
estimates can be adapted to TME.

The TME model assumes fixed ranks Rg and Rei for
the gate and experts weight tensors, respectively. The ap-
propriate rank can be estimated using cross-validation or
through usual model selection criterion, e.g., the Bayesian
information criterion (BIC).

Previous works on TRR [11, 12] and TLR [14] showed
that both TRR and TLR models converge to a similar
solution independently of the initial weight values. There-
fore, the weight tensors of TME are initialized with ran-
dom values in our experiments. In order to facilitate the
convergence, we initialized the weights of the expert model
Wi and of the gate Vi as equal to the weights W obtained
from TRR.

4. Experiments

In this section, we first evaluate the functionality and
the performance of the proposed TME on artificially gen-
erated data. The approach is then applied to the detection
and recognition of hand movements from tactile myogra-
phy (TMG) data. An offline experiment and a real-time
teleoperation experiment, where participants controlled a
robotic arm and hand based on their hand movements, il-
lustrate the effectiveness of the proposed TME model. A
video of the teleoperation experiment accompanies the pa-
per (https://sites.google.com/view/tensor-mixture-

of-experts/). Source codes related to the experiments
are available at https://github.com/NoemieJaquier/TME.

4.1. 2D shape example

In this illustrative example, we propose to evaluate
the performance of the proposed TME model for different
ranks under various sample sizes and signal strengths. To
do so, we generate artificial data following the model (22)
from known parameters θ and we evaluate the recovery of
these parameters by the model. In this illustrative exam-
ple, we consider matrix-variate inputs X ∈ R64×64 whose
elements are independent and normally distributed. The
output y is normally distributed with a mean given by a
2-classes TME model with zero biases

ŷ =
exp

(
〈X,V 〉

)
1 + exp

(
〈X,V 〉

) 〈X,W1〉 +

1

1 + exp
(
〈X,V 〉

) 〈X,W2〉, (32)

and a standard deviation σ. The weight matrices V ,W1,W2 ∈
R64×64 are equal to the binary 2D shapes represented in
Figure 3a, where the black and white regions correspond
to 1 and 0, respectively. The use of these 2D shapes was
inspired by the illustrative example presented in [12].

We first examine the performances of the proposed
TME model for ranks Rg and Re = Re1 = Re2 varying
from 1 to 3 with a sample size N = 1000 equally divided
between the two classes and a noise level σ equal to 10% of
the standard deviation of the mean ŷ. The regularization
terms λV and λW were fixed as equal to 0.1. Moreover, we
compare the TME model with the standard ME regression
model whose gate is defined by the softmax function (17)
and experts follow a Gaussian model with a mean given
by (12).

Figure 3 shows the original and recovered weight matri-
ces by the ME and TME models along with the root-mean-
square error (RMSE) for the estimation of the weight ma-
trices and the BIC value for TME. We observe that TME
outperforms ME for all the tested rank values as the max-
imum RMSE value achieved by TME is 0.21 (Rg = 1,
Re = 3) versus 0.3 for the ME model. Moreover, we ob-
serve that the weight matrices retrieved by ME are noisier
and the shapes of the experts weights are not clearly de-
limited and tend to be fused together compared to those
retrieved by TME. Similar results were obtained for dif-
ferent sample sizes and noise levels.

Similar observations can also be made by comparing
the weight matrices retrieved by RR and MRR for the
same data, as shown in Figure 4. Although both methods
retrieve one weight matrix fusing the three original ones
due to their formulation, the weight matrix retrieved by
RR looks noisier than the one retrieved by MRR. This
confirms that taking the structure of the data into account
improves the quality of the recovered weight matrices.

Due to their structure, a rank-2 setting is sufficient
to capture a cross or a t-shape pattern, while a low rank
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(a) (b) (c) (d) (e) (f)

ME TME TME TME TME

(2,1) (1,2) (2,2) (3,3)

RMSE 0.30 0.16 0.18 0.12 0.18

BIC - 10209 8940 9835 11216

Figure 3: (a) True weight matrices of the gate and experts
functions (from top to bottom: V , W1 and W2). (b) Recovered
weight matrices by ME. (c-f ) Recovered weight matrices by
TME for different ranks (Rg, Re).

(a) (b)

Figure 4: (a) Recovered weight matrix by RR. (b) Recovered
weight matrix by MRR.

setting does not allow to exactly represent a disk shape.
As expected, the cross and t-shape are fully recovered by
TME in the cases where Rg ≥ 2 and Re ≥ 2, respectively,
while approximations of the shapes are obtained for lower
ranks (see Figures 3c–3f). Moreover, while the disk shape
is approximated by a square in a rank-1 setting (Figure 3c),
it is already fairly recovered by a rank-2 or rank-3 setting
(see Figures 3d–3f).

Consistently with the aforementioned observations, the
minimum RMSE value is obtained by TME with a rank-
(2, 2) setting. Moreover, TME with ranks Rg = Re = 3
obtains a slightly higher RMSE than with ranks Rg =
Re = 2. This can be explained by the fact that approxi-
mating the cross and t-shape with a rank-3 setting, while
a rank-2 setting is sufficient, leads to an overfitted esti-
mation with a higher influence of the noise contained in
the training data. According to the BIC values reported
for the tested TME models, the model with Rg = 1 and
Re = 2 should be selected (lowest BIC cost). However,
in practice, one may prefer the rank-(2,2) setting in this
case, suggesting that other rank selection methods, such
as cross-validation, may be used in function of the ap-
plication. Note that similar observations were made for
different sample sizes and noise levels.

As shown in Figure 5, the estimation accuracy increases
with the sample size and decreases with the noise level σ,
validating the consistency of the proposed method.

(a) (b)

Figure 5: (a) Evolution of the RMSE of the estimation of TME
weight matrices in function of the sample size N for different
noise levels. The curves corresponding to noise levels σ equal
to 1, 10 and 50% of the standard deviation of the mean ŷ are
represented in dark blue, red and yellow, respectively. The
mean and two standard deviations over 10 trials with different
matrix-variate inputs X are represented. The sample size is
equally divided between the two classes. (b) Recovered weight
matrices V , W1 and W2 by TME for ranks Rg = Re = 2 with,
from left to right, sample sizes N = 500, 2000 and 2000 and
noise levels σ = 1%, 1% and 50% of ŷ.

4.2. Shape example of higher dimensions

In order to evaluate the performance of the proposed
TME model for higher tensor dimensions, we extended
the experiment to tensor-variate inputs X of order 3 and
4. The dimension of the inputs and coefficients was re-
duced from 64 to 16 in order to allow the comparison
with ME. Indeed, the number of elements of a third-order
cube tensor of dimension 64 is 262144. Therefore, with a
standard implementation of ME, 262144×262144 matrices
need to be stored and inverted, which cannot be handled in
a straightforward manner with a standard computer. Note
that other techniques, notably sparse methods, could be
used to handle such a case. However, as this is out of the
scope of this paper, we simply reduced the dimension of
our coefficients.

For this second illustrative example, the tensor-variate
inputs X ∈ R16×...×16 and the outputs y were generated
as in the previous experiment, with tensor coefficients in-
stead of matrices in (32). The weight tensors V, W1 and
W2 ∈ R16×...×16 were defined as 2D, 3D and 4D binary
coefficients with shapes similar to the ones represented in
Figure 3a extended to higher dimensions. For this exper-
iment, the background and shape regions correspond to
0 and 1. We compared the performances of ME with the
proposed TME model with ranks Rg = Re = 2 with a sam-
ple size N = 200 equally divided between the two classes
and a noise level σ equal to 10% of the standard deviation
of the mean ŷ. The regularization terms λV and λW were
fixed as equal to 0.1.

Figure 6 shows the mean and two standard deviations
of the RMSE obtained for the estimation of the weight
tensors by ME and TME for different dimensions. Note
that no result is presented for ME with coefficients of di-
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Figure 6: Evolution of the RMSE for the estimation of the
weight tensors by ME and TME, depicted in dark blue and
yellow, respectively. The mean and two standard deviations
over 10 trials with different inputs are represented.

mension 4 due to the computational load of storing and
inverting 65536 × 65536 matrices. We observe that TME
outperforms ME for all dimensions. Moreover, the RMSE
explodes for ME with dimension 3 as it almost reaches the
maximum RMSE of 1, while it grows slowly for TME from
dimensions 2 to 4. Considering that the number of train-
ing data was constant and that the number of elements of
the coefficients grew considerably with the number of di-
mensions, this result highlights the benefits of TME (and
of considering tensor-based approaches).

4.3. Detection of hand movements from tactile myography

In the context of prosthetic hands, tactile myography
(TMG) has recently been proposed as a complementary or
alternative approach to the traditional surface electromyo-
graphy (sEMG) to achieve simultaneous and proportional
control of multiples degrees of freedom (DOFs) of a hand
prosthesis (see, e.g., [21, 6]). In this context, the aim of
TMG is to measure the pressure related to the deforma-
tion induced by the muscles activity of the forearm. This
signal is then used to determine the corresponding hand
and wrist movements. Our TMG sensor, developed in [6]
and shown in Figure 7a, is composed of 320 resistive taxels
organized in a 8× 40 array forming a bracelet. Therefore,
the data provided by the sensor are intrinsically matrix-
valued.

Previous studies showed that ridge regression (RR) di-
rectly applied to the data of the bracelet allows the pre-
diction of different finger and wrist movements [6], which
could outperform detection using sEMG [22]. However,
RR does not take into account the matrix structure of the
TMG data as they are vectorized before the application of
the regression method. Moreover, the same weight vectors
are used independently of the activated movements, which
may result in false positive detection of activations. There-
fore, the motivations to use TME for this application are
the following: (1) the structure of the data is taken into
account in the regression process; (2) the problem is de-
composed in two subparts, namely detecting which move-
ments are activated and determining their individual level

of activation; and (3) the low computational complexity to
evaluate one test sample allows TME to be used for real-
time detection of hand and wrist movements from TMG
data.

In this experiment, we investigate the performance of
TME on the dataset2 presented in the second experiment
of [23]. The dataset was gathered from 9 healthy partici-
pants requested to replicate the movements of a stimulus
in the form of a 9-DOF hand model while wearing the tac-
tile bracelet. Ground truth was obtained from the values
of the animated hand model displayed on a monitor. This
method has the drawback of possibly reducing the preci-
sion of the prediction of the intended activations due to the
delay required by the participant to replicate the displayed
movement. However, this approach allows the association
of intended activations with input signal patterns in the
case of amputees (since ground truth data can obviously
not be collected by other means in this case).

Each participant executed three times a sequence of six
movements, namely wrist flexion, wrist extension, wrist
supination, thumb flexion, index flexion and little-finger
flexion. The data were recorded during the whole cycle of
the stimulus, namely transition, activation, transition and
relaxation phases, in order to obtain the whole range of ac-
tivation from rest to complete finger and wrist movements
(see [23] for more details).

The training dataset is composed of data recorded at
zero and full activation. The testing dataset is composed
of data recorded during the transition parts, containing
the whole range of intermediate activation levels. There-
fore, the evaluation of the performance of the model is
compatible with the evaluation in forecasted studies with
amputees, as they cannot provide accurate intermediate
training data.

We compared the performance of vector-based and tensor-
based algorithms on this dataset, namely RR, ME, TRR
and TME. We also contrasted the results of these (mix-
tures of) linear models with a computationally more in-
volved nonlinear method based on Gaussian process re-
gression (GPR), see [23] for details.

The TMG data were centered for all the methods. The
regularization parameter of RR and ME were fixed to 0.1.
GPR was used with a radial basis function (RBF) kernel
whose parameters were optimized using GPy [24]. Note
that GPR with RBF kernel with an Euclidean distance
measure was proved to reach good performances on this
dataset in [23]. The rank of TRR was determined using 5-
fold cross-validation and the regularization parameter λW
was fixed to 0.1. For TME, as for ME, one expert was
considered for each of the six finger and wrist movements.
In order to facilitate the training process, we considered
a common value Re for the ranks Rei . The ranks Rg and
Re were determined using 5-fold cross-validation for 2 ≤
Rg, Re ≤ 6. The regularization parameters of TME, λW

2The dataset is available online at http://www.idiap.ch/paper/

mdpi/data/exp2/.
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(a)

(b)

Figure 7: (a) The TMG sensor used for the experiments. The
bracelet is here rolled out, showing its 10 modules of 8× 4 re-
sistive cells. (b) Data collection [23]. The participant, wearing
the tactile bracelet, imitates the gray animated hand model.

and λV , were fixed by the experimenter as equal to 0.1.
We noticed that small variations of these regularization
parameters did not change significantly the results for the
different regression methods.

Table 2 shows the mean and standard deviation over
the 9 participants of the RMSE between the ground truth
and the prediction for the aforementioned methods. We
observe that taking into account the structure of the data
in the regression process improves the quality of predic-
tions as both TRR and TME outperform their vector coun-
terparts. More surprisingly, taking into account the struc-
ture of the data allows a linear method (TRR) to achieve
performance comparable to those obtained by a nonlinear
method. GP and TME achieve the best performance com-
pared to the other methods, with the linear TME approach
obtaining only a slightly lower RMSE (0.303±0.074) than
the nonlinear GP (0.305 ± 0.060).3 Moreover, TME ob-
tained the minimum RMSE for 5 participants out of 9.

Figure 8 shows an example for GP and TME of the
original and recovered activations for all movements over
time. We observe that TME is generally recovering a more
stable signal than GP when one movement is not activated.
In the regions of zero activations, the signal recovered by
GP tends to oscillate around zero. However, the signal
recovered by TME can have a bigger delay than GP to
detect an activation different than zero (see, e.g., Fig. 8,
wrist extension).

Table 3 shows the average testing computation time

3Note that GP with RBF kernel slightly outperformed GP with
linear (0.455 ± 0.061), Matérn 32 (0.308 ± 0.061) and Matérn 52
(0.306 ± 0.059) kernels, therefore all the results are presented with
RBF kernel.

Table 2: Performance comparison in terms of RMSE between
different regression methods to predict fingers and wrist move-
ments from TMG data.

RR ME GP TRR TME

0.45 ± 0.07 0.33 ± 0.07 0.30 ± 0.06 0.35 ± 0.11 0.30 ± 0.07

Figure 8: Original and recovered activations of the different
fingers and wrist movements over time. The whole range of
activation is represented from 0 to 1 on the vertical axis for
each movement. The ground truth is shown by black curves,
while the signals recovered by TME and GP are displayed in
yellow and purple, respectively.

for the tested regression methods. The computation times
were measured using a non-optimized Python code on a
laptop with 2.7GHz CPU and 32 GB of RAM.4 We observe
a testing time of 1 ms for TME, which is reasonable for
real-time applications allowing predictions at a frequency
> 50 Hz, as usually targeted by real-time detection of hand
movements. Importantly, as opposed to GP, the computa-
tion testing time of TME is independent of the number of
training data and depends only on the number of experts.
Therefore, TME can be adapted to real-time predictions
independently on the number of provided training data.
During training, TME converged with less than 10 itera-
tions of the EM algorithm for all the participants, with a
total training time of several minutes. This is mainly due
to the fact that a TLR model is optimized at each step of
the EM algorithm. While the training time of TME could
be easily improved by using dedicated tensor libraries such
as [25], and despite we used a naive implementation in our
experiments, the training time remained reasonable for the
method to be applied in real-time, as we show in the next
subsection.

4Note that the structure of the proposed multilinear algebra prob-
lem allows numerical computation to be substantially improved in a
number of ways.
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Table 3: Average testing computation time for the different
regression methods. The methods are trained on ∼ 1000 data
samples. The testing computation time is measured for one
data sample.

RR ME GP TRR TME

Testing [ms] 0.0065 0.08 1.5 0.035 1.0

4.4. Real-time teleoperation with tactile myography

To evaluate our method in a scenario closer to the end-
user case, we conducted a real-time teleoperation experi-
ment in which 11 non-amputated participants (one female
and ten males) controlled a robotic hand and arm based
on the activation of the muscles on their forearm.

In the first part of the experiment, a protocol similar
to the data collection of the experiment of Section 4.3 was
applied to collect TMG data associated with the hand pos-
tures of the participants. The tactile bracelet was placed
on the forearm of the participant with the closing gap
on the ulna bone. The participant, wearing the tactile
bracelet and sitting in front of a monitor, was asked to
replicate the movements of a model of the 24-DOFs dex-
terous motor hand of the Shadow Robot Company [26].
Similarly to the previous experiment, ground truth was ob-
tained from the values of the animated hand model. Each
participant executed four times the sequence of four move-
ments, namely wrist flexion, wrist extension, power grasp
and fingers extension. The participants were asked to per-
form the different movements in a relaxed way (particu-
larly, the fingers were relaxed during wrist movements).
Each stimulus follows a cycle of 14 s composed of a tran-
sition phase (2 s), an activation phase (6 s), a transition
phase (2 s) and a relaxing phase (4 s). The data collected
during the activation and relaxing phases, i.e., at zero and
full activations, were used to train the regression models.

During the second part of the experiment, the partic-
ipant teleoperated a Shadow robot hand mounted on a
7-DOFs Mitsubishi PA10 robot arm. S/he was sitting in
front of the robotic system with the palm of the Shadow
robot hand facing right, as showed in Figure 9a. The dif-
ferent movements taught to the model in the first part of
the experiments were mapped to the robotic system as fol-
lows: wrist flexion and extension were used to move the
arm forward (in the direction of the palm) and backward
(in the direction of the back of the hand), respectively.
Power grasp and fingers extension were used to close and
open the Shadow robot hand. When wrist flexion or ex-
tension was detected above a certain activation threshold,
the velocity of the robot arm was incremented in the corre-
sponding direction proportionally to the detected activa-
tion. Similarly, the posture of the robotic hand was incre-
mented proportionally to the activation of power grasp or
fingers extension if they were detected above a predefined
threshold. The detected activations were also displayed on

the Shadow robot hand model as in the first part of the
experiment.

At the beginning of the second part of the experiment,
the participant could get used to the learned mapping by
controlling the simulated Shadow robot hand for a few
minutes. Then, while teleoperating the real robotic sys-
tem, the participant was asked to control the arm in or-
der to approach it close to an object placed on a cube,
to grasp this object and to bring it to a specific location
on the left (A) or on the right (B) side and to release
it. The complete setup is showed in Figure 9a. Three
objects with different diameters were considered, namely
a chips cylinder (�75 mm), a thin woodstick (�21 mm)
and a PET bottle (�63 mm), as shown in Figure 9b. A
total of 8 tasks were executed by each participant. The
first six tasks consisted of bringing each object to A and
then to B. Once a contact with the object was detected
by the tactile fingertip sensors of the Shadow robot hand,
the grasp pose was automatically maintained by the hand
so that the subject could relax his/her fingers and focus
on the wrist motion to steer the arm. The grasp pose was
released as soon as a fingers extension command was de-
tected. The maintenance of the grasp and the release were
announced verbally by the system. The two last tasks con-
sisted of bringing the PET bottle to A and to B without
any holding assistance by the robot system. The time to
complete each task was limited to two minutes. In case
the object felt from the cube or was released out of the
desired area, the experimenter replaced it at the initial
position and the participant continued to execute the task
in the remaining time. In case the participant could not
control both the arm and the hand, e.g., if the arm was
drifting continuously in one direction, the arm commands
were disabled and the participant was requested to main-
tain a grasp on the object for 10 s before releasing it. Each
participant tried to complete the 8 tasks with two different
regression methods, namely TME and RR, trained on the
data collected in the first part of the experiment. RR was
chosen for comparison since it is considered as the baseline
method for regression with TMG data. The order in which
the two methods were tested was alternated between the
participants.

Figure 10 shows snapshots of a participant executing
different tasks. 6, respectively 7, out of the 11 partici-
pants were able to control both the arm and the hand
during the whole experiment by using TME and RR, re-
spectively. Note that the cases during which the arm com-
mands had to be disabled occurred mainly for the second
tested method (4 participants out of 5 testing TME as
second method and 3 out of 4 participants testing RR as
second method), suggesting a decrease of performance over
time. One participant was not able to control both arm
and hands for both methods and an other participant was
able to control them for the 4 first tasks of the first tested
method only.

The success rates, or ratios of successful tasks, for the
case in which the participants controlled both robot arm
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(a) (b)

Figure 9: (a) Setup of the teleoperation experiment. The par-
ticipant is requested to grasp the chips cylinder and to place
it on A or B. The distance between the initial position of the
object and A or B is approximately 15 cm. The detected ac-
tivations are displayed on the monitor by an animated hand
model. (b) Objects used during the teleoperation experiment.

and hand are presented in Table 4. We observe that TME
outperformed the performance RR by 15% when all the
objects and both locations A and B are considered. The
time needed to accomplish successful tasks were 55.6±31.1
s and 53.9±31.5 s for TME and RR, respectively, showing
almost no difference between the two methods.

For both methods, the tasks involving the woodstick re-
sult in the lowest success rate. Due to the small diameter
of this object, the arm had to be positioned very precisely
and a complete grasp activation had to be detected in or-
der to perform a successful grasp. Therefore, the tasks
involving the woodstick were the hardest to complete for
the participants. In the case of TME, the success rate for
the chips cylinder is lower than for the PET bottle. This
can be explained by the fact that a small activation of the
grasp movement was sometimes detected when the partic-
ipants were flexing their wrist to make the arm move in
the direction of the object. However, the robotic hand had
to be completely opened to be able to be placed around
the chips cylinder before grasping, while it could still be
placed around the bottle if a small grasping activation was
detected. In the case of RR, the success rate diminishes
for the bottle compared to the chips cylinder. This may
suggest a stronger decrease of performance over time with
this method.

We observe that the success rates for the bottle are
similar with and without the holding assistance activated
for both methods. This result is particularly interesting as
it shows that combinations of hand and wrist movements
in this experiment, namely grasping with wrist flexion,
and grasping with wrist extension, can be detected while
training only on individual movements. Moreover, both
aforementioned combinations were equally detected as the
number of completed tasks for each location A or B was
similar, i.e., 4 and 3 successful tasks for A and B with
TME and 2 for each location with RR. Moreover, some
of the participant did not wait that the contact with the
object was detected before bringing it to its final location.
Therefore, they managed to complete other tasks without

Figure 10: Snapshots of the teleoperation experiment for dif-
ferent tasks. A participant is (a) grasping the woodstick, (b)
bringing the bottle to B, (c) reaching A while holding the bot-
tle, (d) releasing the chips cylinder at B. The detected acti-
vations are displayed by a Shadow robot hand model on the
monitor.

Table 4: Success rates over all the tasks and for each object
in the case where the participants teleoperated both the robot
arm and hand. The success rates are given in percent [%].

Total Chips cylinder Woodstick Bottle Bottle (no HA)

TME 45.8 41.7 16.7 66.7 58.3

RR 30.6 44.4 12.5 35.7 28.6

using the holding assistance.
Table 5 shows the proportion of the failed tasks for

which the time ran out during each of the task steps,
namely grasping, moving and releasing the object, for TME
and RR. We observe that the proportions are similar for
both methods with the grasping step being the main cause
of failure, followed by the moving step. Failures during
grasping occurred mainly because the detected grasp acti-
vation was not sufficient to grasp the object or when it was
activated too soon, therefore resulting in the object being
pushed out of the support box. Failures while moving were
due to difficulties to detect wrist flexion and extension or
to the object falling down while the participant was trying
to reach A or B. Finally, if the fingers extension movement
was not detected properly while the holding assistance was
activated, the opening of the hand was not triggered, re-
sulting in failure to release the object.

The success rates for the case in which the arm com-
mands where disabled and the participant was only re-
quested to grasp the object are presented in Table 6. In
this case, RR outperforms TME, especially for the tasks
involving the woodstick. This can be explained by the fact
that, in most of the cases, the arm commands had to be
disabled for RR because the arm was drifting on the left or
on the right, while it had to be disabled for TME because
no activation was detected to move the arm, so that the
participant could not position it to grasp the object. Gen-
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Table 5: Proportion of the failed tasks due to running out of
time during the grasp, the displacement and the release of the
object [%].

Grasping Moving Releasing

TME 57.7 30.8 11.5

RR 58.1 32.6 9.3

Table 6: Success rates over all the tasks and for each object, for
the case in which the commands of the arm had to be disabled.
The success rates are given in percent [%].

Total Chips cylinder Woodstick Bottle Bottle (no HA)

TME 38.8 40.0 0 40.0 40.0

RR 53.8 50.0 66.7 50.0 50.0

erally, the detected activation of the grasp movement was
also limited, therefore some tasks were difficult to achieve,
especially those involving the woodstick.

5. Discussion

The proposed TME model allows the structure of tensor-
valued data to be taken into account in the regression prob-
lem. Overfitting can then be reduced, which is particularly
important when only few tensor-valued training data are
available. We showed the effectiveness of the approach to
detect hand movements from TMG data, outperforming
the other tested methods in an offline experiment and al-
lowing participants to teleoperate a robotic arm and hand
in real-time.

It is important to emphasize that the tensor methods
(TRR and TME) systematically outperformed their vec-
tor counterparts (RR and ME) in our experiments. This
confirms that tensor methods not only result in tractable
algorithms, but also improve the performance of the learn-
ing process by accounting for the underlying of structure
of the data. These results highlight the importance of ex-
ploiting tensorial representations for learning algorithms
when the data are naturally represented by matrices or
tensors. Moreover, for both vector- and tensor-based al-
gorithms, the mixture of experts offers the advantage of
combining the predictions from experts whose models are
specialized for different regions of the input space. For
a wide category of problems involving non-stationary or
piecewise continuous regression processes as those consid-
ered in our experiments, mixture of experts (i.e., ME and
TME) naturally outperform simpler regression methods
(i.e., RR and TRR). In this context, the proposed TME
model efficiently combines the advantages of tensor meth-
ods and of mixture of experts, and may therefore be bene-
ficial in various applications. Notice that, although we did
not consider TRR and ME in our real-time experiment for

the sake of keeping a reasonable experience time for the
participants, we expect the aforementioned observations
with respect to RR and TME to also apply in this case.

Moreover, it is worth highlighting that, during the real-
time experiment, the TME model was able to successfully
detect intermediate and combination of activation, while
trained only with zero and complete individual movements.
Notably, participants managed to activate wrist flexion or
extension along with power grasp. This indicates that a
holding assistance may not be required. However, some
participants reported that the holding assistance was help-
ful as a feedback indicating that the grasp was effective or
to make them feel more comfortable while teleoperating
the arm, as they could focus on one movement only.

A decrease of performance over time, indicated by the
necessity of deactivating the arm commands while test-
ing the second method, seemed to have occurred during
the real-time experiment. Moreover, some participants re-
ported that they felt that the control of the robotic arm
and hand was harder to perform over time. Moreover,
we qualitatively observed that this problem seemed to oc-
cur particularly for participants who were trying to apply
high forces to execute the different movements. We hy-
pothesize that this is due to small displacements of the
TMG bracelet over time, inducing a shift of the testing
data compared to the training data. This problem could
be overcome by improving the placement of the bracelet
and by adapting the model over time. Techniques such as
covariate shift adaptation in the case of sEMG [27] could
be investigated.

It is important to emphasize the fact that the partic-
ipants were able to adapt in some extent to the predic-
tions of the method. They slightly modified their hand
movements in order to obtain the desired action of the
robotic arm and hand. Therefore, we observe a form of
active learning, where the method learned from the train-
ing data, while the participants learned from the method
in order to achieve the desired performance.

In both experiments, the ranks of the experts were
given by a common value. The performance of TME may
be further improved by selecting a specific rank for each
expert. However, to avoid increasing computation time,
automatic rank selection procedures have to be investi-
gated. In particular, the automatic rank selection pre-
sented in [11] could be exploited to determine the rank
of the expert models. The suggested method uses a `1,2
norm regularization and optimizes the model with iter-
atively reweighted least squares (IRLS) algorithm. This
approach seems promising as the authors reported in their
experiments that the automatic procedure provided the
same rank as the one selected by cross-validation.

Overall, we believe that many robotic applications could
benefit from the use of tensor methods. While this pa-
per illustrated their use for recognizing hand movements
from tactile myography with the proposed TME model,
tensor methods may also be exploited for other types of
tensor-valued data, e.g., for applications in robotic percep-
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tion where images can be viewed as matrices, and video
streams as third-order tensors. Moreover, tensor meth-
ods may be exploited in robot skills learning to efficiently
represent and exploit skill parameters. In this direction,
Zhao et al. [28] proposed to generalize robotic skills by ex-
ploiting tensor decomposition to extract task-agnostic in-
formation from skill parameters represented as third-order
tensors. Following similar ideas, tensor methods may also
be used to represent task parameters in multiple coordi-
nate systems, or to determine latent representations of
high-dimensional skill or control parameters represented
in tensor form.

6. Conclusion

This paper presented an extension of mixture of ex-
perts to tensor-valued data. Our method brings together
the advantages and robustness of mixture models and ten-
sor methods. Therefore, it allows an efficiently combina-
tion of predictions from experts specialized in different re-
gions of the input space, while taking into account the
structure of tensor-valued data in the soft space division
and in the predictions of the experts. The data are ef-
ficiently exploited, so that a model trained with a small
amount of training data is able to achieve good perfor-
mances, while overcoming the overfitting problem. This is
particularly important in robotics as the amount of train-
ing data is often small compared to the dimensionality of
the data. The effectiveness of our model was illustrated
with artificially generated data and in two experiments
aiming at detecting hand movements by measuring the
pressure induced by the muscles activity of the forearm
with tactile myography. We showed that the testing com-
putational time of the proposed model is low, due to a
computational cost independent of the number of train-
ing data, therefore making it compatible with real-time
robotic applications.

Future work will investigate automatic rank selection
procedures with the objective of automatically determin-
ing all the ranks of the model, therefore avoiding the use
of cross-validation in the training process. Moreover, we
will investigate extensions of the proposed tensor-variate
mixture-of-experts (TME) model to other applications in
robotics, as well as to more complex models, such as hier-
archical TME [17]. It is worth noting that the proposed
TME model permits to incorporate structural information
of the data as a special case of neural network. Extensions
of this model could then also lead to interesting perspec-
tives in the development of neural network structures for
tensor data that would have better interpretability, that
could be trained with smaller amount of data, and that
would provide better generalization results by avoiding
overfitting.
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