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Abstract— We present an approach for internally-guided
learning in the context of a multi-task robot skill acqui-
sition framework. More specifically, we focus on learning
a parametrized distribution of robot movement primitives
by using active intrinsically-motivated learning. We focus on
the case where the learning process is initialized with hu-
man demonstrations, and refined through experiences. Such
approach aims at combining experiential and observational
learning. We demonstrate the effectiveness of our approach on
a waste throwing task with a simulated 7-DoF Franka Emika
robot.

I. INTRODUCTION

Intrinsically-motivated learning (a.k.a. curiosity-driven
learning) has emerged as an efficient approach for au-
tonomous lifelong learning in robots [1, 2]. It is inspired by
the ability of humans to discover how to produce interesting
effects in their environments [3]–[5]. In [5], psychologists
suggested that exploration might be triggered and rewarded
for situations that include novelty/surprise. They observed
that the most rewarding situations were those with an in-
termediate level of novelty, between already familiar and
completely new situations. This also seems to be confirmed
by recent neuroscience studies showing that dopamine might
be released, not only for predicting external rewards such as
food, but also for internal rewards such as prediction errors
[6]. This suggests that intrinsic motivation systems might be
present in the brain, potentially by the presence of signals
related to prediction errors.

Given this background, a way to implement an intrinsic
motivation system might be to build a mechanism which can
evaluate the degree of novelty of different situations from
the point of view of a learning robot, and then designing
an associated reward being maximal when these features are
in an intermediate level. Maximizing this reward can then
create an active exploratory behavior [1, 7].

In this work, we propose a Bayesian framework for
intrinsically-motivated learning of robot movement primi-
tives. Leveraging a few initial human demonstrations, we
propose a way to choose actively which movement is going
to improve the most the knowledge of the task. We demon-
strate the usefulness of our approach on a simulated waste
throwing task with a 7-DoF Franka Emika robot. Specifically,
we evaluate the novelty of a robot movement in terms of the
uncertainty associated to the object movement, and design
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a reward that is a tradeoff between this novelty and the
proximity to previous demonstrations/trials.

II. BAYESIAN MOVEMENT REPRESENTATION

In this section, we present the movement representation.
We build upon the widely used framework of probabilistic
movement primitives (ProMPs) [8], which we extend with a
Bayesian perspective.

A. Probabilistic movement primitive (ProMP)

A ProMP is a probability distribution over trajectories built
from a series of N demonstrations (trajectories) of length
T and of D dimensions. A demonstration τi ∈ R(T×D) is
approximated by a sum of M basis functions, which are
often chosen as radial basis functions (RBF)

τi = Φwi+ε, with Φ = Φ1d ⊗ ID, (1)

where ⊗ represents the Kronecker product, ε is zero-mean
i.i.d. Gaussian noise, wi of size MD×1 is the weight
associated to the ith demonstration, Φ1d

T×M is the basis
function matrix with Φ1d

t,m = Φm(t) corresponding to the
mth basis function indexed at time t, and ID is the identity
matrix.

The weight vectors associated to each demonstration are
learned through least squares with

wi = (ΦTΦ)−1ΦT τi. (2)

A probability distribution p(w) can then be learned from
the demonstrations {wi}Ni=1, usually with a multivariate
Gaussian or a GMM.

This probability distribution p(w) can then be used for
generalization/adaptation to different environments, typically
by conditioning on trajectory keypoints.

B. Bayesian Gaussian Mixture Model (BGMM)

In this section, we present the learning of the joint distri-
bution of weights with a BGMM. For conciseness purposes,
we give here an overview of the approach, but the reader
can refer to [9] for more details, where we proposed to use
BGMM for active imitation learning of movement primitives.

1) Joint distribution: The joint distribution is defined by
a mixture of K multivariate normal distributions (MVNs)
with means µ={µk}Kk=1, precision matrices Λ={Λk}Kk=1

and mixing coefficients π={πk}Kk=1 as

p(w|π,µ,Λ) =

K∑
k=1

πkN (w|µk,Λ
−1
k ). (3)



A Normal-Wishart prior is used for means and precision ma-
trices, and a Dirichlet prior is put on the mixing coefficients.

The means, the precision matrices and the mixing coef-
ficients maximizing the posterior distribution are estimated
using closed-form update equations similar to those of the
Expectation-Maximization (EM) algorithm for the maximum
likelihood solution, see Section 10.2.1 in [10] for further
details. Also, they are available as parts of standard machine
learning libraries (e.g., scikit-learn for Python).

Given N demonstrations W = {wi}Ni=1, the predictive
density p(ŵ|W ) of a new weight ŵ is equivalent to a
mixture of multivariate t-distributions [10].

2) Conditional distribution: The weights represent the
evolution of the state with time. For instance, the state can
represent the joint angle values of a robot manipulator and
the Cartesian position of an object. We can then condition on
a particular value ŵi of an input dimension (e.g., dimensions
representing the robot joint space) to get the conditional
posterior predictive distribution p(ŵo|ŵi,W ) of an output
dimension (e.g., dimensions representing the object), as in
[10] (Section 10.2.3) and [9], namely a mixture of multi-
variate t-distributions.

C. Quantifying the uncertainties

We have shown in [9] that the conditional posterior
predictive distribution encodes two types of uncertainties: the
aleatoric uncertainty (possible variations of the task, the one
learned with standard ProMPs) and the epistemic uncertainty
(representing the lack of knowledge). We observed that the
aleatoric uncertainty does not depend on the context ŵi,
while the epistemic uncertainty grows quadratically with it.
Such a decomposition is particularly useful in the context
of ProMPs, because we can have access to the aleatoric
uncertainty to design minimal intervention control behaviors,
or the epistemic uncertainty for quantifying the lack of
knowledge of the model.

We propose to approximate the entropy of the epistemic
part of the conditional posterior predictive distribution with
the most common uncertainty measure, the Shannon en-
tropy [10, 11]. The entropy of a mixture of multivariate t-
distributions cannot be obtained analytically, so we approxi-
mate this mixture by a mixture of Gaussians using moment-
matching. We propose to use the closed-form lower bound
Hlower(p

ep(ŵo|ŵi,W )) introduced in [12] for measuring the
entropy of the Gaussian mixture, because it has been shown
to be tight (see [9] for the complete equations).

We will now show how we can use the learned statistical
model to build different active learning modalities.

III. ACTIVE LEARNING MODALITIES

In this section, we derive an intrinsically-motivated learn-
ing strategy. To facilitate the presentation of the approach, we
will introduce the approach in the context of a specific robot
experiment, where the aim is to learn to move an object to
different positions. First, we present the task and the goal of
the active learning framework. Then, we propose a method
for active intrinsically-motivated learning.

A. Manipulation task

We present our approach in the context of learning to ma-
nipulate an object with a robot. The trajectory is composed
of the robot joint states τ robot and the object position τ obj,
which implies that the ProMP weights w are a concatenation
of robot weights wrobot and object weights wobj.

The goal of the task is to move the object to different
desired final object positions τ obj,t=T

des . We denote the goal
space G as the space of all desired final object positions we
would like our robot to be able to generalize to. Formally,
this means that there exists an unknown ground truth target
distribution pGT(w) = pGT(wrobot,wobj) which can be used
to generate robot movements pGT(wrobot|τ obj,t=T

des ) that bring
the object to the position τ obj,t=T

des .
We aim to learn this unknown joint distribution by com-

bining imitation and intrinsically-motivated learning.

B. Intrinsically-motivated learning

We present here the learning modality, where the robot can
try out a movement by itself and observe the environment
changes in an open-ended manner. Namely, the robot chooses
to execute a particular movement and observes the movement
of the object. In contrast to imitation learning, one major
advantage of intrinsically-motivated learning is that it does
not require the presence of a human demonstrator.

We propose to select a robot movement based on how
uncertain we are about the object movements it will cause.
Formally, we would like to try the robot movement that
maximizes the entropy of the epistemic part of the condi-
tional distribution p(wobj|wrobot,W ), but this poses several
problems. From a robotics point of view, doing so might
pose safety problems as the movement retrieved might be
very far from the underlying distribution pGT(wrobot) we
aim to learn. From an active learning point of view, our
active learning selection scheme is myopic and such criterion
might select robot movements far away from the underlying
distribution, i.e., where no generalization is required. For
these reasons, we propose to use an information-density
method [10]. Namely, we aim to find a robot movement
that both has high information content (in the sense of the
epistemic entropy), and that is close to the distribution of
robot movements probot(wrobot|W ):

wrobot∗ = arg max
wrobot∈W robot

[
Hlower

(
pep(wobj|wrobot,W )

)
+βprobot(wrobot)

]
,

(4)
where β is an hyperparameter weighting the relative impor-
tance of the two costs.

The full intrinsically-motivated learning algorithm is
shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we show the usefulness of our intrinsically-
motivated learning approach in the context of a waste throw-
ing robotic task.



Algorithm 1: Active intrinsically-motivated learning

Data: Movement database W = {wrobot
i ,wobj

i }Ni=1,
robot movement space W robot

Result: robot movement wrobot∗ to execute

Learn joint distribution of
p(w|W ) = p(wrobot,wobj|W ) with BGMM;

Calculate p(wobj|wrobot,W );
Isolate the epistemic uncertainty
pep(wobj|wrobot,W );

Approximate the entropy of pep(wobj|wrobot,W );
Get the marginal distribution probot(wrobot|W ) from
p(w|W );

Find wrobot∗ =
arg maxwrobot∈W robot [Hlower(p

ep(wobj|wrobot,W ))+
βprobot(wrobot)].

A. Waste throwing task

We consider the task of throwing waste with a 7 DoF
Franka Emika Panda robot simulated in pyBullet. This task
is essential for the broader challenge of automatizing various
forms of recycling. It is also relevant in diverse industrial
applications requiring a robot to sort objects fast within a
limited workspace.

An overview of the simulated setup can be seen in
Fig. 1. The goal of the task is to be able to generate
robot movements that bring a simulated can to different
desired positions within a goal space G. The particularity
of this goal space is that, for a part of it, it is possible to
bring the object with a non-dynamic movement because the
desired final position is in the reachable robot workspace.
However, for the rest of the goal space, the final desired
object position is outside of the robot workspace, so that
it requires the robot to throw the can with a dynamic
movement. For benchmarking and reproducibility purposes,
we build our experiments on a precomputed database of
demonstrations. We create 200 non-dynamic demonstrations
and 260 dynamic demonstrations using an oracle, that we
gather in a database of demonstrations D. In Fig. 1, we
illustrate the can trajectory for three dynamic demonstrations
and three non-dynamic demonstrations. In Fig. 2, we show
the final can positions in our database, with the blue color
representing the non-dynamic demonstrations and the orange
color representing the dynamic demonstrations.

The trajectories of our database encode the robot move-
ment at a frequency of 240Hz, with T = 639 timesteps,
representing movements of about 3 seconds. We choose a 10-
dimensional state space containing the 7 joint angle values
of the robot, and the 3-dimensional Cartesian position of
the can. In all experiments, we use N = 30 Gaussian
radial basis functions1 (RBFs) for ProMP. The width of the
RBFs are set as h = (T−1

N )2, and the centers {cm}Dm=1

1Namely: Φm(t) =
φm(t)∑D

n=1 φn(t)
with φm(t) = exp (− (t−cm)2

2h
).

Fig. 1: Object trajectory for 6 demonstrations of the database
(3 dynamic demonstrations in orange, and 3 non-dynamic
demonstrations in blue).

are evenly spaced between −2h and T+2h. We choose a
diagonal covariance matrix prior, with a standard deviation
of 0.1 for the ProMP weights, and a mean concentration prior
of 0.0001. We use a maximum number of 5 Gaussians, or
strictly less than the number of demonstrations if there are
less than 6 demonstrations. Other hyperparameters of the
BGMM are the default hyperparameters of the scikit-learn
library.

The maximization procedure in the active intrinsically-
motivated learning is performed using a Bayesian opti-
mization algorithm: the Tree-Structured Parzen Estimator
approach (TPE) [13], implemented in the Python package
hyperopt. A maximal number of iterations of 100 is used in
the algorithm. As the space of possible robot movements is
of high dimension (30 basis functions × 7 joint angles), we
perform the search on the first two principal components of
{wrobot

i }Ni=1, found by principal component analysis (PCA)
The search space that we use is then the marginal distribution
p(wrobot) projected to the 2-dimensional PCA subspace.

We introduce an objective metric for evaluating our learn-
ing algorithm: the task cost, which is simply a `2 norm
between the final object position and the desired object posi-
tion, averaged over the goal space. In practice, we compute
this task cost by computing the maximum a posteriori robot
movement given a goal chosen over a uniform grid of 5×5
goals in the goal space, execute those 25 movements in
simulation, and average the `2 norms between the final object
positions and the desired object positions. Such a metric
presents the advantage of being directly representative of the
quality of the learned task. It is important to note here that
this metric based on an external reward is used only for
comparison, and not by our active learning algorithm.

B. Intrinsically-motivated learning

We present here the results of our intrinsically-motivated
learning method. First, we would like to emphasize quan-
titatively the need for combining imitation learning and
intrinsically-motivated learning for this waste throwing task.
Namely, we want to show that using intrinsically-motivated
learning can effectively reduce the task cost. We show in
Fig. 3 the task cost (averaged over 20 demonstrations) for:

• 10 random demonstrations;
• 10 random demonstrations + 20 active intrinsically-

motivated trials;
• 30 random demonstrations.



Fig. 2: Desired final object positions. The grey rectangle
represents the goal space G. Blue/orange dots show the final
object position of respectively the non-dynamic/dynamic
demonstrations of the database.

0.10

0.15

0.20

Ta
sk

 c
os

t

10 demos
10 demos + 20 trials
30 demos

Fig. 3: Influence of demonstrations for intrinsically-
motivated learning strategy.

We can see that, starting from 10 initial demonstrations, 20
intrinsically-motivated learning trials can improve the model.
We can notably see that 20 intrinsically-motivated trials
reduce the task cost half as well as 20 additional demonstra-
tions. This shows that intrinsically-motivated learning can
be used to reduce the burden of the human demonstrator by
reducing the number of demonstrations s/he will be asked.
Namely, Fig. 3 shows that intrinsically-motivated learning
seems to be a good learning modality to be combined with
imitation learning.

We propose now a baseline to compare our intrinsically-
motivated learning method with:

• Random: This baseline computes the marginal
p(wrobot|W ) from the BGMM, and samples a robot
movement from it. This seems like a reasonable
baseline which already uses the correlations in the
observed robot movements, and samples meaningful
robot movements that are close to the observed
demonstrations.

In Fig. 4, we show the performance of our method compared
to this baseline, averaged over 20 experiments, and starting
from 5 or 10 randomly sampled initial demonstrations. We
can observe that our method presents a clear improvement
over the baseline in both cases. Namely, the baseline de-
teriorates the task cost across the iterations, whereas our
method permits to reduce the task cost, as observed in Fig. 3
(the mean task cost is reduced by around 20% after 10
autonomous trials in both cases). The deterioration of the
task cost with the random approach can be explained by the
fact that sampling from the marginal distribution of the robot
movements at each iteration might end up with samples that
are quite far from the original distribution, hence not useful
for the task.
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Fig. 4: Evaluation of intrinsically-motivated learning strategy
(task cost in logarithmic scale).

V. CONCLUSION

In this work, we proposed a Bayesian representation of
robot movements by extending the widely-used framework of
probabilistic movement primitives. With this Bayesian rep-
resentation, we proposed an intrinsically-motivated learning
criterion, and showed its robustness on a waste throwing task
with a 7-DoF simulated Franka Emika Panda robot.

The fundamental element of our method lies in that we
model the joint distribution of the movement, and therefore
can learn the model with demonstrations and/or autonomous
robot trials. This permits us to leverage the variations
observed in the human demonstrations for intrinsically-
motivated learning.
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