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Robot Cooking with Stir-fry: Bimanual
Non-prehensile Manipulation of Semi-fluid Objects
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Abstract—This letter describes an approach to achieve well-
known Chinese cooking art stir-fry on a bimanual robot system.
Stir-fry requires a sequence of highly dynamic coordinated
movements, which is usually difficult to learn for a chef, let
alone transfer to robots. In this letter, we define a canonical
stir-fry movement, and then propose a decoupled framework
for learning this deformable object manipulation from human
demonstration. First, dual arms of the robot are decoupled into
different roles (a leader and follower) and learned with classical
and neural network based methods separately, then the bimanual
task is transformed into a coordination problem. To obtain
general bimanual coordination, we secondly propose a Graph and
Transformer based model — Structured-Transformer, to capture
the spatio-temporal relationship between dual-arm movements.
Finally, by adding visual feedback of contents deformation, our
framework can adjust the movements automatically to achieve
the desired stir-fry effect. We verify the framework by a simulator
and deploy it on a real bimanual Panda robot system. The
experimental results validate our framework can realize the
bimanual robot stir-fry motion and have the potential to extend
to other deformable objects with bimanual coordination.

Index Terms—Non-prehensile manipulation, bimanual manip-
ulation, spatio-temporal relationship, stir-fry, robot cooking

I. INTRODUCTION

Domestic service robots have been developed considerably
in recent years [1], while the creation of a robot chef in the
semi-structured kitchen environment remains a grand chal-
lenge. Food preparing and cooking are two important activities
that take place in the household, and a robot chef who can
follow arbitrary recipes and cook automatically would not
only be practical but also bring new interactive entertainment
experience. Several works propose to use a bimanual robot to
realize food preparing processes, such as peeling motions [2]
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Fig. 1. Robot stir-fry is a non-prehensile manipulation of semi-fluid objects
which requires highly dynamic movements and continuous bimanual coordi-
nation in a long time series.

or serving traditional Swiss raclette [3]. Recently, a project
called RoDyMan [4] aims at a non-prehensile dynamic ma-
nipulation of deformable objects, mainly focusing on pizza
making via a bimanual robot. In this letter, we are concerned
about solving the problem of human-like robot cooking with
the stir-fry movement, which is a significant and complicated
bimanual skill in Chinese cooking art. It requires the dual arms
of the chef or robot to bring a wok and a spatula, respectively,
as shown in Fig. 1. And it aims to realize a desired visual
and cooking effect by rolling and tossing the content objects
through the coordination of this two cookware.

Programming robot skills manually is a laborious effort and
can only achieve one specific movement at a time. The most
popular way is to learn from human demonstration (LfD). It
aims to learn an optimal robot control policy that can generate
trajectory following the distribution of demonstrations [5] [6].
There are already some skill learning solutions for single
robot arm, such as Dynamic Movement Primitives (DMPs)
[7], Probabilistic Movement Primitives (ProMPs) [8] and Task-
parameterized Gaussian Mixture Model (TP-GMM) [9]. While
in a bimanual setting, the coordination between dual arms
becomes the core problem of the manipulation task. The
existing bimanual coordination solutions are mostly built on
kinematics with relevant coordinate frames. For example, the
Compliant Movement Primitives in a bimanual setting can
only solve symmetric control problem. It requires a complete
task description, which can be separated into absolute and
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relative movements [10].
However, when handling the deformable objects, there does

not exist a fixed relationship between dual arms, and the
system is not possible to model as relative movements. What
makes the task much trickier is that the contents in the wok
comprise a mixture of liquid and solid, which we define as the
deformable semi-fluid content in this letter. The manipulation
of it is even more difficult than ordinary deformable objects,
especially the precise estimation of its state. Therefore, we
pay more attention to achieving the manipulation through
the coordination of dual arms and propose a proper control
approach for these kinds of tasks. Unlike previous approaches,
we regard robot bimanual coordination as a sequence trans-
duction problem. By doing this, it is simplified as a single-arm
control problem with a coordination module, and the proposed
method can build on the advantages of existing single-arm skill
learning methods.

Sequence transduction problems like Neural Machine Trans-
lation (NMT) [11] and Text-to-speech (TTS) [12] have been
well studied in the Natural Language Processing (NLP) field.
Their solutions from Wavenet-based [13] to Transformer-based
[14] are all designed to capture the temporal correlation of
the sequences. However, in bimanual coordination tasks, the
spatial correlation between poses of dual arms also needs
to be considered, which is used to be achieved by graph
neural networks (GNNs) recently [15]. Thus, it is reasonable to
combine graph structures with the Transformer for capturing
bimanual spatio-temporal relationship. There are already some
existing works about combining graph and transformer, like
[16] [17], but they are proposed either for a graph sequence
or for where the input sequence is represented as a graph,
none of them can deal with the relationship between input
and output sequences, and there are no relative applications in
robotics.

Thus, by combining the neural network (NN) based co-
ordination module and single-arm skill learning method, we
propose an approach for manipulating the semi-fluid contents
by learning bimanual stir-fry skill from demonstrations. The
detailed contributions are as follows:

• To achieve an adjustable deformable object manipulation,
we decouple dual arms into different roles: a leader and
a follower. The leading movement is adjusted by DMP,
and the corresponding following movement is generated
via a proposed coordination module.

• The coordination module — Structured-Transformer,
which comprises a Graph and Transformer network,
continuously couples the dual arms by capturing the
spatio-temporal relationship between demonstrated dual-
arm movements.

• Our framework can realize robot stir-fry, a novel bi-
manual coordinated non-prehensile manipulation task of
semi-fluid objects, and the adjustable capability is verified
by the simulator and real robot system.

II. TASK DEFINITION

In this work, we investigate the semi-fluid object manipula-
tion by a bimanual robotic system without explicit dynamical

a b

c d

Fig. 2. Starting with the static phase a, the single cycle of the rhythmic
stir-fry movement is separated by three different phases, which are pushing
forward b, rotating c and pulling back d.

models of the task. The dual arms interact indirectly via a
wok (left arm) and a spatula (right arm), and both of them
shape the deformation of the semi-fluid object together. To
make the task clearer, we describe the trajectory of the stir-fry
movement and its difficulties, and finally define the objective.

A. The general trajectory of stir-fry movement
By observing plenty of teaching videos of human chefs,

we summarize the canonical pattern of this movement and
separate the trajectory of the wok into three different phases
shown in Fig 2, which are pushing forward b, rotating c, and
pulling back d. Starting with the static phase a, these motions
are rhythmic in a way of b→ c→ d→ b. On the other hand,
the trajectory of the spatula is more unconstrained, it allows
a relatively high range of movement between demonstrations.
Its general trajectory is constantly switching between contact
with the wok and free motion and affects the deformation by
its agitation relative to the wok. There is no doubt that the
rhythmic left-arm movement is the main factor of the relative
movement of the semi-fluid content inside the wok, but the
assistance of spatula also makes contributions to deformation
and is an integral part of this bimanual skill. As long as the
relative displacement of the semi-fluid content is similar to the
one manipulated by a human in each specific phase, then we
can regard it as a successful stir-fry.

B. Problems of realizing stir-fry movement by robot
Achieving stir-fry with a robot is an intractable task, since

many related control problems are still not fully developed.
First, stir-fry is a non-prehensile manipulation where the state
of the operated content is subject only to unilateral constraints
and the dynamics of both the food content and the end-effector,
as well as the related kinematics [4]. Second, the content
in the wok are various in size, weight and stickiness. Due
to the difficulty of modeling, the manipulation consequences
are hard to obtain. Thus, it is difficult to design a general
control method. Third, since dual arms interact indirectly via
cookware, the modeling of the robot system is heavy manual
work and inconvenient to migrate to other cookware. Finally,
the movement of stir-fry is highly dynamic and requires
continuous bimanual coordination throughout the task.
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Fig. 3. The proposed decoupled coordination framework comprises two parts: offline learning from demonstration and online task execution. In the offline
process, dual arms are decoupled into different roles and treated by a classical method and a neural network method separately. Here we adopt a DMP and
propose a spatio-temporal neural network — Structured-Transformer for learning the coordination. In the online process, left-arm motion is adjusted according
to the visual feedback and the corresponding right-arm motion is generated by the pre-trained Structured-Transformer model based on the left-arm motion.

C. Objective
In this letter, we focus on learning the bimanual robot ma-

nipulation of deformable objects from human demonstrations,
in particular, learning the robot stir-fry with semi-fluid content.
Limited by the techniques of precisely estimating the task-
specified semi-fluid content, we simplify this procedure and
do not put lots of effort into it. The influence of being hard
to model deformable objects is compensated for by proposing
an adjustable and coordinated control framework. Therefore,
dual arms can adjust their movements until the content reach
a desired state according to the visual feedback.

III. BIMANUAL COORDINATION MECHANISM OF
NON-PREHENSILE MANIPULATION

A. Bimanual non-prehensile manipulation of deformable ob-
jects

In typical manipulations, like grasping tasks [18] [19], there
is no obvious relative motion between objects and robots.
The infinitesimal motions of the object are restricted by the
end-effector, through either form closure or force closure.
While tasks like stir-fry, clothes folding and pushing only
involve unilateral constraints, and the state changing relies
on the dynamics of both the object and the robot, as well
as their related kinematics and the (quasi-)static forces [4].
Non-prehensile manipulation is more suitable for an unstruc-
tured anthropic environment, especially in domestic service.
Although the demand for service robots growing fast, the
solutions of non-prehensile manipulation tasks remain under-
developed. Existing works aim to solve this by setting non-
prehensile manipulation primitives and separating the task into
subtasks [20]. However, this approach is only for specific
tasks, rather than a general framework. Ruggiero et al. share
a similar idea and propose a high-level planning architecture
to do the task decomposition automatically. They achieve an
autonomous pizza-making task with a RoDyMan platform
[4]. Though they have used a humanoid robot, there is few
complicated bimanual coordination and high dynamic motion
in making pizza, which is both necessary in tasks like stir-fry.

To achieve stir-fry with the robot, it is crucial that the robot
can figure out the causal relationship between its motions and
the deformation of objects, as well as the way of bimanual
coordination. A proper visual feedback system like RoDyMan
can satisfy the former purpose, while it is still challenging
to learn a bimanual non-prehensile manipulation in which the
dynamics of both arms are essential to the object deformation.
Despite reinforcement learning methods [21] [22] are popular
and can learn robot control policies from scratch, they all
heavily rely on simulators with excellent physical simulation
performance which is intractable when dealing with semi-fluid
objects. A large sim2real gap will cause the policy learned in
the simulator to be meaningless in the physical world [23].
Besides, since we cannot give an explicit definition of this
kind of complicated movement, it is hard to analyze them from
a theoretical aspect and difficult to program them manually.
To solve this, we need to combine pure learning methods
and human prior knowledge and try to let the robot learn
its unique movement representation and coordination from
simple demonstrations, rather than learning them from scratch
or pre-defining them. Therefore, we plan to guide the robot’s
movement primitives learning through human demonstrations,
and propose a bimanual coordination framework for learning
adjustable deformable objects manipulation.

B. Different roles of dual arms in stir-fry

As mentioned in Sec. II-A, the left-arm movement has
a fixed rhythm and it is hardly influenced by the outside
environment. While the right-arm movement highly depends
on the left arm. It is natural to set the dual arms as different
roles: the left arm as a leader, and the right arm as a follower.
Therefore, we propose a decoupled bimanual coordination
framework, as illustrated in Fig. 3.

The learning processes are starting from several human stir-
fry demonstrations. We firstly separate the data into left and
right motions. The primitive of left-arm motion is learned by
the classical Movement Primitives (MP) method to get a robust
performance. Here we adopt DMP, which allows the robot to
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Fig. 4. Structured-Transformer embeds a Graph Convolutional Layer in the halfway of the Transformer decoder to consider the robot hardware structure
explicitly. The input and output features can extend to m dimensions, which can include force and visual information. Here, we use the 6-dim pose as input
and output features. The left part of the decoder embeds the shifted right ground truth of the output, which is a training technique in recurrent neural networks
called teacher forcing.

perform the same behavior in different start or/and stop poses.
Unlike the left arm, the motion of the right arm is generated
based on the left. Their motions are learned in different ways,
and rollout in succession: adjust the left motion via DMP
first, and then generate the corresponding right motion based
on it. To guarantee a proper continuous coordination, we
propose a Graph and Transformer based neural network model
— Structured-Transformer. It can capture the spatio-temporal
relationship between the dual-arm sequential motions and the
robot bimanual structure. By giving the robot this ability, it
can perform the same bimanual behavior without spatial and
temporal restriction.

To sum up, we have used three methods to solve the problem
of stir-fry. First, the idea of LfD is used to solve the difficulty
of reproducing the highly dynamic stir-fry motion. Second, we
decouple this task and represent the left arm motion via DMP
for robustness and adaptation. Finally, we propose a learning
model for general continuous coordination.

C. Representing demonstrations as primitives

As mentioned above, the motion of left arm is represented
by DMP for generating adjustable movements which follows
the demonstrated behavior. The DMP starts with a simple
dynamical system, and is transformed into a weakly nonlinear
system by a learnable autonomous forcing term. The formula

is defined as follows:
τ2ÿ = αy(βy(g − y)− τ ẏ) + f

f(x, g) =

∑N
i=1 ψi · ωi∑N

i=1 ψi

x(g − y0)
(1)

where ẋ = −αxx is an introduced canonical dynamical
system. ψi = exp−hi(x− ci)2 defines a Gaussian basis
function centered at ci, where hi is the variance. αy, βy, αx

are gain terms. y,y0, g refer to the current pose, the initial
pose and the target pose in the Cartesian space, respectively.
These variables construct the nonlinear force term f , which is
the crux of the DMP method and makes the dynamical system
follow some desired trajectories. The (g − y0) and τ terms
show the temporal and spatial generalization capabilities.

In order to make the stir-fry process adjustable, the DMP we
adopt is a discrete version with Gaussian basis functions, rather
than using the rhythmic DMP. Thus, in each cycle, motion of
the wok (left arm) is separated into three parts as the b, c, d
phases in Fig. 2, and represented by three different DMPs.
By tuning the poses of connection points between each phase,
the left-arm motion can be carried out at different speeds and
forces, but with the same behavior as the demonstrations.

D. Learning continuous coordination by combining Graph
and Transformer

Although the dual-arm movements can be represented in-
dividually by using MP-based methods, the performance of
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coordination is not guaranteed, especially in tasks like stir-fry
which have indirect interactions between dual arms. Therefore,
it is necessary to propose a specific module for learning the
inherent relationship between them. This module should gen-
eralize from demonstrations to motions after DMP adjustment.
The network structure is illustrated in Fig. 4.

Since we have given the arms different roles in manip-
ulation, the problem of coordination can be abstracted into
a sequence transduction problem between the movements of
both arms. Suppose the motion sequence of the left arm is
known to be sL = {sL0 , sL1 , . . . , sLT }, where {sLt , t ∈ 0 ∼ T}
refers to the 6-dim pose of left arm at time t. We wish to
obtain the corresponding right motion sequence by learning
this conditional formula:

p(sR) =

T∏
t=1

p(sRt |sL1 , . . . , sLt , sR1 , . . . , sRt−1) (2)

It means that the generated pose of the right arm at
time t is related not only to the current left-arm pose but
the historical poses of dual arms. In Structured-Transformer,
the combination of sLt and the historical left movements is
encoded by the Encoder, while the historical right trajectory
(sR1 , . . . , s

R
t−1) is shifted right with a zero value start-of-

sequence (SOS) and inputs to the Decoder. The final output of
this model is (SOS, sR1 , . . . , s

R
t ). Since its structure is derived

from Transformer, we only describe the modifications relative
to the original model.

Encoder: The principal part of the Transformer en-
coder remains unchanged, which is composed of a stack
of N = 3 identical layers. In order to deal with mul-
tidimensional features in motion data simultaneously, we
use several input embedding layers to represent the 6-
dimensional features of the current left-arm state separately,
where sLt = (xLt , y

L
t , z

L
t , γ

L
t , α

L
t , β

L
t ), (xLt , y

L
t , z

L
t ) for po-

sition and (γLt , α
L
t , β

L
t ) for (roll, pitch, yaw). These input

embeddings are then concatenated together in order as a
single tensor Fin ∈ Rb×sl×hem before the positional encoding
process, where b for batch size, sl for sequence length, hem
for the dimension of the embedding layer. After the process
of encoder, a corresponding tensor Fen ∈ Rb×hen×hem

is
obtained, where hen for the dimension of the encoding layer.

Decoder: The decoder of the vanilla Transformer is split
into two parts after the decoder masked self-attention. After
N layers of this masked attention, the shifted right historical
right trajectory is decoded into the tensor Fde ∈ Rb×hde×hem .
The main modification of the decoder occurs in the input of
the encoder-decoder module. In vanilla Transformer, the key
K and value V is the encoder tensor Fen, and the query Q is
the decoder tensor Fde. However, in Structured-Transformer,
we adopt the graph embedding FG as its K,V,Q. After a linear
layer, the predicted next pose of the right arm is obtained. It is
worth mentioning that since each pair of encoder and decoder
tensors corresponds to the same graph, the training process
still can be executed in a parallel way.

Graph: We adopt a graph structure to consider the spatial
relationship between bimanual movements explicitly. Both
outputs from the encoder and left decoder (Fen,Fde) are
separated into corresponding features so that we can use them

as node feature to construct a graph. The edges between nodes
refer to the effect from one of the left feature to one of the
right, such as how the position change of the left arm in z-
axis influence the change of the right arm in γ. Only one
dimension of the graph construction in Fig. 4 is given as an
example. This graph represents the whole robot state of that
current frame. The graph embedding process is designed to
get a vector representation FG of the whole graph via Graph
Convolutional Layer and feed-forward network.

Overall, motions in this model are transformed from se-
quence vector to sequence graph and then back to the sequence
vector. Thus, formula 2 is modified into a structured version:

p(sR) =

T∏
t=1

p(sRt |G1, . . . , Gt−1, s
L
t ) (3)

where Gt = (Nt, Et), Nt = (g(sLt ), g(s
R
t )), g(·) refers to

transformation before the Graph module.

IV. EXPERIMENTS

A. Setup

The experiments contain several parts: human demonstra-
tion data collection, bimanual coordination network training
(Sec. IV-B), simulation (Sec. IV-C), and real robot stir-fry
(Sec. IV-D). Due to the high cost and safety issue of robot
experiments, it is vital to first verify motions in the simulation,
and then deploy them on the real robots. Thus, we built a
simulation platform via PyBullet to simulate the real robot
platform, which contains dual Franka Panda robotic arms.
This platform not only applies to this task but is also useful
for studying other kitchen skills. In this section, we describe
some preparatory works: the process of demonstration data
collection and the visual feedback system.

Data Collection: Due to the requirement of high dynamic
and proper coordination of bimanual stir-fry, the demonstration
data of this movement was recorded by an Xsens suit and
its supporting software. The motion-capture data we adopt is
from two of the IMU sensors, which are mounted on the left
and right hands (see the offline learning process in Fig. 3).
These data are transformed into a rosbag format for further
network learning. During the data collection process, an RGB-
D camera is attached to the ceiling to record the temporal
states of the semi-fluid contents in the wok. These video data
are used to analyze the proper deformation and displacement
of the semi-fluid contents for evaluation.

Visual Feedback: To evaluate the performance of our mo-
tion and adjust the trajectory, a visual feedback is required. As
shown in the online execution process of Fig. 3, a Realsense
camera is fixed to the top to get the top-down map of the
wok when conducting the real robot experiment. The images
are captured at a frequency of 10Hz, and the area of semi-
fluid content is segmented by image processing techniques (see
Fig. 8). The wok is first located by the green edge line and
Hough circle transform. Then the content is segmented by the
Watershed algorithm. The relative displacement is represented
by the distance between the center of segmented area and
the wok. The video of demonstration is also processed in the
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Fig. 5. The performance of the coordination learning method. (a) shows the loss curves of both training and validation processes, the solid lines are the
results after smoothing with a factor of 0.6, and the light lines refer to the original values; (b) shows a period of rollout by Structured-Transformer, the green
and red lines represent the ground truth of left-arm and right-arm movements, while the blue line is a fully generated right-arm motion according to the left.

same way, and the average value of the maximum relative
displacement in each cycle is used as the target value.

B. Learning performance

Implementation details: The parameters of Structured-
Transformer are listed as follow: hidden dimension hen =
hem = hde = 210, stack layer N = 3, feature dimension
m = 6 and 3 attention heads. We adopt dynamic time warping
(DTW) between the generated right movement poses and
the demonstration as the loss function and train the network
via backpropagation with the Adam optimizer, linear warm-
up phase for the first 5 epoch, a decaying learning rate
afterward, and a dropout value of 0.1. The Graph module uses
a 1-layer Graph Convolutional Network and a feed-forward
network for getting an embedding of the whole graph. The
normalization of the network input influences its performance,
as also maintained in [24] [25]. So we normalize the motions
by subtracting the mean and dividing by the standard deviation
of the train set.

During the training process, we use Teacher Forcing tech-
nique [26] for a paralleled training. It uses the ground truth
from a previous time step as the decoder input, rather than
the previous output of the network. Since the coordination
learning network aims to obtain a generalized relationship
between the wok and spatula in stir-fry, we need to use a
different demonstration as the validation set. The validation is
executed after every epoch of training. While different from
the Teacher Forcing used in the training process, the decoder
in the validation process is auto-regressive, which uses the
prediction in time step t − 1 as the decoder input of time
step t and does not rely on the ground truth. Therefore, the
correlation between the loss curve of training and validation
can reflect the generalization of the model in different motions

of the same behavior. We use scaled data enhancement in
the training set, where the scale is [0.5 ∼ 1.5] and the
interval is 0.1. The validation set uses data with scales of
0.65 and 0.75. From Fig. 5 (a), we can find that the model
has a good generalization to the movement within the training
data distribution. The final movement conditional generation
performance is demonstrated by the rollout of the testing set
with a scale of 0.85, which is shown in Fig. 5 (b). The fully
generated right-arm movement is smooth and close to the
ground truth, and the normalized DTW value is 0.003. Since
both the left-arm and right-arm movements are not existing in
the training set and validation set, we can regard it as a good
coordination generalization, which attributes to the learning of
dual-arm inherent relationship.

C. Simulation

A dual-arm robot platform with a wok and spatula is built
in the PyBullet simulator. Two Franka Emika Panda robots are
fixed at a table in the same position as the real-world setup,
which enables us to verify the safety of the motion generated
from our method. To make the scene more realistic, we also
build a virtual kitchen environment, and it allows us to study
more kitchen skills in the future.

We first test a single left-arm adaptive wok tossing using
DMP and then combine the DMP with Structured-Transformer
to generate a less collision bimanual manipulation after adjust-
ing the left-arm movements. The coordination simulation is
illustrated in Fig. 6 (a) from two different perspectives. Black
curves show the dynamically adjusted left-arm movements, the
connection points of three phases in each cycle are increasing
progressively. Red curves refer to the corresponding right-arm
movements generated by the Structured-Transformer. Their
coordinates are based on the end center of each cookware.
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(a) (b)

Fig. 6. (a) shows a simulation experiment of dynamical adjustment from two different perspectives, the black curves refer to different left-arm motions which
are adjusted through DMP, and the red curves are the corresponding right-arm motions generated by the Structured-Transformer; (b) shows the experiment
on the real bimanual robot platform.

Fig. 7. The coordination performance can be illustrated by comparing the
desired and the real right-arm motion in the simulator. The blue line refers
to the desired movements, while the line in orange is the real right-arm
movements after coordinated with the left.

Since the Pybullet has a simulation of collision, we can figure
out the performance of coordination by comparing the right-
arm movements between the desired and the real one, as
shown in Fig. 7. We use the same evaluation index as the
learning performance to assess the extent of collision and get
a normalized DTW value of 0.0049.

D. Real robot stir-fry

The real robot platform contains two Franka Emika Panda
robots, a 500g wok, a spatula and their connectors, and also
the visual feedback device, as shown in Fig. 3 and Fig. 6 (b).
We set the world coordinate on the middle of the table surface.
Two Franka Emika Panda robots are placed on along the Y-
axis at an interval of 58 cm in the same posture. The RGB-D
camera is fixed on at a coordinate with (50 cm, 0, 130 cm).

Before executing the rollout movements, we measure a
proper coordinate mapping between the IMUs attached on hu-
man hands and the end-effectors. Then the rollout movements
are transformed into the robot coordinate. The execution of

Fig. 8. The area of semi-fluid contents is segmented by the image processing
techniques, and the relative displacement is represented by the distance
between the center of the segmented area and the wok.

bimanual movements is based on an impedance controller.
Besides, the DMP adjustment is conducted offline by a PD
controller. Thus, the real robot experiment can be regarded as
the repeat of following steps:

(1) Execute the generated dual-arm movements by the bi-
manual robot system;

(2) Get the visual feedback during the execution, evaluate
the relative displacement of the semi-fluid contents;

(3) Obtain a new left-arm movement through DMP;
(4) Generate a new right-arm movement according to the ad-

justed left-arm movement via the pre-trained Structured-
Transformer model.

The visual feedback and the relative displacement from real
robot stir-fry are shown in Fig. 8. The y-axis of the first two
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rows is the relative displacement according to the wok, this
is a rate value between 0 and 1. The smaller this value is,
the semi-fluid content is closer to the front edge of the wok.
The four columns of the last two rows correspond to the four
phases mentioned in Fig. 2. The final relative displacement
curve and the segmentation show that after adjusting through
the proposed method, the state of the content finally meets the
requirements of a proper stir-fry movement.

V. CONCLUSION

In this letter, we define a novel non-prehensile deformable
object manipulation task which perform stir-fry using a bi-
manual robot. We propose an approach to solve the task in
a decoupled manner by regarding the dual arms as different
roles and learning successively. Then, a learning model is
proposed to obtain the inherent spatio-temporal relationship
between the wok and spatula. This model combines the benefit
of Graph structure and Transformer sequence learning, and
uses them to represent the bimanual robot structure and
the temporal information in the motion. The simulation and
real robot platform we built will be a foundation of future
research in kitchen skill learning tasks like stir-fry. The way
we decouple the bimanual motion and the proposed relational
coordination learning method may give a new inspiration to
other bimanual manipulation tasks, as well as human-robot
collaborative manipulation tasks.

However, we only consider poses of demonstrations, while
contact forces also exist in the stir-fry. Thus, higher di-
mensional information will be introduced to learn a more
humanoid motion in kitchen skills, such as visual, myoelectric
signals. Besides, as mentioned in this letter, the estimation
of semi-fluid contents is simplified as two-dimensional image
segmentation, and we only use the relative displacement as the
desired target. Another lateral camera needs to be introduced
for checking whether the content will leak.
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