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Abstract— Human-robot collaboration seeks to have humans
and robots closely interacting in everyday situations. Forsome
tasks, physical contact between the user and the robot may
occur, originating signi�cant challenges at safety, cognition,
perception and control levels, among others. This paper focuses
on robot motion adaptation to parameters of a collaborative
task, extraction of the desired robot behavior, and variable
impedance control for human-safe interaction. We propose to
teach a robot cooperative behaviors from demonstrations, which
are probabilistically encoded by a task-parametrized formula-
tion of a Gaussian mixture model. Such encoding is later used
for specifying both the desired state of the robot, and an optimal
feedback control law that exploits the variability in position,
velocity and force spaces observed during the demonstrations.
The whole framework allows the robot to modify its movements
as a function of parameters of the task, while showing different
impedance behaviors. Tests were successfully carried out in a
scenario where a 7 DOF backdrivable manipulator learns to
cooperate with a human to transport an object.

I. INTRODUCTION

The robots' role in our daily life is becoming more
prominent as robots are getting safer, more user-friendly and
versatile. This allows robots to share and populate human
environments such as hospitals, houses, factories, etc. In
these places, the robot is aimed at assisting or collaborating
with people to facilitate, improve and/or speed up speci�c
tasks that usually are carried out by a group of humans
exclusively. In this context, some of the robot duties can
involve physical contact, for example, in hand-over tasks
[1], or when a robot cooperatively carries an object with a
human partner [2]. This physical interaction provokes a rich
exchange of haptic information, involves compliant robot
movements [3], and sometimes requires the robot to follow a
desired trajectory [4]. These aspects are not straightforward
to program, and so is the inclusion of all the possible
variations the robot might face. Additionally, the type of
jobs carried out by the robot may frequently vary. Therefore,
a robotic assistant is required to be easily and rapidly re-
programmed several times according to speci�c needs.

Programming by demonstration (PbD) [5], [6] emerges
as a promising alternative solution allowing the natural and
intuitive transfer of human knowledge about a task to a
collaborative robot. In this paper we exploit PbD in human-
robot collaboration (HRC) by tackling four problems:(i)
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Fig. 1: Illustration of a human-robot cooperative transporta-
tion task. Several bulky planks need to be carried to a speci�c
location. The height at which each plank is placed varies
as more planks are placed at the �nal position, which is a
parameter in�uencing parts of the collaborative task.

the encoding of human demonstrations that vary according
to parameters of the task (e.g., objects to grasp, location
of obstacles in the workspace, etc),(ii) the extraction of
the desired state of the robot during the reproduction of
the collaborative behavior,(iii) the estimation of different
compliance levels over time, and(iv) a safe interaction with
the human. Thus, our aim is to provide a PbD framework that
allows the robot to adapt both its impedance and desired state
according to the task constraints, while safely cooperating
with users.

Speci�cally, the proposed approach encodes the human
demonstrations with a task-parametrized formulation of the
Gaussian mixture model [7], that allows the robot to shape
its behavior or motion as function of parameters of the task.
The novelties are threefold. We �rst propose a principled
approach to handle robot states composed of position, ve-
locity and force, in human-robot collaborative tasks. Sec-
ondly, our approach exploits the statistical representation of
task constraints in multiple coordinate systems within an
optimal control strategy to automatically estimate Cartesian
impedance gains as full matrices of the controller governing
the cooperative robot behavior. These time-varying gain
matrices likewise allow the robot to automatically prioritize
to speci�c parts of the task, or to more precisely compensate
for errors of particular desired state variables. Thirdly,the
proposed optimal controller permits to minimize not only
the robot effort, but also the human intervention along the
task.

We successfully test our approach in a real-world scenario
where a 7 DOF robotic manipulator learns to perform a coop-
erative manipulation task requiring different constraints to be
satis�ed, while behaving with different levels of compliance.



The rest of the paper is organized as follows: Section II
reviews works related to our problem, while Sections III, IV
and V respectively present the interaction model of the robot,
the learning framework, and the optimal estimation of the
controller parameters. The experimental setting and results
are introduced in Section VI. Finally, conclusions and future
routes of research are given in Section VII.

II. RELATED WORK

Recently, research on PbD for human-robot collaborative
scenarios has gained increased interest in the Robotics com-
munity. In this �eld, new challenges need to be solved,
such as dealing with novel types of information (e.g., hap-
tic perception, human gaze, etc.), role allocation, intention
prediction, among others. For instance, in [8] a probabilistic
framework based on Gaussian mixture models (GMM) and
Gaussian mixture regression (GMR) was proposed to respec-
tively encode and reproduce robot collaborative behaviors.
Demonstrations of leader/follower roles during a cooperative
lifting task were provided by teleoperation. GMM encapsu-
lated the robot motion and the sensed forces, while GMR
generated the reference inputs corresponding to a given
sensed force during reproduction. The same task was studied
by Gribovskayaet al. [9], who proposed a hybrid structure
based on PbD and adaptive control that drives the robot
using an adaptive impedance controller. First, a feed-forward
model of the task was learned from demonstrations encoded
by a GMM. Then, the impedance parameters were adapted as
function of the kinematic and force errors generated during
the execution of the task.

Medinaet al. [10] introduced a cognitive system with seg-
mentation, encoding and clustering capabilities for demon-
strations of collaborative behavioral primitives. These were
represented by a primitive graph and a primitive tree using
hidden Markov models that were incrementally updated
during reproduction. One of the main differences with respect
to [8] is that the robot started its behavior as a follower, with
a role progressively becoming more proactive as it acquired
more knowledge about the task. In [11], dynamic movement
primitives (DMP) were used for driving the robot motion in
cooperative tasks. The DMP depended not only on a given
reference to follow, but also on an obstacle avoidance force
and an interaction term. The latter was learned so that the
interaction forces were minimized.

Later on, Ben Amoret al. [12] proposed a probabilistic
encoding of the DMP parameters that allowed for adaption
and correlation of the robot motion based on predictions of
the human intention from partial observations. Their formula-
tion used dynamic time warping for shaping the future robot
actions according to the partner actions. DMPs have also
been used in human-in-the-loop robot learning [13]. Such
approach considered an online learning strategy where the
human tutor taught a cyclic motion and different compliance
levels through teleoperation. The former was obtained with
motion capture systems, while the latter was computed from
electromyography signals.

PbD and risk-sensitive optimal control have also been
combined for designing robotic assistants [14]. The idea isto
predict the human motion and accordingly set the trajectory
reference of a risk-sensitive controller. Using this framework,
the robot minimizes the human contribution along the task
while slightly adapting to unexpected behaviors of the user.

These works were mainly focused on learning either the
robot's role or an adaptive varying impedance or movement.
In contrast, we here present an approach that not only permits
to extract the position, velocity and force constraints of the
task from kinesthetic demonstrations, but also to shape the
robot motion as a function of task parameters, therefore ex-
tending our previous work [15] where only position feedback
was considered and the controller gains were manually set.
The proposed model is combined with an optimal controller
that exploits the variability observed in the demonstrations to
continuously adapt a feedback control law. In other words,
the robot compliance level is updated according to the preci-
sion that is required to track its desired state over time. Note
that our approach also differs from [14] in that we consider
the force perceptions as an additional task constraint, which
becomes relevant when speci�c force pro�les are required
for manipulating particular objects, which consequently leads
us to a new optimal control formulation. In [14] the force
perceptions are instead considered as an independent noise
input to the system due to uncertain predictions of the model,
and moreover the robot was not able to adapt its behavior
according to varying task parameters.

III. INTERACTION MODEL

To formalize the problem, the joint space dynamics model
of the robot under interaction with the environment (e.g., the
human partner) is de�ned as

H (q) •q + C (q; _q) _q + g(q) = � + J (q)> f ; (1)

whereH (q), C (q; _q) and g(q) are the inertia matrix, the
vector of centrifugal and Coriolis forces, and the gravity
components, respectively. The pose of the robot in joint space
is denoted byq, � is the actuation torques vector,J (q) is
the Jacobian of the robot, andf is the vector of external
forces applied to the end-effector, that can be obtained by a
sensor on the robot's tool. Also, let us de�ne the joint space
controller � as

� = J (q)> � (q)u + � g; (2)

where u represents a desired control acceleration at the
robot's end-effector,� (q) =

�
J (q)H (q)� 1J (q)>

� � 1
is the

Cartesian inertia matrix, and� g the torque commands to
compensate for the effect of gravity.

During a collaborative task, constraints at position, veloc-
ity and force may arise. So, in order for the robot to ful�ll
such constraints, we propose a controlleru = u m + u f ,
whereu m and u f respectively represent motion and force
control commands. These controllers compensate for motion
and force feedback errors, and are de�ned as

u m = K P ( �x � x ) + K V ( �_x � _x ) ; (3)

u f = K F � �f � f
�

; (4)



where the matricesK P , K V and K F are full stiffness,
damping and force gain matrices, respectively. In addition,
�x , �_x and �f are the reference or desired Cartesian position,
velocity and sensed force, that can be obtained from human
demonstrations of the desired collaborative behavior (see
Section IV). From the de�nition ofu , we can reorganize
the whole controller in a matrix notation as

u = �
�

K P K V K F �
2

4
~x
~_x
~f

3

5 ; (5)

where ~x = ( x � �x ), ~_x = ( _x � �_x ) and ~f =
�
f � �f

�
. Such

an expression shares similarities with the feedback term of
a linear quadratic regulator (LQR), where the controller is
expressed as a proportional gain multiplying the error of the
system state (in other words, a state-feedback controller,see
[16]).

IV. TASK LEARNING WITH TP-GMM

The robot collaborative behavior is learned from human
demonstrations, which are encoded with atask-parametrized
version of the Gaussian mixture model (TP-GMM) [7]. This
model allows us to consider task constraints in different
frames of reference (i.e., the parameters of the task), which
is particularly advantageous when the robot behavior is
conditioned by, for example, position of objects or users,
changes in the environment and changes of con�gurations
of another robot parts. Formally, the task parameters are
represented asP coordinate systems, de�ned at time step
t by f bt;j ; A t;j gP

j =1 , representing respectively the origin of
the observer and a set of basis vectorsf e1; e2; : : :g forming
a transformation matrixA =[ e1e2 � � � ].

A demonstration � 2 RD � T is observed from
these different frames, forming a third order tensor
datasetX 2 RD � T � P , composed ofP trajectory samples
X ( j ) 2 RD � T observed inP candidate frames, correspond-
ing to matrices composed ofD-dimensional observations at
T time steps. The parameters of the proposed TP-GMM with
K components are de�ned byf � i ; f � ( j )

i ; � ( j )
i gP

j =1 gK
i =1 (� i

are the mixing coef�cients,� ( j )
i and � ( j )

i are the center
and covariance matrix of thei -th Gaussian component in
framej ).

Learning of the parameters is achieved with the con-
strained problem of maximizing the log-likelihood under
the constraints that the data in the different frames are
generated from the same source, resulting in an expectation-
maximization (EM) process to iteratively update the model
parameters until convergence [7]. The model parameters are
initialized with ak-meansprocedure rede�ned using a similar
process to that used for the modi�ed EM algorithm. The
learned model can further be used to reproduce movements
in other situations (for new positions and orientations of
candidate frames). The model �rst retrieves at each time step
t a GMM by computing a product of linearly transformed

Gaussians

N (� t;i ; � t;i ) /
PY

j =1

N
�
A t;j � ( j )

i + bt;j ; A t;j � ( j )
i A>

t;j

�
;

(6)

� t;i =
� PX

j =1

(A t;j � ( j )
i A>

t;j )
� 1� � 1

; (7)

� t;i = � t;i

PX

j =1

(A t;j � ( j )
i A>

t;j )� 1(A t;j � ( j )
i +bt;j ): (8)

With the temporary GMM representation computed in
Eq. (6), a reference movement or an average collaborative
behavior can be estimated as a regression problem [17]. We
de�ne the superscriptsI and O as the sets of dimensions
that span for input and output variables (that will be used as
exponents in vectors and matrices). At each iteration stept,
the datapoint� t can be decomposed as two subvectors� I

t and
� O

t spanning for the input and output variables, respectively.
With this notation, a block decomposition of the datapoint
� t , vectors� t;i and matrices� t;i can be written as

� t =
�

� I
t

� O
t

�
; � t;i =

�
� I

t;i
� O

t;i

�
; � t;i =

�
� I

t;i � IO
t;i

� OI
t;i � O

t;i

�
: (9)

Given the temporary GMM that encodes the joint distri-
bution P(� I

t ; � O
t ) �

P K
i =1 � i N (� t;i ; � t;i ) of the dataset� ,

at each reproduction stept, P(� O
t j� I

t ) is computed as the
conditional distribution

P(� O
t j� I

t ) �
KX

i =1

 i (�
I
t ) N

�
�̂ O

t;i (� I
t ); �̂

O

t;i

�
;(10)

with �̂ O
t;i (� I

t ) = � O
t;i + � OI

t;i � I
t;i

� 1(� I
t � � I

t;i ); (11)

�̂
O

t;i = � O
t;i � � OI

t;i � I
t;i

� 1� IO
t;i ; (12)

and  i (�
I
t ) =

� i N (� I
t j � I

t;i ; � I
t;i )

P K
k � k N (� I

t j � I
t;k ; � I

t;k )
: (13)

Note that (10) represents a multimodal distribution that
can be approximated by a single Gaussian distribution
N (�̂ O

t ; �̂
O

t ) with parameters

�̂ O
t =

KX

i =1

 i �̂
O
t;i ; (14)

�̂
O

t =
KX

i =1

 i

h
�̂

O

t;i + �̂ O
t;i (�̂

O
t;i )>

i
� �̂ O

t (�̂ O
t )> : (15)

Hence, we can obtain the reference state of the robot in
an online manner during the cooperative task by GMR. The
desired position�x , velocity �_x , and forces�f will be used
in (5), thus establishing the feedback control law from the
cooperative behavior previously demonstrated.

V. OPTIMAL CONTROLLER GAINS ESTIMATION

Once the reference state of the robot has been learned
for the collaborative task at hand, it is crucial to determine
how the robot will follow this reference state during repro-
duction. First, let us de�ne the whole state of the robot



as � = [ x> _x> f > ]> , recalling thatx , _x and f are the
Cartesian position, velocity and sensed force of the robot
end-effector. We also de�ne the inputs to the system as the
vector� = [ u> v> ]> , whereu is the control input expressed
as (5), andv represents an external input to the system. Note
that, unlike [7], [14], this additional input allows us not only
to establish a dynamic equation for the sensed forcesf , but
also to include the in�uence of an external inputv on the
system dynamics. In the HRC context, such an input can
represent the interaction of the human with the robot during
the cooperative task. Furthermore, let us assume that the
end-effector becomes equivalent to a unit mass after gravity
compensation, so the state space representation of the robot
in task space can be written as1

_� =

Az }| {2

4
0 I 0
0 0 I
0 0 0

3

5 � +

Bz }| {2

4
0 0
I 0
0 I

3

5 � ; (16)

namely d
dt x = _x , d

dt _x = u + f , and d
dt f = v . Note

that the latter equation indicates that the variation of the
sensed forces depends on the external inputv , in other
words, the physical interaction between the human and the
robot directly in�uences the variation of the robot's force
perception. Lastly, we denote the column space of the input
matrix B = [ B 1 B 2].

Once reference position, velocity and force pro�les have
been obtained for the current time step, the controller gains
can be estimated with an optimal control strategy. Optimal
feedback controllers allow the robot to plan a feedback
control law tracking the desired state. Formally, the problem
is stated as �nding the optimal input� that minimizes the
cost function

Jt =
1X

n = t

(� n � �� t )
> Q t (� n � �� t ) + � >

n R t � n ; (17)

where�� t represents the reference or desired state obtained by
GMR, while the matricesQ t andR t are weighting matrices
that determine the proportion in which the tracking errors
and control inputs affect the minimization problem. The
aforementioned problem is typically known as an in�nite
horizon LQR [16]. We exploit (17) in two new manners.
First, we take advantage of the variability observed during
the demonstrations to adapt on-the-�y the error costs in (17).
This can also be interpreted as shaping the gain matrices
according to the precision required by the task across the
robot state variables. On the other hand, the minimization
of the second term of (17) implies that both the robot
control commandu and the external inputv are minimum,
and consequently minimizing the robot effort and human
intervention.

We de�ne

Q t =
�

�̂
O
t

� � 1
; R t =

�
R u

t 0
0 R v

t

�
; (18)

1A and B are matrices de�ning the dynamical system, not to be
confounded with theA t;j andbt;j de�ning the coordinate systems in (6).

Demonstrations

Reproductions

Fig. 2: Experimental setting of the human-robot transporta-
tion task: (top) kinesthetic demonstrations, and (bottom)
reproduction phase.

using (15). In our experiment,R t is de�ned as a diagonal
matrix. Nevertheless, it is worth highlighting that the struc-
ture of the matrixR t permits to vary the relevance given
to the minimization of the robot control command and the
external human input through the submatricesR u

t and R v
t ,

respectively. Such features can be signi�cantly exploitedin
physical human-robot interaction, where the matrixR u

t can
be shaped over time according to the safety level demanded
by the task. For instance, the higher theR u

t values, the lower
the control forces applied by the robot, and therefore the
safer the interaction. This issue will be thoroughly explored
in future works.

Note that the cost function is updated at each time stept
to compute the next control command. This formulation is
better suited for HRC in weakly structured environments,
where the robot actions might be updated swiftly based
on the state and/or actions of the user, and the state of
the environment. In contrast to in�nite horizon LQR, �nite-
horizon requires the recursive computation of an ordinary
differential equation, and is thus better suited for planning
situations in which the candidate frames are not expected to
move. The minimization of (17) can be solved through the
algebraic Riccati equation, providing an optimal feedback
controller in the form of (5) with full stiffness, damping and
force gain matrices. Speci�cally, the LQR solution for our
problem is represented by

� t = R � 1
t B > [� S t ( � t � �� t )+ dt ] ; (19)

where the robot controller is obtained as

u t = R u � 1

t B >
1

�
� S t

�
� t � �� t

�
+ dt

�
; (20)

with S t anddt as solutions of the equations

A> S t + Q t + S t A � S t BR � 1
t B > S t = 0; (21)

� A> dt + S t A� t + S t BR � 1
t B > dt � S t _� t = 0; (22)

and B 1 belonging to the column space ofB , as speci�ed
previously. In the above,dt is the feedforward term, which
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Fig. 3: Encoding of the demonstrations in the different coordinate systems. The local models in thestart andtarget frames
are respectively shown in the �rst and second rows (projected on the position subspace of the data). The gray lines depict
the end-effector trajectory (in meters) observed from the different frames. The ellipsoids represent the Gaussian components
of the model. Black dots depict the beginning of the demonstration.

can optionally be neglected for low dynamic movements.
The solution foru t provides optimal feedback gainsK P ,
K V and K F , which allow the robot to optimally track its
desired state during the cooperative task in a stable manner,
while shaping its compliance level according to the invariant
characteristics of the demonstrations. This permits the robot
to perform the task precisely. It is worth mentioning that
an equation similar to (20) is obtained forv t , which can
be theoretically interpreted as the optimal interaction input
generated by the human, that can be used for simulation
purposes. In the HRC context, such an external input is
directly given by the human counterpart.

VI. EXPERIMENT

We test the performance of our approach in an experiment
where a human-robot dyad transports an object from an
initial location to a desired target, similarly to [15]. However,
in [15] the robot was not able to behave with different
compliance levels, because both the stiffness and damping
matrices were manually set by the user. The robot was also
not endowed with force feedback during reproduction, and
the proposed formulation did not consider the minimization
of the robot effort and human intervention.

The detailed description about the setting, the demonstra-
tion and reproduction phases as well as the obtained results
are given below.

A. Description

The experiment consists of teaching a robot to simul-
taneously handle position, velocity and force constraints
arising when a human and a robot cooperatively manipu-
late/transport an object (see Fig. 2). At the beginning of
the transportation task, two participants reach for the object.

Once they make contact with the load, they start jointly
transporting the object along a bell-shaped path to reach the
target location. When the object gets to the �nal position, the
two persons release it and move away from it. Note that both
the starting and goal object positions vary across repetitions.
The aim is to introduce a robot into such a task by replacing
one of the human participants by a robot.

For this experiment, we used a torque-controlled 7 DOF
WAM robot endowed with a 6-axis force/torque sensor. The
robot controller is de�ned by (2) and (5). In the demonstra-
tion phase, the gravity-compensated robot is kinesthetically
guided by the teacher while cooperatively achieving the task
with the other human partner, as shown in Fig. 2. The teacher
shows the robot both the path to be followed and the force
pattern it should use while transporting the load.

In this task two candidate coordinate systems (P = 2 )
are considered, namely, the frames representing the ini-
tial and target locations of the object. They are respec-
tively de�ned as f bS ; A S g and f bT ; A T g. Here, bS =
[ 0 x S> 01� 6 ]> and bT = [ 0 x T > 01� 6 ]> , where x S and
x T are the Cartesian positions where the object is picked
up and then released. Similarly, the transformation matri-
ces are de�ned asA S = blockdiag(1; R S ; R S ; R S ) and
A T = blockdiag(1; R T ; R T ; R T ), where R S and R T

respectively represent the initial and �nal orientation ofthe
object with rotation matrices.2 The motion in this experiment
is time-driven, therefore each datapoint� t is de�ned as
� I

t = t and � O
t = � t , where t and � t are time and the

whole state of the robot, respectively.
During reproduction of the task, the start and target frames

are given to the model in order to obtain the temporary

2The positions and orientations of the object were prede�nedin this
experiment, but these can alternatively be obtained using avision system.



t t t

Fig. 4: Estimated desired state of the robot�� and its asso-
ciated variancê�

O
along a reproduction of the cooperative

transportation. Position, velocity and forces are respectively
given in meters, meters per second, and Newtons.

GMM parameters using (6)-(8). The orientation of the end-
effector is �xed. Then, the robot and the user transport the
object towards the target location. Here, for each time stept,
the robot obtains an updated reference state�� (see Section
IV) along with optimal stiffness, damping and force gain
matrices, that generate a new desired acceleration in the
operational space of the robot.

B. Results

A set of �ve examples of the collaborative behavior are
given to the robot. The demonstrations are then used for
training a TP-GMM (K =7 empirically determined). Figure
3 shows the resulting encoding of the position trajectories
observed from the two different candidate frames. Notice
how the multiple demonstrations are locally consistent when
the robot approaches the initial location of the object (i.e.,
frame S), and when the manipulator moves away once
the load has been placed at its target position (i.e., frame
T ). This is re�ected by the small and narrow ellipsoids
in these parts of the task. Given this model and a new
set of task parameters (i.e., initial and target locations), it
is possible to compute, in an online manner, the desired
state of the robot and associated covariance at each time
step, as described in Section IV. Figure 4 displays the
desired position, velocity and interaction force and their
corresponding variances obtained by GMR. Note that the
reference position trajectory can vary as the initial and/or
target locations change, as evidenced in Fig. 5 where several
reproductions with different task parameters are shown. Also,
note that the interaction forces at the beginning and the endof
the reproduction are expected to be zero, coinciding with the
parts of the task when the robot is approaching or releasing
the object (see Fig. 4).

Figure 6 shows howK P , K V and K F vary over time
along one of the reproduction attempts shown in Fig. 5, with
R t = r I 6� 6 andr =0 :01. Notice that at the beginning and
at the end of the task, the robot behaves less stif�y alongx 1,
while being stiffer along the axesx 2 andx 3. The robot does
not allow high variations on the plane(x 2; x 3), guaranteeing
that the object is picked up and released by passing through
trajectories consistent with the demonstrations. In contrast,
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Fig. 5: Reproductions with varying initial and target locations
of the object.

as expected, when the human-robot dyad is cooperatively
transporting the load, the robot behaves stif�y alongx 1,
while allowing deviations on the plane(x 2; x 3). Lastly, Fig.
7 displays the behavior of the robot for two different cases,
namely, when the interaction force is similar to the reference
force pro�le obtained by GMR, and when some perturbation
forces are applied at the end-effector. In the latter case, the
user exerted different force pro�les along the three Cartesian
axes (the shaded area in Fig. 7 shows when the perturbations
occurred). Note that by checking the difference between
the robot's trajectory and the desired path (�rst row in
Fig. 7), it is observed that the robot reacts to deviations
along the axisx 1, while perturbations alongx 3 are slightly
permitted in the middle of the task. This is coherent with
the demonstrated task constraints and with the feedback
gain pro�les shown in Fig. 6. A video accompanying this
paper shows the results of the experiment, and is available at
http://programming-by-demonstration.org/IROS2015/ .

VII. CONCLUSIONS AND FUTURE WORK

We introduced a PbD framework for learning cooperative
robot skills in the context of human-robot object trans-
portation. Our approach brings together the advantages of
probabilistic encoding, generalization capability of thetask-
parametrized GMM, and robustness of optimal control used
with both position and force constraints. This framework
allows the robot to automatically encode the human demon-
strations and their interconnection with parameters of the
task. Moreover, in contrast to [15], the robot is able to ex-
ploit the observed variability for estimating different optimal
compliance levels over time, while determining the precision
with which the state variable errors need to be compensated
for. Lastly, our approach reduces robot effort and human
intervention, thus favoring safer interactions. Experiments on
a real setting showed the strengths and practical use of the
approach.

The proposed model was used to learn a time-driven robot
motion, where part of the desired state also depend on the
parameters of the task. In this sense, we plan in future work
to avoid the explicit time dependence by taking advantage of
methods that also encapsulate the sequential information of
the task. We also plan to study how to exploit the structure
of our cost function in order to include safety constraints
as a function of the interaction with the human. Moreover,
further work is required to investigate how the state of the
user could be included into the loop, so that the robot could
react in various ways to its human partner's actions.
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Fig. 6: Pro�les of the diagonal values of the estimated stiffness, damping and force gain matrices during the reproduction
of the cooperative transportation.

-0.05 0.35 0.75
-0.4

0

0.4

x 1

x
2

-0.05 0.35 0.75
-0.4

0

0.4

x 1

x
3

-0.4 0 0.4
-0.4

0

0.4

x 2

x
3

-0.05 0.35 0.75
-0.4

0

0.4

x 1

x
2

-0.05 0.35 0.75
-0.4

0

0.4

x 1

x
3

-0.4 0 0.4
-0.4

0

0.4

x 2

x
3

(a) Interaction force similar to demonstrations. (b) Interaction with perturbations.

Fig. 7: Reproductions of the cooperative transportation. The �rst row shows the robot trajectory (solid line) and the desired
path (dashed line) in the three planes of the Cartesian space. The remaining rows show the position, velocity and sensed
force of the robot over time (solid lines), along with corresponding feedback gain (represented as an envelope surrounding
the reproduced trajectory).
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