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Abstract— Human-robot collaboration seeks to have humans
and robots closely interacting in everyday situations. Forsome
tasks, physical contact between the user and the robot may
occur, originating signi cant challenges at safety, cogrtion,
perception and control levels, among others. This paper fatses
on robot motion adaptation to parameters of a collaborative
task, extraction of the desired robot behavior, and variabé
impedance control for human-safe interaction. We proposed
teach a robot cooperative behaviors from demonstrations, hich
are probabilistically encoded by a task-parametrized fornula-

tion of a Gaussian mixture model. Such encoding is later used . ; ; ;
for specifying both the desired state of the robot, and an opmal Fig. 1: lllustration of a human-robot cooperative transaor

feedback control law that exploits the variability in position, 10N task. Several bulky planks need to be carried to a speci
velocity and force spaces observed during the demonstratis.  location. The height at which each plank is placed varies
The whole framework allows the robot to modify its movements as more planks are placed at the nal position, which is a

as a function of parameters of the taSk, while ShOWIng diffeent parameter in uenc|ng parts Of the Collaborat|ve task
impedance behaviors. Tests were successfully carried out ia

scenario where a 7 DOF backdrivable manipulator learns to

cooperate with a human to transport an object.

the encoding of human demonstrations that vary according
. INTRODUCTION to parameters of the task (e.g., objects to grasp, location
. - TP ; of obstacles in the workspace, et¢)i) the extraction of
The robots’ role iin our daily life is becoming more the desired state of the robot during the reproduction of

rominent as robots are getting safer, more user-frienaly a . S A .
P g g the collaborative behavio(jii) the estimation of different

versatile. This allows robots to share and populate human

: . . ompliance levels over time, ar{tV) a safe interaction with
environments such as hospitals, houses, factories, etc. ]n

these places, the robot is aimed at assisting or collalmtgratit € human. Thus, our aim is to provide a PbD framework that

with people to facilitate, improve and/or speed up speci caIIOWS '_[he robot to adapt both 'Fs |mped_ance and desired s_tat
. according to the task constraints, while safely coopegatin
tasks that usually are carried out by a group of humanV%ith USErs

exclusively. In this context, some of the robot duties can Speci callv. th q h q he h
involve physical contact, for example, in hand-over task% peci cally, the proposed approach encodes the human

[1], or when a robot cooperatively carries an object with emoqstratiqns with a task-parametrized formulation ef th
human partner [2]. This physical interaction provokes & ric_t agsilan_ mixture tr_‘nodel ][7]’ tthat a:clows thetrobotftt(r)] sfsapke
exchange of haptic information, involves compliant robokﬁ] € avnl)t_r ormo It(;\n as% IL:anVI\;) no tparame ers ot the ?S d.
movements [3], and sometimes requires the robot to follow € novelties are threelold. YWe TSt propose a principie

desired trajectory [4]. These aspects are not straigh#aiw approach 0 handle robot states composedl of position, ve-
to program, and so is the inclusion of all the possibléoc'ty and force, in human-robot collaborative tasks. Sec-

variations the robot might face. Additionally, the type Ofondly, our ap_proa_ch exp!ons the st_atlstlcal repressml_nad?rf
jobs carried out by the robot may frequently vary. ThereforéaSI_( constraints in multiple coord|_nate systems W't.h'n an
a robotic assistant is required to be easily and rapidly ré)Pt'mal contro_l strategy to agtomatlcally estimate C S
programmed several times according to speci ¢ needs. impedance gains as full matrices of the controller goveynin

Programming by demonstration (PbD) [5], [6] emerge%he cooperative robot behavior. These time-varying gain

as a promising alternative solution allowing the natural anmatrices likewise allow the robot to automatically priaet

intuitive transfer of human knowledge about a task to %O speci ¢ parts of the task, or to more precisely compensate

collaborative robot. In this paper we exploit PbD in human:0' ©frors of partlcular desired sta}te vana_bl_es_. Thirdhe
robot collaboration (HRC) by tackling four problemé) proposed optimal controller permits to minimize not only
the robot effort, but also the human intervention along the
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The rest of the paper is organized as follows: Section Il PbD and risk-sensitive optimal control have also been
reviews works related to our problem, while Sections Ill, IVcombined for designing robotic assistants [14]. The idea is
and V respectively present the interaction model of the tobgpredict the human motion and accordingly set the trajectory
the learning framework, and the optimal estimation of theeference of a risk-sensitive controller. Using this framek,
controller parameters. The experimental setting and tesuthe robot minimizes the human contribution along the task
are introduced in Section VI. Finally, conclusions and fatu while slightly adapting to unexpected behaviors of the .user

routes of research are given in Section VII. These works were mainly focused on learning either the
robot's role or an adaptive varying impedance or movement.
Il. RELATED WORK In contrast, we here present an approach that not only permit

to extract the position, velocity and force constraintshad t

Recently, research on PbD for human-robot collaborativieisk from kinesthetic demonstrations, but also to shape the
scenarios has gained increased interest in the Robotics combot motion as a function of task parameters, therefore ex-
munity. In this eld, new challenges need to be solvedtending our previous work [15] where only position feedback
such as dealing with novel types of information (e.g., hapwas considered and the controller gains were manually set.
tic perception, human gaze, etc.), role allocation, intent The proposed model is combined with an optimal controller
prediction, among others. For instance, in [8] a probaiilis that exploits the variability observed in the demonstragito
framework based on Gaussian mixture models (GMM) angontinuously adapt a feedback control law. In other words,
Gaussian mixture regression (GMR) was proposed to respafe robot compliance level is updated according to the preci
tively encode and reproduce robot collaborative behaviorsion that is required to track its desired state over timeeNo
Demonstrations of leader/follower roles during a coopeegat that our approach also differs from [14] in that we consider
lifting task were provided by teleoperation. GMM encapsuthe force perceptions as an additional task constraintghwhi
lated the robot motion and the sensed forces, while GMBecomes relevant when speci ¢ force pro les are required
generated the reference inputs corresponding to a givésr manipulating particular objects, which consequerebds
sensed force during reproduction. The same task was studigsl to a new optimal control formulation. In [14] the force
by Gribovskayeet al. [9], who proposed a hybrid structure perceptions are instead considered as an independent noise
based on PbD and adaptive control that drives the robpfput to the system due to uncertain predictions of the model
using an adaptive impedance controller. First, a feeddotw and moreover the robot was not able to adapt its behavior
model of the task was learned from demonstrations encodadcording to varying task parameters.
by a GMM. Then, the impedance parameters were adapted as . INTERACTION MODEL

function of the kinematic and force errors generated during . o )
the execution of the task. To formalize the problem, the joint space dynamics model

Medinaet al.[10] introduced a cognitive system with Seg_of the robot under interaction with the environment (elge, t

mentation, encoding and clustering capabilities for demoriUman partner) is de ned as
strations of collaborative behavioral primitives. Theserev H(@e+ C(g;ag+g(q)= +J(Q)yf; 1)
represented by a primitive graph and a primitive tree usin

hidden Markov models that were incrementally Updatevector of centrifugal and Coriolis forces, and the gravity

during reproduction. One of the main differences with respe . o
! . . .- components, respectively. The pose of the robot in jointspa
to [8] is that the robot started its behavior as a followethwi . . . X
denoted byg, is the actuation torques vectar(q) is

. : . . o
a role progressively becoming more proactive as it acqu”%ae Jacobian of the robot, arfd is the vector of external

more _knowledge about the task. ”_‘ [.11]’ dynamic moyem.e%rces applied to the end-effector, that can be obtained by a
primitives (DMP) were used for driving the robot motion in ) .
sensor on the robot's tool. Also, let us de ne the joint space

cooperative tasks. The DMP depended not only on a given
! controller as
reference to follow, but also on an obstacle avoidance force

and an interaction term. The latter was learned so that the =J@ (Qu+ g (2)

interaction forces were minimized. ~ whereu represents a desired control acceleration at the
Later on, Ben Amoret al. [12] proposed a probabilistic robot's end-effector, (q) = J(q)H (q) J (q) Lis the

encoding of the DMP parameters that allowed for adaptiop ;3 tasian inertia matrix, andy the torque commands to
and correlation of the robot motion based on predictions Q;ompensate for the effect of gravity.

the human intention from partial observations. Their folawu During a collaborative task, constraints at position, elo

tion used dynamic time warping for shaping the future robqfy 4nq force may arise. So, in order for the robot to ful ll
actions according to the partner actions. DMPs have al$Q,ch constraints. we propose a controller= up + U
been used in human-in-the-loop robot learning [13]. SuCRnerey,, andu; respectively represent motion and force

approach considered an online learning strategy where tfgnro| commands. These controllers compensate for motion
human tutor taught a cyclic motion and different compliancg,q force feedback errors. and are de ned as

levels through teleoperation. The former was obtained with b v
motion capture systems, while the latter was computed from un = K7 (x x)+K"(x x); 3)
electromyography signals. ury = KFP £ f (4)

hereH (q), C(q;q) andg(q) are the inertia matrix, the



where the matriceX ', KV and K are full stifness, Gaussians

damping and force gain matrices, respectively. In addjtion ‘ '

x, x andf are the reference or desired Cartesian position,N ( ;; i) / N Ay Daby; Ay i(’)Ai;j ;

velocity and sensed force, that can be obtained from human j=1

demonstrations of the desired collaborative behavior (see (6)

Section V). From the de nition ofu, we can reorganize N _ 11

the whole controller in a matrix notation as o= (A i(')A}j ) ; (7
2 3 i=1

5. X () p> 1 (i)
, ®) b= ti At AL ) “Ayg b)) (8)
j=1

us= KP kY kF 4

TR X

With the temporary GMM representation computed in
wherex = (x x), X =(x x)andf = f f .Such Eq. (6), a reference movement or an average collaborative
an expression shares similarities with the feedback term Qéha\/ior can be estimated as a regression prob]em [17] We
a linear quadratic regulator (LQR), where the controller igje ne the superscripts and O as the sets of dimensions
expressed as a proportional gain multiplying the error ef ththat span for input and output variables (that will be used as
system state (in other words, a state-feedback contrsker, exponents in vectors and matrices). At each iteration step
[16]). the datapoint, can be decomposed as two subvectérand

¢ spanning for the input and output variables, respectively.
IV. TASK LEARNING WITH TP-GMM With this notation, a blqck decomposition_ of the datapoint
., vectors ; and matrices ¢ can be written as

The robot collaborative behavior is learned from human [ _ [
demonstrations, which are encoded wittagk-parametrized (= ti ~ E' ; ti = B8 (9
version of the Gaussian mixture model (TP-GMM) [7]. This ‘ v oot o o
model allows us to consider task constraints in different Given the tempogary GMM that encodes the joint distri-
frames of reference (i.e., the parameters of the task),lwhi®UtionP(¢; ¥) oy iN( y; i) of the dataset,
is particularly advantageous when the robot behavior @t €ach reproduction step P( 7] ) is computed as the
conditioned by, for example, position of objects or usergonditional distribution
changes in the environment and changes of con gurations

N O

of another robot parts. Formally, the task parameters are P({it) i ON A Ty (10)
represented aP coordinate systems, de ned at time step i=1 L
t by fby ;A - , representing respectively the origin of  with "% (1) = %+ & u (¢ )11
the observer and a set of basis vectioes; e;; : : :g forming Ao o o 11 0. (12)
a transformation matriA =[eie, ] B B N Boon e

A demonstration 2 RP T is observed from and (1) = P (6o ow) C(13)
these different frames, forming a third order tensor k KNt ko tk)

da}%SGtX 2RP T, composed ofP trajectory samples Note that (10) represents a multimodal distribution that
i); ]toerZtriTce(;bsgrrrYegsgg (ﬁ(;agidr:iar;‘:i;rgrgé’ngvr;zﬂzn;'can be approximated by a single Gaussian distribution
] o .

Tgt]ime steps. The pzframeters of the proposed TP-GMM wit'r\1I (37 ) with parameters

K components are de ned by i;f 1, P g ( PSR 1

are the mixing coefcients, !’ and U’ are the center o (14)

and covariance matrix of theth Gaussian component in i

framej). A e (G D B G R L)
Learning of the parameters is achieved with the con- i=1

strained problem of maximizing the log-likelihood under Hence, we can obtain the reference state of the robot in

the constraints that the data in the different frames aigh online manner during the cooperative task by GMR. The

generated from the same source, resulting in an expectatiQfesired positiorx, velocity x, and forcesf will be used

maximization (EM) process to iteratively update the modeh (5), thus establishing the feedback control law from the

parameters until convergence [7]. The model parameters &fgoperative behavior previously demonstrated.

initialized with ak-meangprocedure rede ned using a similar

process to that used for the modied EM algorithm. The V- OPTIMAL CONTROLLER GAINS ESTIMATION
learned model can further be used to reproduce movementOnce the reference state of the robot has been learned
in other situations (for new positions and orientations ofor the collaborative task at hand, it is crucial to deternin
candidate frames). The model rst retrieves at each timp stdhow the robot will follow this reference state during repro-

t a GMM by computing a product of linearly transformedduction. First, let us de ne the whole state of the robot



as =[x x f> T, recalling thatx, x and f are the DemonsEStE

Cartesian position, velocity and sensed force of the robot
end-effector. We also de ne the inputs to the system as the
vector = [u v [, whereu is the control input expressed
as (5), ands represents an external input to the system. Note
that, unlike [7], [14], this additional input allows us natlg

to establish a dynamic equation for the sensed fofcesut

also to include the in uence of an external inputon the
system dynamics. In the HRC context, such an input cal
represent the interaction of the human with the robot during{
the cooperative task. Furthermore, let us assume that t
end-effector becomes equivalent to a unit mass after gravi
compensation, so the state space representation of thé rok
in task space can be written'as

é—ﬂ —4 é—ﬁ — Fig. 2: Experimental setting of the human-robot transporta
orn o 00 tion task: (op) kinesthetic demonstrations, andoftomn)
=40 0 15 +41 03 ; (16)  reproduction phase.

0 0O 0 1
dx = u+f,anddf = v. Note

namely x = x, x . . . .
that the latter equation indicates that the variation of the-"9 (15). In our experimeng. is de ned as a diagonal

sensed forces depends on the external inpuin other matrix. Nevertheless, it is worth highlighting that theustr

S . re of the matrixR rmi vary the relevan iven
words, the physical interaction between the human and tﬁlé €o t.e. .at. ¢ permits to vary the relevance give

. ! . . to the minimization of the robot control command and the
robot directly in uences the variation of the robot's force

. H v

perception. Lastly, we denote the column space of the inpgf(tema.l human input through the su_bm_atnEEté and R.. '

matrix B = [B 1 B o] respectively. Such features can be signi cantly exploiied
- 1 21

" . hysical human-robot interaction, where the maRix can
Once reference position, velocity and force pro les hav{

been obtained for the current time step, the controller@ai%: shaped over time according to the safety level demanded

can be estimated with an optimal control strategy. Optim y the task. For mstancg, the higher R values, the lower
feedback controllers allow the robot to plan a feedbac e control forces applied by the robot, and therefore the

control law tracking the desired state. Formally, the peab safer the interaction. This issue will be thoroughly exptbr

is stated as nding the optimal input that minimizes the in future works. S .
cost function Note that the cost function is updated at each time step

% to compute the next control command. This formulation is
J = ( ¥ Q. ( )+ 2Ry a (17) better suited for HRC in weakly structured environments,
noovxtn ot " n where the robot actions might be updated swiftly based

i __.on the state and/or actions of the user, and the state of
where ; represents the reference or desired state obtained R\, anvironment. In contrast to in nite horizon LOR, nite-

GMR, while the matrice, andR are weighting matrices 1,j,0n requires the recursive computation of an ordinary
that determine the proportion in which the tracking erorgjigerential equation, and is thus better suited for plagni
and control inputs affect the minimization problem. Thejyations in which the candidate frames are not expected to
aforementioned problem is typically known as an in nite,ye The minimization of (17) can be solved through the
horizon LQR [16]. We exploit (17) in two new manners.epraic Riccati equation, providing an optimal feedback
First, we take advantage of the variability observed duringgniroller in the form of (5) with full stiffness, damping en

the demonstrations to adapt on-the- y the error costs in.(17¢5,ce gain matrices. Speci cally, the LQR solution for our
This can also be interpreted as shaping the gain matri0ﬁ§0b|em is represented by

according to the precision required by the task across the

robot state variables. On the other hand, the minimization (=R S )rdi; (19)
of the second term of (17) implies that both the robo\tNhere the robot controller is obtained as

control commandi and the external input are minimum,

n=t

1
and consequently minimizing the robot effort and human u=R{ By St +di; (20)
intervention. . . .
with S; andd; as solutions of the equations
We de ne ! ! q
o 1 RY 0 A*Si+Q,+S(A SBR,B S, =0; (21)
Q= v PR g Ry (18) A" di+StA (+SBR B di Si.=0; (22

1A and B are matrices de ning the dynamical system, not to beand_Bl belonging to the 90|umn space 8f, as speci e.d
confounded with thed ; andby; de ning the coordinate systems in (6). previously. In the abovel; is the feedforward term, which
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Fig. 3: Encoding of the demonstrations in the different dimate systems. The local models in ttart andtarget frames

are respectively shown in the rst and second rows (profcte the position subspace of the data). The gray lines depict
the end-effector trajectory (in meters) observed from tiffergnt frames. The ellipsoids represent the Gaussianpooments

of the model. Black dots depict the beginning of the demattistn.

can optionally be neglected for low dynamic movementnce they make contact with the load, they start jointly
The solution foru; provides optimal feedback gair¢ ", transporting the object along a bell-shaped path to reagh th
KV andK 7, which allow the robot to optimally track its target location. When the object gets to the nal positidre t
desired state during the cooperative task in a stable mannevo persons release it and move away from it. Note that both
while shaping its compliance level according to the invaria the starting and goal object positions vary across repasti
characteristics of the demonstrations. This permits tihetro The aim is to introduce a robot into such a task by replacing
to perform the task precisely. It is worth mentioning thabne of the human participants by a robot.

an equation similar to (20) is obtained fog, which can For this experiment, we used a torque-controlled 7 DOF
be theoretically interpreted as the optimal interactiopuin WAM robot endowed with a 6-axis force/torque sensor. The
generated by the human, that can be used for simulatisabot controller is de ned by (2) and (5). In the demonstra-
purposes. In the HRC context, such an external input i#n phase, the gravity-compensated robot is kinesthitica

directly given by the human counterpart. guided by the teacher while cooperatively achieving thk tas
with the other human partner, as shown in Fig. 2. The teacher
VI. EXPERIMENT shows the robot both the path to be followed and the force

We test the performance of our approach in an experimeR@ttern it should use while transporting the load.
where a human-robot dyad transports an object from anIn this task two candidate coordinate systerfs £ 2)
initial location to a desired target, similarly to [15]. Hewer, are considered, namely, the frames representing the ini-
in [15] the robot was not able to behave with differential and target locations of the object. They are respec-
compliance levels, because both the stiffness and dampigely de ned asfb’; A®g andfb'; ATg. Here b° =
matrices were manually set by the user. The robot was alk@x*” 0, ;] and b’ = [0x"" 0, ;] , where x* and
not endowed with force feedback during reproduction, and’ are the Cartesian positions where the object is picked
the proposed formulation did not consider the minimizatioWP and then released. Similarly, the transformation matri-
of the robot effort and human intervention. ces are dened a®® = blockdiag(1;R®;R®;R®) and
The detailed description about the setting, the demonstrA’ = blockdiag(1;R™;RT;R"), whereR® andR"

tion and reproduction phases as well as the obtained resulgspectively represent the initial and nal orientationtbe
are given below. object with rotation matrice$The motion in this experiment
is time-driven, therefore each datapoint is de ned as

A. Description ¢ = tand { = |, wheret and ; are time and the

The experiment consists of teaching a robot to simul¥hole state of the robot, respectively.
taneously handle position, velocity and force constraints DUring reproduction of the task, the start and target frames
arising when a human and a robot cooperatively manip@®€ 9given to the model in order to obtain the temporary

Iate/transport f:m ObjeCt (See F.ig.- 2)- At the beginning of 2The positions and orientations of the object were prede edhis
the transportation task, two participants reach for theabj experiment, but these can alternatively be obtained usivigian system.
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= a 2 of the object.
t t t as expected, when the human-robot dyad is cooperatively

Fig. 4: Estimated desired state of the robo&nd its asso- transporting the load, the robot behaves stify alorg,

ciated variance' ~ along a reproduction of the cooperativewhile allowing deviations on the plar(g; X 3). Lastly, Fig.

[ransportation_ Position, \/e|0city and forces are reg‘wm 7 displays the behavior of the robot for two different cases,
given in meters, meters per second, and Newtons. namely, when the interaction force is similar to the refegen

force pro le obtained by GMR, and when some perturbation

GMM parameters using (6)-(8). The orientation of the endforces are applied at the end-effector. In the latter case, t

effector is xed. Then, the robot and the user transport theSer exerted different fqrce.pro les along the three Ceimtes.
object towards the target location. Here, for each time Stepaxes (the shaded area in Fig. 7 shows when the perturbations

the robot obtains an updated reference sta{gee Section occurred). Note that by checking the difference between

IV) along with optimal stiffness, damping and force gainthe robo_t's_ trajectory and the desired path (rst row in
it is observed that the robot reacts to deviations

matrices, that generate a new desired acceleration in tﬁfg 7). _ _ _ .
operational space of the robot. along the axisx<1, while perturbations alongs are slightly

permitted in the middle of the task. This is coherent with
B. Results the demonstrated task constraints and with the feedback

A set of ve examples of the collaborative behavior aredain pro les shown in Fig. 6. A V|d_eo accompanying this
given to the robot. The demonstrations are then used fORPET Shows the results of the experiment, and is available a

training a TP-GMM K =7 empirically determined). Figure http://programming-by-demonstration.org/IROS2015/
3 shows the resulting encoding of the position trajectories
observed from the two different candidate frames. Notice VII. CONCLUSIONS AND FUTURE WORK
how the multiple demonstrations are locally consistentwhe We introduced a PbD framework for learning cooperative
the robot approaches the initial location of the object (i.erobot skills in the context of human-robot object trans-
frame S), and when the manipulator moves away onc@ortation. Our approach brings together the advantages of
the load has been placed at its target position (i.e., frampobabilistic encoding, generalization capability of task-
T). This is re ected by the small and narrow ellipsoidsparametrized GMM, and robustness of optimal control used
in these parts of the task. Given this model and a newith both position and force constraints. This framework
set of task parameters (i.e., initial and target locatipits) allows the robot to automatically encode the human demon-
is possible to compute, in an online manner, the desireddrations and their interconnection with parameters of the
state of the robot and associated covariance at each tiriask. Moreover, in contrast to [15], the robot is able to ex-
step, as described in Section IV. Figure 4 displays thploit the observed variability for estimating differenttopal
desired position, velocity and interaction force and theicompliance levels over time, while determining the pregisi
corresponding variances obtained by GMR. Note that thwith which the state variable errors need to be compensated
reference position trajectory can vary as the initial and/dor. Lastly, our approach reduces robot effort and human
target locations change, as evidenced in Fig. 5 where deveiatervention, thus favoring safer interactions. Experitseon
reproductions with different task parameters are showso Al a real setting showed the strengths and practical use of the
note that the interaction forces at the beginning and theoénd approach.
the reproduction are expected to be zero, coinciding wigh th  The proposed model was used to learn a time-driven robot
parts of the task when the robot is approaching or releasimgotion, where part of the desired state also depend on the
the object (see Fig. 4). parameters of the task. In this sense, we plan in future work
Figure 6 shows howk 7, KV andK F vary over time to avoid the explicit time dependence by taking advantage of
along one of the reproduction attempts shown in Fig. 5, witmethods that also encapsulate the sequential informafion o
R: = rl¢ ¢ andr=0:01. Notice that at the beginning and the task. We also plan to study how to exploit the structure
at the end of the task, the robot behaves less stify albng of our cost function in order to include safety constraints
while being stiffer along the axes, andx ;. The robot does as a function of the interaction with the human. Moreover,
not allow high variations on the plarf&,; x3), guaranteeing further work is required to investigate how the state of the
that the object is picked up and released by passing througker could be included into the loop, so that the robot could
trajectories consistent with the demonstrations. In @stir react in various ways to its human partner's actions.
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Fig. 7: Reproductions of the cooperative transportatidre Tst row shows the robot trajectory (solid line) and thesided
path (dashed line) in the three planes of the Cartesian sfg&eeremaining rows show the position, velocity and sensed
force of the robot over time (solid lines), along with coperding feedback gain (represented as an envelope suingund
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reproduced trajectory).
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