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ABSTRACT

Optimal Control of dynamic systems involving hybrid actions is a challenging
task in robotics. To address this, we present a novel algorithm called Generalized
Policy Iteration using Tensor Train (TTPI) that belongs to the class of Approximate
Dynamic Programming (ADP). We use a low-rank tensor approximation technique
called Tensor Train (TT) to approximate the state-value and advantage function
which enables us to efficiently handle hybrid action space. We demonstrate the
superiority of our approach over previous baselines for some benchmark problems
with hybrid action spaces. Additionally, the robustness and generalization of the
policy for hybrid systems are showcased through a real-world robotics experiment
involving a non-prehensile manipulation task.

Robotic systems often exhibit complex nonlinear dynamics that may involve hybrid actions. The
need for real-time control, high precision, and adequate robustness to cope with disturbances or
changes in the environment can result in demanding computational requirements that are challenging
to meet with classical control methods. Optimal Control (OC) based on the principles of Dynamic
Programming (DP) is a popular tool in robotics but they are still limited to systems with continuous
actions and differentiable dynamics.

Approximate DP (ADP) and Reinforcement Learning (RL) overcome the curse of dimensionality
faced by classical DP algorithms by using function approximation techniques (Sutton & Barto,
2005; Bertsekas, 2012). OC is closely related to ADP and uses the system’s model to obtain an
optimal policy, while RL focuses on learning a policy through trial-and-error interactions with the
environment. Both methods aim to find a compact representation of the value functions to obtain a
control policy. ADP faces difficulty in approximating the value function throughout the entire state
space, conversely, RL restricts its approximation to a smaller region where data is collected, resulting
in limited generalizability but greater scalability. However, the existing approaches for both ADP and
RL face challenges in handling hybrid action space. Furthermore, existing ADP approaches also find
it challenging to cope with large action spaces and hybrid states.

In this paper, we present a novel ADP algorithm, called Generalized Policy Iteration using Tensor
Train (TTPI) which overcomes the challenges faced by existing ADP methods for hybrid system
control. TTPI is an approximate version of the Generalized Policy Iteration (GPI) algorithm—a DP
algorithm that encompasses both Value Iteration (VI) and Policy Iteration (PI) algorithms. We use
Tensor Train (TT) (Oseledets, 2011), a low-rank tensor approximation technique (Grasedyck et al.,
2013), to model the state-value and the advantage function.

TT is a versatile function approximator that allows us to simultaneously handle continuous and
discrete state and action variables. It approximates a given function as a sum of products of univariate
functions, allowing for fast algebraic operations and interpretation. The use of TT-Cross (Oseledets &
Tyrtyshnikov, 2010; Savostyanov & Oseledets, 2011), a powerful gradient-free method to approximate
functions in TT format in a nonparametric manner, allows us to achieve TT approximation of state-
value and advantage function with a desired accuracy in a fast manner, thus exploiting the knowledge
of the system model and the reward function. Moreover, the TT representation of the advantage
function enables us to use optimization techniques such as TTGO (Shetty et al., 2023) to retrieve
policies for hybrid action spaces.

1



Published as a conference paper at ICLR 2024

The TT representation is particularly effective when the function being approximated is smooth,
resulting in a low-rank representation in the TT format. Our experiments demonstrate that such
property is frequently observed in ADP while dealing with hybrid systems. Indeed, even though the
system dynamics and reward functions may be non-smooth and discontinuous, the optimal value
functions typically exhibit low-rank structures.

Contributions: We introduce TTPI, a novel ADP algorithm for optimal control that leverages TT as a
function approximator to address the challenges of hybrid system control in robotics. Our approach is
interpretable and eliminates the need for differentiability of the system dynamics and reward function
which is a common assumption in the existing ADP algorithms. Our experiments demonstrate that
TTPI outperforms state-of-the-art algorithms in terms of both training time and performance on
various benchmark control tasks for hybrid control. To showcase the practicality and generalization
of our approach, we conducted a real-world robotic experiment where we successfully tackled a
non-prehensile planar manipulation task that is notoriously difficult for existing control methods.
Our results demonstrate the robustness of the policy and highlight the potential of our approach to
addressing complex control problems in robotics.

1 GENERALIZED POLICY ITERATION USING ADVANTAGE FUNCTION

1.1 THE OPTIMAL CONTROL PROBLEM
We consider a discrete-time dynamic system with d-dimensional state space and m-dimensional
action space. For ease of presentation, we assume the dynamic system to be deterministic, however,
our approach can also handle a stochastic model (see Section 2.9).

We denote the state at time t by st = (s1t , . . . , s
d
t ) , and action by at = (a1t , . . . , a

m
t ). The dynamics

of the system is given by

st+1 = f(st,at),

s.t. sit ∈ Ωsi ,∀i ∈ {1, . . . , d},
ajt ∈ Ωaj ,∀j ∈ {1, . . . ,m},

(1)

where the domain of each state Ωsi and action Ωai can be a bounded real interval or a discrete set.
Let Ωs denote the state space and Ωa denote the action-space.

Let r(s,a) represent the reward function and ∆t be the time step for the discrete-time control. We
define R(s,a) = r(s,a)∆t. Our goal is to obtain an optimal policy π∗ for the following infinite
horizon optimal control problem for any given initial state in the state space s0 ∈ Ωs:

π∗ =argmax
π

∞∑
t=0

γtR(st, π(st)), ∀s0,

with st+1 = f(st, π(st)),

(2)

where γ is the discount factor 0 ≤ γ < 1.

We do not make any assumption on the structure or differentiability of the dynamics f and the reward
function r. For example, a black box deterministic simulator that returns the next state and the reward
for the state-action pair satisfies our requirement. However, for a fast implementation of our algorithm
described in Section 2.8, the simulator should ideally process a batch of state-action pairs for parallel
implementation.

1.2 DYNAMIC PROGRAMMING
The state-value function V π corresponding to a policy π, with discount factor γ, is defined as

V π(s0) =

∞∑
t=0

γtR(st, π(st)), ∀s0,

where st+1 = f(st, π(st)), ∀t.
(3)

Given a state-value function V : Ωs → R, a policy π and the discount factor γ, the Bellman operator
Bπ is a functional that is defined as BπV (s) = R(s, π(s)) + γV (f(s, π(s))),∀s ∈ Ωs where
Bπ : V → V.
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We define the advantage function AV corresponding to the value function V as
AV (s,a) = R(s,a) + γ

(
V
(
f(s,a)

)
− V (s)

)
, ∀(s,a) ∈ Ωs × Ωa. (4)

1.3 CHALLENGES IN APPROXIMATE DYNAMIC PROGRAMMING

Algorithm 1 describes the value iteration (VI) al-
gorithm (Sutton & Barto, 2005), a popular DP
algorithm.
One of the challenges in implementing the VI al-
gorithm and other similar DP algorithms including
the Policy Iteration (PI) algorithm (Sutton & Barto,
2005) in practice is the curse of dimensionality in
representing the value function when the involved
state space is either high-dimensional or includes
continuous states. ADP addresses this challenge
by using function approximation techniques.
In addition, retrieving the policy πk from the ad-
vantage function is difficult if it is nonconvex, if
there are bounds on the actions, if the action space
is large, or if the action space is hybrid. An inef-
ficient optimization technique for policy retrieval
increases the overall time of the algorithm, as it
must be repeated for each state in every iteration,
and it results in a sub-optimal policy. The lack
of such policy retrieval techniques is a bottleneck
in the development of ADP algorithms for hybrid
control.

Algorithm 1 VI Algorithm

Input: Initial value function V 0, conver-
gence threshold ϵ

Output: Optimal policy π∗

1: Set k = 0
2: repeat
3: πk(s) := argmax

a
AV k(s,a)

4: V k+1 = BπkV k

5: if ∥V k+1 − V k∥∞ < ϵ then
6: break
7: end if
8: Set k ← k + 1
9: until convergence

10: V ∗ = V k

11: π∗(s) = argmax
a

AV ∗(s,a)

2 GENERALIZED POLICY ITERATION USING TENSOR TRAIN (TTPI)

In this section, we briefly describe the proposed approach and the related concepts used to tackle
the previously described challenges in ADP for handling hybrid actions and large action spaces.
Further details are provided in the Appendix. In summary, we overcome the challenges mentioned
in the ADP algorithms using TT as a function approximator. We propose to model the advantage
function explicitly in TT format and use TTGO, a technique for optimization of functions in TT
format proposed by Shetty et al. (2023); Chertkov et al. (2022), for policy retrieval.

2.1 TENSORS AS DISCRETE ANALOGUE OF A FUNCTION
A multivariate function P (x1, . . . , xd) defined over a rectangular domain made up of the Cartesian
product of intervals (or discrete sets) I1 × · · · × Id can be discretized by evaluating it at points in the
set X = {(xi1

1 , . . . , xid
d ) : xik

k ∈ Ik, ik ∈ {1, . . . , nk}}. This gives us a tensor P , a discrete version
of P , where P(i1,...,id) = P (xi1

1 , . . . , xid
d ),∀(i1, . . . , id) ∈ IX , and IX = {(i1, . . . , id) : ik ∈

{1, . . . , nk}, k ∈ {1, . . . , d}}. The value of P at any point in the domain can then be approximated
by interpolating between the elements of the tensor P .

2.2 TENSOR DECOMPOSITION
Representing a high-dimensional tensor is difficult because of the limitation in storage. Tensor
decomposition techniques (Kolda & Bader, 2009; Sidiropoulos et al., 2017) solve this problem by
representing the tensor using a smaller number of lower-dimensional tensors, known as factors, which
occupy less memory. These factors are combined with certain algebraic operations, depending on the
decomposition method, to represent the elements of the original tensor. In addition to the compact
representation, they also enable efficient algebraic operations in the compressed format.

The accuracy of a tensor representation is usually controlled by its rank in the decomposition, which
is proportional to the number of elements in the factorization. The rank of the tensor is closely related
to the separability of the underlying function. In practice, for continuous variables, the smoothness of
the underlying function often corresponds to a low rank.
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2.3 TT DECOMPOSITION
TT decomposition, also known as Matrix Product State (MPS) or Tensor Networks (TN) in physics
(Cichocki et al., 2016), is a widely used tensor decomposition technique due to its versatility and
effective methods for determining the approximation.

Figure 1: TT decomposition extends ma-
trix decomposition techniques to arrays with
higher dimensions. In matrix decomposition,
an element in the original matrix can be ob-
tained by multiplying the appropriate rows or
columns of the factors. Likewise, an element
in a tensor represented in TT format can be
retrieved by multiplying selected slices of the
core tensors, which are the factors. The il-
lustration shows examples of 2nd, 3rd, and
4th-order tensors.

TT decomposition approximates a given tensor (a multidimensional array) compactly using a set of
third-order tensors called cores. A d-th order tensor P ∈ Rn1×···×nd in TT format is represented
using a tuple of d third-order tensors (P1, . . . ,Pd). The dimension of the cores are given as
P1 ∈ R1×n1×r1 ,Pk ∈ Rrk−1×nk×rk , k ∈ {2, . . . , d−1}, and Pd ∈ Rrd−1×nd×1 with r0 = rd = 1.
As shown in Figure 1, we can access the element (i1, . . . , id) of the tensor in this format simply given
by multiplying matrix slices from the cores

P(i1,...,id) = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:

, (5)
where Pk

:,ik,:
∈ Rrk−1×rk represents the ik-th frontal slice (a matrix) of the third-order tensor Pk.

The dimensions of the cores are such that the above matrix multiplication yields a scalar. The
TT-rank of the tensor in TT representation is then defined as the tuple r = (r1, r2, . . . , rd−1). We
call r = max (r1, . . . , rd−1) as the maximal rank. For any given tensor, there always exists a TT
decomposition (5) (Oseledets, 2011).

2.4 TT-CROSS
TT-Cross (Oseledets & Tyrtyshnikov, 2010; Savostyanov & Oseledets, 2011) efficiently computes
a TT approximation of a tensor with controlled accuracy by evaluating only a small number of its
elements, without requiring the entire tensor to be stored in memory. It does this by computing only
specific tensor fibers at a time, in a black-box manner. A noteworthy feature of TT-Cross is that it is
an unsupervised and nonparametric approach as it directly takes the function being modeled as its
input and the number of parameters in its TT representation is adjusted based on the structure of the
underlying function until a specified accuracy of the approximation is obtained.

Consider a tensor P that is a discrete analog of a function P with domain Ω, using a discretization
set Ω̂. Instead of evaluating the entire tensor, TT-Cross selects a subset of elements by evaluating
function P at various points in the discretization set of Ω̂. The approximate tensor in TT format,
P̂ = TT-cross(P, Ω̂, rmax, ϵ, ), requires only O(ndr2) evaluations, rather than O(nd) evaluations
of the full tensor. Here, rmax is the upper-bound on the rank of the TT, ϵ is the accuracy of the
approximation, and r is the actual rank of the tensor in TT format. TT-Cross is efficient when the
TT-rank r is low, which is often the case for state-value functions in many problems involving hybrid
states. We can then obtain the continuous approximation to P from P̂ using (7).

2.5 ALGEBRAIC OPERATIONS IN TT FORMAT
In addition to representing a tensor compactly, the TT format enables the efficient execution of
various tensor algebraic operations in its compact form. Operations such as addition, subtraction,
and inner product of TT tensors can be performed efficiently (Lee & Cichocki, 2018). The mean,
norm, and gradient can also be calculated efficiently. The compactness of the representation can be
improved by using TT-rounding operations, with a trade-off in accuracy. The availability of these
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algebraic tools allows a thorough analysis of the functions represented in TT format, thus making
them highly interpretable.

2.6 CONTINUOUS APPROXIMATION USING TT
Given the discrete analogue tensor P of a function P , we obtain the continuous approximation
by spline-based interpolation of the TT cores corresponding to the continuous variables only. For
example, we can use linear interpolation for the cores (i.e., between the matrix slices of the core) and
define a matrix-valued function corresponding to each core k ∈ {1, . . . , d},

P k(xk) =
xk − xik

k

xik+1
k − xik

k

Pk
:,ik+1,: +

xik+1
k − xk

xik+1
k − xik

k

Pk
:,ik,:

, (6)

where xik
k ≤ xk ≤ xik+1

k and P k : Ik ⊂ R → Rrk−1×rk with r0 = rd = 1. This induces a
continuous approximation of P given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (7)

This allows us to selectively do the interpolation only for the cores corresponding to continuous
variables, and hence we can represent functions in TT format whose variables could be a mix of
continuous and discrete elements.

We overload the terminology to define the continuous TT representation as
Pk

:, xk, :
= P k(xk),

Px = P (x1, . . . , xd), where x = (x1, . . . , xd),

= P1
:, x1, : · · ·P

d
:, xd, :

, ∀xk ∈ Ωxk
, ∀k ∈ {1, . . . , d}.

(8)

2.7 TTGO: OPTIMIZATION OF FUNCTION IN TT-FORMAT
In addition to the availability of algorithms like TT-Cross for finding function approximation and the
accompanying algebraic tools, an advantage of using TT decomposition for approximating functions
in ADP is its ability to efficiently find optima over a mix of continuous and discrete variables. This
was introduced as Tensor Train for Global Optimization (TTGO) in Shetty et al. (2023), in the form
of a stochastic method. A deterministic version of this was proposed in Chertkov et al. (2022). We
propose improvements to this approach in this paper, see Section A.9 in Appendix. In practice,
the technique often yields globally optimal solutions, as demonstrated in Shetty et al. (2023) and
Chertkov et al. (2022).

The basic idea behind TTGO is that it transforms the given function in TT format, using the
accompanying necessary algebraic tools, into a nonnegative function in TT format that can be
interpreted as a probability density function. The efficient sampling techniques for density functions
in TT format allow us to pick samples of only high-density regions which in turn correspond to
the optima. In practice, the chosen number of prioritized samples N ≥ 1 and the sample(s) with
the highest density (or least cost) is used to represent the optima. The solution obtained from
such a procedure can be refined further using local optimization techniques such as Newton-type
optimization for continuous variables. But, in practice, as in this paper, the fine-tuning is often not
required.

In this paper, we identify and exploit TTGO’s ability to handle a mix of continuous and discrete
variables. In addition, we perform optimization in the batch form: we propose to model the advantage
function A(s,a) in ADP in TT format, and adapt TTGO to obtain the optimal actions a corresponding
to a batch of states s (i.e. parallel computation of argmax

a
A(s,a) ) in an efficient manner.

2.8 TTPI ALGORITHM
By combining the conceptual ideas proposed so far, Algorithm 2 presents the TTPI algorithm, which
addresses the previously mentioned challenges in ADP using TT as the function approximator for
state-value and advantage functions and TTGO for policy retrieval.

In the TTPI algorithm, the value update step involves computing πk(s) (i.e., argmaxa AV k(s,a))
numerous times across several iterations. To compute V k

j in TT-format, the function BπkV k
j−1 is

queried iteratively using TT-Cross(BπkV k
j−1, rmax, ϵ), with batches of states (usually ranging from

10,000 to 100,000 in practice). This requires computing the policy πk for each of these states in
batch form. We use TT-round to compress the value functions in TT format at the end of every policy

5



Published as a conference paper at ICLR 2024

evaluation (i.e., after updating the value function for the current policy). We use cubic spline-based
interpolation for continuous variables which reduces the number of discretization points required by
TT-cross to construct the TT model.

To resolve the bottleneck in policy retrieval, we propose to compute the advantage function AV k

in TT format using TT-Cross. This is efficient as the calculation only requires evaluating V k and
R(s,a), which are cheap to compute. This enables the numerical optimization of variables for
functions in TT format using TTGO, as outlined in Section 2.7. As a result, πk(s) over batches of
states can be obtained quickly. Most importantly, this allows us to handle hybrid action space. The
computational cost involved in retrieving a solution is O(Nmdr2max) which is linear in the number
of discretizations (d) of an action variable and the dimension of action space (m).

The computational cost of the algorithm increases linearly with the number of dimensions in
both state and action spaces and grows quadratically with the rank of the functions represented
in TT format, thanks to the properties of TT-Cross and TT-representation. A PyTorch-based GPU-
accelerated implementation of these algorithms is provided along with the supplementary material at
https://sites.google.com/view/ttpi4control.

2.9 TTPI FOR STOCHASTIC SYSTEMS
In this section, we show how our approach can be extended to consider stochastic system dynamics.
Instead of relying on deterministic system dynamics of the form s′ = f(s,a), we consider the
transition probability P (s′, s,a) and the reward function R(s,a) in TT format. The transition
probability P (s′, s,a) can be obtained by fitting a density model to data collected from the robot.
To achieve this, we can employ the TT format for density modeling as suggested by Novikov et al.
(2021) and Han et al. (2018). Alternatively, if the function P is available in a different format such
as NN, we can utilize TT-Cross. By leveraging the algebraic tools provided in TT format, we can
normalize P such that

∑
s′ P (s′, s,a) = 1 (or integrate if s′ is continuous). The following outlines

the procedure to update the value function and policy under this approach:
V k =TT-Cross(Uk, Ω̂s, rmax, ϵ),

Uk(s) =R(s, πk(s)) + γW k(s, πk(s)),

W k(s,a) =
∑
s′

P (s′, s,a)V k(s′),

AV k(s,a) =R(s,a) + γ(W k(s,a)− V k(s)),

πk(s) = argmax
a

AV k(s,a).

(9)

In the above algorithm, as P and V k are both in TT format, we can obtain W k efficiently by using
algebraic operation over TT format (namely, element-wise product and contraction operations over
s′). Then AV k can be readily computed in TT-format using addition operations over the TT tensors as
R, W k, and V k are also in TT format. We only need TT-cross to find V k. Hence the algorithm would
be very efficient if P is known in TT format. However, we acknowledge that, in practice, obtaining a
stochastic model of a system P from data is a challenging problem and it is still an ongoing area of
research.

3 EXPERIMENTS

In our experiments, we utilized an NVIDIA GeForce RTX 3090 GPU with 24GB of memory. For
the applications considered, we discretized each continuous variable with 100 points using uniform
discretization. To approximate the value and advantage functions in TT format using TT-Cross, an
accuracy of ϵ = 10−3 proved sufficient. We set rmax to a large value of 100. The discount factor
was chosen in the range of 0.99 to 0.9999, depending on the time step ∆t which ranged from 0.01 to
0.001. The rank of the value function in the applications considered ranged between 5 to 50, and the
rank of the advantage function was roughly twice that of the value function.

3.1 SIMULATION EXPERIMENTS:
Baseline: To the best of our knowledge, there are no established approaches for OC based on ADP
algorithms that can handle hybrid actions. To evaluate our algorithm performance, we compared it
against Deep RL techniques for hybrid action spaces such as HyAR, HPPO and PDQN (Li et al.,

6
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Algorithm 2 TTPI: Generalized Policy Iteration using Tensor Train
Input:

nv: Number of value update steps
ϵ: Accuracy of TT representation
rmax: Maximum TT-rank
δmax: Convergence tolerance
r(s,a): Reward function
∆t: Time Discretization
f(s,a): Forward simulation
Ω̂s: Discretization of state space
Ω̂: Discretization of state-action space
(Ω̂s × Ω̂a)
N : Number of candidate samples for op-
tima used in TTGO.

Initialize:
1: Initialize V 0 = 0 in TT-format
2: Initialize Advantage model:
3: AV 0 = TT-Cross(R(s,a), Ω̂, rmax, ϵ)
4: (alternatively, initialize arbitrarily),
5: Set k = 0

Output: Policy π∗

1: while δ ≤ δmax do
2: k = k + 1
3: πk(s) := argmax

a
AV k−1(s,a) (Use TTGO)

4: V k
0 = V k−1

5: for j ← 1 to nv do
6: V k

j (s) = TT-Cross(Bπk

V k
j−1, Ω̂s, rmax, ϵ)

7: end for
8: V k = TT-round(V k

nv
, ϵ)

9: Ak(s,a)=R(s,a)+γ
(
V k

(
f(s,a)

)
−V k(s)

)
10: AV k = TT-Cross(Ak, Ω̂, rmax, ϵ)

11: δ = ∥V k−V k−1∥2

∥V k−1∥2
12: end while
13: Set V ∗ = V k

14: π∗(s) = argmax
a

AV ∗(s,a)

Figure 2: The tasks considered in this study in-
volve controlling an agent to reach a target point
in a 2D space. In the first task, called “Catch-
Point”, the agent has control over its heading di-
rection (continuous) and the option to either stop
or move toward the target (binary variable). In the
second task, known as “Hard-Move”, the agent is
equipped with n actuators, and it can decide to
activate or deactivate each actuator (n binary ac-
tions) and specify acceleration along each actuator
(n continuous variables).

2022; Fan et al., 2019; Xiong et al., 2018). The HyAR algorithm has shown superiority over other
Deep RL techniques for high-dimensional hybrid action spaces. It is important to acknowledge that
TTPI assumes access to the system dynamics and the reward function, whereas Deep RL techniques,
in theory, are agnostic to the system model and implicitly address a more challenging problem
than TTPI. However, many of these methods are data-inefficient and, like TTPI, assume access to a
simulator.

Evaluation: We evaluated our algorithm on two benchmark problems involving systems with hybrid
action spaces: the Catch-Point (CP) Problem and the Hard-Move (HM) problem, as proposed by Li
et al. (2022). The Catch-Point Problem has four states and an action space with one discrete and
one continuous action. The Hard-Move problem has n actuators, resulting in a total of 2n action
variables, with n binary and n continuous variables. Thus, this problem allows testing the scalability
for high-dimensional action spaces by increasing n.

The results, as presented in Table 1, provide strong evidence of TTPI’s superior performance compared
to the baseline method. TTPI demonstrates faster training times and generates highly performant
policies. In contrast, the baseline method struggles with generalization and produces lower-quality
solutions, particularly for the Hard-Move problem with a number of actuators m > 12. This is
attributed to TT-Cross accurately modeling the value functions by leveraging the system model and
reward function, in a fast manner and efficient policy retrieval using TTGO.

3.2 REAL ROBOT EXPERIMENTS
We demonstrate the effectiveness of our proposed method for hybrid system control on a planar
pushing task with a face-switching mechanism (Xue et al., 2023) and involves discrete states and
actions. The objective is to push a block with freedom in switching both the contact modes and faces.
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d m HPPO PDQN HyAR TTPI
T µ S T µ S T µ S T µ S

CP 4 2 0.5h 0.13
±0.01

86%
±6% 1.9h 0.16

±0.05
84%
±6% 4h 0.15

±0.02
92%
±4% 30s 1 100%

HM(8) 4 16 1.4h 0.15
±0.01

8%
±2% 2.1h 0.19

±0.03
8%
±3% 8h 0.92

±0.01 100% 850s 0.93
±0.01 100%

HM(12) 4 24 NA NA NA NA NA NA 10h 0.92
±0.05

12%
±5% 946s 0.92

±0.01 100%

HM(16) 4 32 NA NA NA NA NA NA 10h NA 0% 1743s 0.92
±0.02 100%

Table 1: We used the success rate (S) for reaching the target position as one of the metrics. We note
that the primary objective of both approaches, in the problems considered here, is to reach the goal
in the shortest possible time or path. So as a second metric (µ), we calculate the square of the ratio
between the length of the trajectory generated by each policy and the length of the shortest path for
HM task. For CP task, µ is the inverse of the number of catch motions till reaching the goal. The
table includes the training time (T ) required to obtain the policy used for evaluation. The number of
states is d and the number of actions is m.

It is modeled using 6 states and 3 actions. The action includes a discrete variable representing the
index of next contact face. Its underactuated and hybrid nature, coupled with multiple discrete contact
modes, makes it difficult to design effective control strategies, and it has been a test-bed problem for
the control of hybrid systems. Previous approaches, such as mixed integer programming (Hogan &
Rodriguez, 2020) and hybrid Differential Dynamic Programming (Doshi et al., 2020), have struggled
with the high computational cost required for solving the problem, which requires robust algorithms
that can handle the complexity of hybrid systems with both continuous and discrete variables. Note
that typically such a non-prehensile manipulation problem is formulated differently as continuous
control (Ferrandis et al., 2023), due to a lack of methodologies to handle hybrid actions and is not
representative of hybrid control in robotics applications.

Our algorithm achieves robust performance: 100% success rate (reaching the goal) in both simulation
and real-world experiments for this task. The experiments demonstrate successful reaching of the
target position and orientation, even in the presence of additional weight and external disturbances,
as shown in Fig. 3. This indicates the potential of TTPI for solving complex hybrid system control.

(a) Reaching (b) Reaching w. additional weight (c) Reaching w. disturbance

Figure 3: Pusher-slider system where the robot pushes an object by contact switching. Three
experiments were performed: The block being pushed towards the target as modeled (a), with
additional weight on the block leading to nonuniform friction distribution (b), and with external
disturbance (c). The policy obtained from TTPI was robust to handle these scenarios.

4 LIMITATION

TTPI approximates the state-value and advantage function over the entire state-action space, resulting
in a highly generalizable policy. However, computational complexity and storage issues may arise
when these functions are not low-rank in the TT representation. For instance, systems involving
highly agile movements like the acrobat (double pendulum swing-up) can lead to high-rank in the
TT representation. Nonetheless, decreasing the time step ∆t has been observed to reduce the rank
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of these functions which may enable the approach to handle such systems at the expense of longer
training time.

TTPI may be well-suited for commonly encountered systems with discontinuities and hybrid charac-
teristics, such as manipulation and legged robotics. However, a drawback is its reliance on highly
parallelized simulators. Hand-coding the system dynamics and reward function, as demonstrated in
this paper, may not be practical for more complex dynamics involving contact. While existing simu-
lators like Mujoco and Raisim are not parallelizable and may slow down the process, the availability
of recently introduced GPU-based simulators like NVIDIA Isaac Gym presents an opportunity to test
the algorithm on more intricate applications.

Concerning scalability, although existing Deep RL techniques struggle to handle hybrid action space,
they can cope well with high-dimensional state space (e.g., images as states). On the other hand, TTPI
can handle high-dimensional hybrid actions and perform better compared to existing ADP methods, it
may not be suitable for very high-dimensional state spaces. However, we could potentially enable our
method to handle such high-dimensional problems by formulating our approach as an RL problem
instead of ADP or OC. In such cases, instead of TT-Cross, gradient-based methodologies (Novikov
et al., 2017; Stoudenmire & Schwab, 2016) could be used to find the TT model of the value and
advantage functions. We will investigate this in our future work.

5 RELATED WORK

In recent years, research has surged in the domain of optimal control for hybrid systems which involve
a mix of discrete and continuous state and action variables. Classical techniques, like Mixed-Integer
Programming (MIP) (Marcucci & Tedrake, 2020), unify continuous and discrete variables in a single
optimization problem. Abstraction and reachability analysis methods (Alur et al., 2006) help adapt
hybrid systems for traditional solvers. However, they often involve high computational complexity
and are not suitable for real-time decision-making. This motivates the development of Approximate
Dynamic Programming (ADP) techniques, which involve approximating value functions to alleviate
computational burdens and handle high-dimensional settings.

The use of low-rank tensor approximation techniques for solving ADP was previously proposed in
Horowitz et al. (2014), Gorodetsky et al. (2015), and Boyko et al. (2021). In Gorodetsky et al. (2015)
and Boyko et al. (2021), they proposed a TT-based value iteration algorithm, where the TT was used
to approximate the value function, and the policy was retrieved using Newton-type optimization
technique based on the value function. This limits the application and speed of the algorithm, as the
policy retrieval procedure demands the system dynamics and the reward function to be differentiable
and the action space to be continuous.

Some of the NN-based ADP for continuous state and action space have been proposed in fitted-Q
iteration (Antos et al., 2007) and fitted-value iteration (Lutter et al., 2022). However, these methods
have demonstrated their applicability only to systems with low dimensional systems and they have
not been successful in handling hybrid action space. The NN-based ADP methods have been
overshadowed by the rise of Deep RL as they have demonstrated scalability to problems with high
dimensional state and action space. To overcome the issues in Deep RL for handling hybrid actions
several improvements were proposed by Hausknecht & Stone (2016); Fu et al. (2019); Fan et al.
(2019) and Li et al. (2022).

6 CONCLUSION

In this paper, we presented TTPI, an ADP algorithm that can handle hybrid action space. Through
simulation experiments, we showed that the algorithm is superior to state-of-the-art algorithms for
dealing with hybrid action spaces in terms of training time, generalization, and the quality of the
policy. We demonstrated the robustness of the policy of TTPI through real-world experiments. The
results demonstrate that our approach could be promising in robotics for solving challenging hybrid
control tasks.
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A APPENDICES

A.1 TT VS NN

Figure 4: The y-axis represents in log scale the
ratio of approximation error in TT representation
to that of the NN. The target function for approx-
imation was chosen to be a GMM with various
choices of mixture components k and dimension-
ality d. The graph shows the superiority of TT
modeling over NN for modeling such functions.
For example, the graph shows that for k = 20 and
d = 40, the error with TT is 10 times smaller than
with NN. For k=5 and d=10, the error with TT is
10’000 times smaller than with NN.

In this section, we provide a comprehensive analysis of the performance of Tensor Train (TT)
compared to Neural Networks (NN) for function approximation. We employed a Gaussian Mixture
Model (GMM) as a representative target function, varying the number of mixture components (2 to
20) and dimensionality (2 to 40). The results in Figure 4 demonstrate that TT-Cross could accurately
represent the target function in TT format, achieving orders of magnitude better accuracy compared
to NN, and requiring significantly less time. Additionally, the nonparametric and unsupervised nature
of TT-Cross offers flexibility with minimal intervention, eliminating the need for careful selection,
unlike the case of NN which requires careful hyperparameter tuning such as NN architecture, learning
rate, and batch size. The superiority of TT-Cross is due to the fact that the algortihm can directly
query the function to evaluate trials, while exploiting the low-rank structure for the approximation.
This motivates the use of TT for modeling value functions and advantage functions in Approximate
Dynamic Programming (ADP).

In our experiment, TT-Cross was able to find the TT representation of the GMM with less than 10−6

error as specified in TT-Cross in under 20 seconds for each test case, while NN took several minutes
and had a significantly higher error (often several orders of magnitude higher). Furthermore, NN
required significant effort to tune the hyperparameters, whereas TT-Cross, as it is a non-parametric
and unsupervised approach, was much easier to use. This is because TT-Cross finds the approximation
by querying data (the function values at various points) intelligently (Savostyanov & Oseledets, 2011)
and exploits the structure in the function (i.e., low-rank or separability). It can do so as TT-Cross
directly takes the function to be approximated as the input. On the other hand, NN takes a fixed set
of samples from the function and does supervised learning to find the function approximation. We
acknowledge that the approximation error in NN in our experiments could potentially be reduced by
using more training data, and using a more exhaustive search for best hyperparameters. However,
this would increase the training time and manual effort.

Although NN is an established tool for supervised learning over datasets, it is inefficient, compared
to TT-Cross, when we need to approximate a known low-rank function accurately. Unlike TT-Cross,
NN works with data collected from the function for the approximation and does not have a feedback
mechanism to query points from the function during the approximation procedure. Thus, choosing
NN as a function approximation technique in ADP, where we need to repeatedly approximate
value functions from the previous estimations, comes with a drawback. The software code for this
comparison is provided in the supplementary material.

A.2 ADDITIONAL SIMULATION EXPERIMENTS
In addition to the benchmark problems on hybrid actions provided in the main section, we performed
further experiments to evaluate the performance of our approach on some benchmark optimal control
problems involving continuous states, including Point-mass control with obstacles, Cart-Pole Swing-
up, and Box-pivoting. The video provided with the supplementary material shows the performance of
the policy obtained by TTPI on these tasks.
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A.3 EXPERIMENTS WITH REAL ROBOT: PLANAR PUSHING TASK
In this section, we discuss the performance of our proposed method for a planar pushing task (Xue
et al., 2023). It is considered to be challenging in the field of model-based planning and control, due
to its underactuated and hybrid nature with several discrete contact modes.

The objective of the task is to push a block with the option of switching the face of the block to be
pushed, as well as the contact mode used for pushing. We demonstrate that the proposed algorithms
can achieve this task robustly in both simulation and the real world. A video of the experiments is
provided in the supplementary material.

The state of the system is denoted as [q⊤
s q⊤

p cc]
⊤, where qs = [sx sy sθ]

⊤ is the position and
orientation of the block, qp = [px py]

⊤ is the position of end-effector, and cc ∈ {0, 1, 2, 3} is the
current contact face. The action is expressed as [v⊤ cn]

⊤, where v = [vn vt]
⊤ is the velocity of the

end-effector, and cn ∈ {0, 1, 2, 3} is the next contact face. The system, therefore, has n = 6 states
and m = 3 control variables in total, including both continuous and discrete variables.

Figure 5: Simulation of the motion of the block
under a policy from four different initial states.
The colored trajectories represent the motion of
the block to the target (qs = [0 0 0]⊤), by means
of contact mode and face switching.

We first trained the control policy in simulation based on the predefined motion equation. The
continuous variables in state and action spaces are discretized into 100 bins. The domain is set in
the range from [−0.5m,−0.5m,−π] to [0.5m, 0.5m,π], with maximum velocity defined as 0.1 m/s.
The accuracy of TT-cross is defined as 10−3. The rank of the final value function was found to be
4 and the rank of the advantage function was 40. Each iteration of the VI procedure took about 10
seconds on average. To test the generalization capability of the policy, we randomly selected 1000
initialization points in the domain. A success rate of 100% was obtained in under 10 minutes of
training. Fig. 5 shows the simulation results. The reward function is defined as

R(s,a) = −2∥qs∥ − (1− δ(cc − cn)), (10)

where qs represent the block pose, δ(cc − cn) will return 1 if cc = cn (no face switching), otherwise,
0. Note that the flexibility offered by our method allows us to utilize such reward functions.

We then tested the trained policy on the real robot setup (Fig. 3), using a 7-axis Franka Emika
robot and a RealSense D435 camera. The slider (rs = 6 cm) is a 3D-printed prismatic object with
PLA, lying on a flat plywood surface, with an Aruco Marker on the top face. A wooden pusher
(rp = 0.5cm) is attached to the robot to move the object. The motion of the object is tracked by the
camera at 30 HZ, and the policy is updated at 100 HZ, with a low-level Cartesian velocity controller
(1000 HZ) actuating the robot.

Three experiments were conducted to assess the robustness of our policy: a) Reaching task: The robot
pushes the slider from qs0 = [0.05m 0.16m 0]⊤ to the origin (Fig. 3a); b) Reaching with additional
weight: The robot pushes the block from the same initialization as before, but with an additional
weight, 3 times heavier than the block (Fig. 3b); c) Reaching with external disturbance: The same
initialization like before, but with a significant external disturbance of qdist = [0.1m 0.03m 90◦]⊤

exerted by a human (Fig. 3c).
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Table 2: Performance of three real-world experiments

Experiments xerr/cm yerr/cm θerr/rad

Reaching -0.83 1.07 -0.06
Reaching with additional weight 2.89 -1.04 -0.01
Reaching with external disturbance -4.78 -4.10 -0.04

The results of these experiments are shown in Table 2. The results show that in all experiments,
the policy successfully reaches the final target in terms of both position and orientation. The error
increases with the disturbance, while orientation errors remain less than 4◦ and position errors remain
less than 5cm even under significant disturbance. Experiment 3 demonstrates that the policy is able to
dynamically select the contact face based on the current state, as evidenced by the change in contact
face after a 90◦ rotation. This highlights the ability of our method to handle both continuous and
discrete variables in hybrid systems.

A.4 CROSS APPROXIMATION METHODS
The popular methods to find the TT decomposition of a tensor are TT-SVD (Oseledets, 2011),
TT-DMRG (Dolgov & Savostyanov, 2020), and TT-cross (Savostyanov & Oseledets, 2011). TT-SVD
and TT-DMRG, like matrix SVD, require the full tensor in memory to find the decomposition, and
hence they are infeasible for higher-order tensors. TT-cross approximation is an extension of the
matrix cross approximation technique for obtaining the TT decomposition of a tensor. It is appealing
for many practical problems as it approximates the given tensor with a controlled accuracy, by
evaluating only a small number of its elements and without having to compute and store the entire
tensor in the memory. The method needs to compute only certain fibers of the original tensor at a time
and hence works in a black-box fashion. In this section, we describe the matrix cross-approximation
algorithm to provide an intuition about TT-Cross and we refer the readers to (Sozykin et al., 2022;
Oseledets & Tyrtyshnikov, 2010; Savostyanov & Oseledets, 2011) for more detail on how it can be
adapted to find the TT decomposition of higher-dimensional tensors using TT-cross.

Suppose we have a rank-r matrix P ∈ Rn1×n2 . Using cross-approximation (a.k.a. CUR decompo-
sition or skeleton decomposition), this matrix can be exactly recovered using r independent rows
(given by the index vector i1 ⊂ {1, . . . , n1}) and r independent columns (given by the index vector
i2 ⊂ {1, . . . , n2}) of the matrix P as

P̂ = P:,i2 P−1
i1,i2

Pi1,:,
provided the intersection matrix Pi1,i2 (called submatrix) is non-singular. Thus, the matrix P , which
has n1n2 elements, can be reconstructed using only (n1 + n2 − r)r of its elements (see Figure 6).

Now suppose we have a noisy version of the matrix P = P̃ + E with ∥E∥ < ϵ and P̃ is of low
rank. For a sufficiently small ϵ, rank(P̃ ) = r so that the matrix P can be approximated with a lower
rank r (i.e., rank(P ) ≈ r). Then, the choice of the submatrix Pi1,i2 (or index vectors i1, i2) for
the cross approximation requires several considerations. The maximum volume principle can be
used in choosing the submatrix which states that the submatrix with maximum absolute value of
the determinant is the optimal choice. If Pi∗1 ,i

∗
2

is chosen to have the maximum volume, then by
skeleton decomposition we have an approximation of the matrix P given by P̂ = P:,i∗2

P−1
i∗1 ,i

∗
2
Pi∗1 ,:

.
This results in a quasi-optimal approximation

∥P − P̂ ∥2 < (r + 1)2 σr+1(P ),
where σr+1(P ) is the (r + 1)-th singular value of P (i.e., the approximation error in the best rank
r approximation in the spectral norm). Thus, we have an upper bound on the error incurred in the
approximation which is slightly higher than the best rank r approximation (Eckart–Young–Mirsky
theorem).

Finding the maximum volume submatrix is, however, an NP-hard problem. However, many heuristic
algorithms that work well exist in practice by using a submatrix with a sufficiently large volume,
trading off the approximation accuracy for the computation speed. One of the widely used methods is
the MAXVOL algorithm (Goreinov et al., 2010) which can provide, given a tall matrix P ∈ Rr×n2 (or
Rn1×r), the maximum volume submatrix Pi∗1 ,i

∗
2
∈ Rr×r. The cross approximation algorithm uses

the MAXVOL algorithm in an iterative fashion to find the skeleton decomposition as follows:
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1. Input: P ∈ Rn1×n2 , the approximation rank r for the skeleton decomposition.
2. Find the columns index set i∗2 and the row index set i∗1 corresponding to the maximum

volume submatrix.
2.1 Randomly choose r columns i2 of the matrix P and repeat the following until conver-

gence:
• Use MAXVOL to find r row indices i1 so that Pi1,i2 is the submatrix with maximum

volume in P:,i2 .
• Use MAXVOL to find r column indices i2 so that Pi1,i2 is the submatrix with

maximum volume in Pi1,:.
3. Output: Using the column index set i∗2 and the row-index set i∗1 corresponding to the

maximum volume submatrix, we have the skeleton decomposition P̂ ≈ P:,i∗2
P−1

i∗1 ,i
∗
2
Pi∗1 ,:

.

In the above algorithm, during the iterations, the matrices P:,i2 (or Pi1,:) might be singular. Thus, a
more practical implementation uses the pseudoinverses of these matrices. For details on practical
implementation, we refer to Kishore Kumar & Schneider (2017). Note that, in the above algorithm,
the input is only a function to evaluate the elements of the matrix P (i.e., we do not need the whole
matrix P in computer memory).

Figure 6: For a given matrix P (top-left), suppose
we know r independent columns indexed by i2 =
(i2,1, . . . , i2,r), i.e., P:,i2 ∈ Rn1×r and r indepen-
dent rows indexed by i1 = (i1,1, . . . , i1,r), i.e.,
Pi1,: ∈ Rr×n2 , with their intersection Pi1,i2 ∈
Rr×r being nonsingular. Then, by skeleton decom-
position we have P̂ = P:,i2P

−1
i1,i2

Pi1,:.
If rank(P ) = r, then P̂ = P (bottom row). For
r < rank(P ) we obtain a quasi-optimal approxi-
mation, P̂ ≈ P (middle row). The right figures
show the rows and columns selected from the orig-
inal matrix by the cross-approximation algorithm
to find the skeleton decomposition.

A.5 REFINING TENSOR TRAIN MODEL
Suppose we have a TT model P defined on a domain Ωx = Ωx1 × · · · × Ωxd

with discretization
set X =

{
x = (xi1

1 , . . . , xid
d ) : xik

k ∈ Ωxk
, ik ∈ {1, . . . , nk}

}
. We can obtain a refined TT model

P̂ defined on a finer discretization X̂ =
{
x = (xi1

1 , . . . , xid
d ) : xik

k ∈ Ωxk
, ik ∈ {1, . . . , n̂k}

}
of the domain with n̂k > nk using interpolation of the TT cores in a fast manner. The cores of
the corresponding TT model P̂ defined over the refined discretization can be determined using
P̂

k

:, xk, :
= P k(xk), ∀k ∈ {1, . . . , d}, (x1, . . . , xd) ∈ X̂ using spline-based interpolation scheme

as described in Section 2.6.

This proves beneficial in specific applications where a coarse discretization is employed during the
learning phase to acquire the TT representation of a target function, which can be computationally
intensive. During the inference phase, however, in some applications, the TT model might be
required to be defined over a finer discretization for more accurate results. For instance, in our work,
while modeling the advantage function using TT-cross we use a coarser discretization. However, the
advantage function in TT format used for computing the policy using TTGO uses a finer discretization.
This ensures the attainment of a more accurate optimum over action space.

A.6 TENSOR TRAIN DISTRIBUTION
Suppose we have a tensor P in TT format corresponding to a function P with the discretization set
X of the domain Ωx. We can then construct the corresponding probability distribution that we call
TT distribution,

Pr(x) =
P2

x

Z
, x ∈ X , (11)
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where Z is the corresponding normalization constant.

A.7 CONDITIONING TENSOR TRAIN DISTRIBUTION
Suppose we want to fix a subset of variables in x and find the corresponding conditional distribution
of the remaining variables. Without loss of generality, let x be segmented as x = (x1, x2) ∈ Ωx =
Ωx1
× Ωx2

with x1 ∈ Ωx1
⊂ Rd1 , x2 ∈ Ωx2

⊂ Rd2 . i.e., x1 corresponds to the first d1 variables
in x. We are interested in finding the conditional distribution Pr(x2|x1) of the TT distribution given
in (11).

Suppose x1 takes a particular value xt = (x1, . . . , xd1
). We can obtain Pr(x2|x1 = xt) by defining

a conditional TT model Px1=xt using TT model P as
Pxt

x2
= P(xt, x2), ∀x2 ∈ Ωx2

.

In other words, the TT cores of Px1=xt are then given by

(Pxt)1:, x, : =
( d1∏

i=1

Pi
:, xi, :

)
Pd1+1

:, x, :, ∀x ∈ Ωxd+1
,

(Pxt)k = Pk+d1 , k ∈ {2, . . . , d2}.

(12)

Given the above-defined conditional TT model, we can obtain the conditional distribution as

Pr(x2|x1 = xt) =
(Pxt

x2
)2

Z2
, ∀x2 ∈ Ωx2

. (13)

In this work, x1 is the state variable, x2 is the action variable, and P corresponds to a transformed
advantage function (see Section A.11).

A.8 SAMPLING FROM TENSOR TRAIN DISTRIBUTION
Consider the discrete probability distribution given by (11). For the simplicity of the presentation,
we assume Z = 1 as we will not require the normalization constant to be known for sampling from
the above distribution. Any probability distribution can be expressed as a product of conditional
distributions

Pr(x1, . . . , xd) = Pr1(x1) Pr2(x2|x1) · · · Prd(xd|x1, . . . , xd−1),

where

Prk(xk|x1, . . . , xk−1) =
σk(x1, . . . , xk)

σk−1(x1, . . . , xk−1)
,

is the conditional distribution defined using the marginals
σk(x1, . . . , xk) =

∑
xk+1

· · ·
∑
xd

Pr(x1, . . . , xd).

Let σ0 = 1. Now, using the above definitions, we can generate samples x ∼ Pr by sampling from
each of the conditional distributions in turn. Each conditional distribution is a function of only one
variable, and in the discrete case it is a multinomial distribution with

xk ∼ Prk(xk|x1, . . . , xk−1), ∀k ∈ {1, . . . , d}.
However, this process becomes computationally intensive during sampling xk, as it necessitates the
conditional distribution Prk, which, in turn, requires the evaluation of the summation over several
variables to find the marginal σk. Consequently, this approach incurs a computational cost that grows
exponentially with the number of dimensions. Here, the TT format offers an elegant solution by
capitalizing on the separability of the function.

If Pr is a TT distribution (see (11)) corresponding to a TT model P with the discretization set X and
the cores (P1, . . . ,Pd), we have

σk(x1, . . . , xk) =
∑
xk+1

· · ·
∑
xd

P2
x, k ∈ {1, . . . , d}

=
(
P1

:, x1, : · · ·P
k
:, xk, :

)
βk+1

(
P1

:, x1, : · · ·P
k
:, xk, :

)⊤
,

(14)
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Algorithm 3 Sampling from TT distribution.

1: Input: TT Blocks P = (P1, . . . ,Pd) corresponding to the distribution Pr, sample priority
α ∈ (0, 1)

2: Output: N samples
{
(xl

1, . . . , x
l
d)
}N

l=1
from the distribution Pr (see (11))

3: βd+1← 1
4: for k ← d to 2 do
5: βk =

∑
xk

Pk
:, xk, :

βk+1 (Pk
:, xk, :

)
⊤

6: end for
7: Φ1 ← 1 ∈ RN×1

8: for k ← 1 to d do
9: πk(xk) = Pk

:, xk, :
βk+1 (Pk

:, xk, :
)
⊤
, ∀xk

10: for l = 1, . . . , N do
11: pk(xk) = |Φk(l, :) π

k(xk) Φk(l, :)
⊤|, ∀xk

12: Sample xl
k from the multinomial distribution pk

13: Φk+1(l, :) = Φk(l, :) Pk
:, xl

k, :

14: end for
15: end for

where we can compute βk efficiently in a recursive manner as

βk =
∑
xk

· · ·
∑
xd

(
Pk

:, xk, :
· · ·Pd

:, xd, :

)(
Pk

:, xk, :
· · ·Pd

:, xd, :

)⊤

=
∑
xk

Pk
:, xk, :

βk+1 (Pk
:, xk, :

)⊤, k ∈ {d, . . . , 2, 1},
(15)

where βd+1 = 1. Alternatively, there exists a procedure called Tensor Train orthogonalization (Lee
& Cichocki, 2018) which re-parameterizes the core tensors of P in TT format so that βk is an
identity matrix. This will eliminate the need for the computation given in (14). Thus, the TT format
reduces the complicated multidimensional summation to evaluate σk into several one-dimensional
summations. As the same summation terms appear over several conditionals Prk, we can obtain an
efficient algorithm to sample from the TT distribution Pr which is described in Algorithm 3. For
more details, we refer to Dolgov et al. (2020).

A.9 TTGO: TENSOR TRAIN FOR GLOBAL OPTIMIZATION
In this section, we propose efficient methodologies to find the maxima of a TT-distribution given by
(11). In the next sections we show how we can generalize it to find the optima of arbitrary functions
in TT format.

The methodology was proposed originally by Shetty et al. (2023) as a stochastic procedure. It was
originally introduced to obtain multiple solutions and global optimality of TT distribution. Following
this work, a deterministic version of this approach was proposed by Chertkov et al. (2022). In the
section, we further improve this deterministic version for applicability in robotics for policy learning.

The idea behind TTGO is to leverage the Algorithm 3 to find the points corresponding to the high-
density regions of the TT distribution. Recall that the sampling procedure in Algorithm 3 consists of
repeated sampling of each dimension separately from a multinomial distribution. We modify this by
prioritizing the high-density values. To do this, instead of sampling N elements independently, we
select the top N elements from the multinomial distribution pk at iteration k and we keep track of the
history of the selected indices from the previous modes (k − 1). i.e., we only retain top-N elements
of Prk. This deterministic version of TTGO was proposed by Chertkov et al. (2022). We further
improve this methodology to include smarter choices for top-N which improves the quality and
diversity of the solution obtained. The idea is to give higher priority to the local maxima (peaks) of the
multinomials involved in each iteration (i.e., Prk(xk|x1, . . . , xk−1),∀k ∈ {1, . . . , d} as described in
Section A.8). In addition, we introduce an iterative procedure to improve the solution and scalability
of the approach. This is sketched in Algorithm 4 and we provide a fully parallel implementation in
the software accompanying the paper.
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Algorithm 4 Deterministic TTGO

1: Input: TT Cores P = (P1, . . . ,Pd), Domain Ωx = {(xi1
1 , . . . , x

id
d ) : ik ∈ {1, . . . , nk}}

2: Hyperparameters: N , nsweeps ∈ {1, . . . , d}, ϵ # default: K = n1, nsweeps = 1, ϵ = 0.001
3: Output: Maxima x∗ = (x∗

1, . . . , x
∗
d) of the TT distribution given by P (see (11))

4: βd+1← 1
5: for k ← d to 2 do
6: βk =

∑
xk

Pk
:, xk, : β

k+1 Pk
:, xk, :

⊤

7: end for
8: Definition:

πm(xi1
1 , . . . , xim

m ) = (P1

:, x
i1
1 , :
· · ·Pm

:, x
im
m , :

)βm+1(P1

:, x
i1
1 , :
· · ·Pm

:, x
im
m , :

)
⊤

qm(xi1
1 , . . . , xim

m ) =

1 if (πm(xi1
1 , . . . , x

im−1
m−1 , x

im
m ) > πm(xi1

1 , . . . , x
im−1
m−1 , x

im+a
m ),

∀a ∈ {1,−1}) OR (xm is discrete)
ϵ else # i.e., lower weight if πm is not a concave peak w.r.t. xim

m

π̂m(xi1
1 , . . . , xim

m ) = qm(xi1
1 , . . . , xim

m ) πm(xi1
1 , . . . , xim

m )

9: Initialize: D1
1 = {(xjk1

1 ) : k ∈ {1, . . . ,min(N,n1)}, jki ∈ {1, . . . , n1}, π1(x
jk1
1 ) ≥ π1(x

jk−1
1

1 )}
10: Set pmax = 0
11: for s← 1 to nsweeps do
12: for m← max(2, s) to d do
13: Ds

m = {(xjk1
1 , . . . , x

jkm
m ) :
k ∈ {1, . . . ,min(N, size(Ds

m−1) nm)},

jki ∈ {1, . . . , n1},

π̂m(x
jk1
1 , . . . , x

jkm
m ) ≥ π̂m(x

jk−1
1

1 , . . . , x
jk−1
m

m ),

(x
jk1
1 , . . . , x

jkm−1
m−1 ) ∈ Ds

m−1)}
14: end for
15: x = (x1, . . . , xd)← (x

j11
1 , . . . , x

j1d
d ) ∈ Ds

d

16: p = |πd(x)|
17: if p ≥ pmax then
18: pmax ← p
19: x∗ ← x
20: end if
21: Ds

s = {(x∗
1, . . . , x

∗
s)}

22: end for
23: Note: The associated software provides a highly parallel implementation of the above algorithm in PyTorch

where D are tensors.

A.10 FINDING OPTIMA OF ARBITRARY TENSOR TRAIN MODEL
Given a TT model P , Algorithm 4 provides maxima argmax

x
|P(x)| (i.e. approximation to maximum

of the corresponding TT distribution given by (11)). To find the argmax
x

P(x) using TTGO,

we first need to pre-process the TT model. We first find the maxima w.r.t the absolute value
xa = argmax

x
|P(x)| which can be done using TTGO with P . Next, we find a shifted TT model

P̂ = P − P(xa) (using algebraic operations over TT model). Now we again use TTGO to find
xb = argmax

x
|P̂(x)|. xa and xb are the two extrema (a maxima and a minima) of P . Thus,

xmin = argmin
x∈{xa, xb}

P(x) and xmax = argmax
x∈{xa, xb}

P(x).

A.11 NORMALIZING TENSOR TRAIN MODEL
Let xmin and xmax be the minima and maxima of an arbitrary TT model P found using the
methodology described in Section A.10. Let pmin = P(xmin) and pmax = P(xmax). Then, we can
shift and scale the TT model P to obtain a new TT model: P̂ = p̂min + (P − pmin)

(
p̂max−p̂min

pmax−pmin

)
.

Then, P̂(x) ∈ (p̂min, p̂max), ∀x ∈ Ωx. Note that xmin and xmax are also the extrema of P̂ . By
specifying p̂min > 0 and p̂max > p̂min, we can ensure that P̂ is non-negative.
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This is a useful pre-processing step in practice to apply TTGO. To find the maxima of an arbitrary
tensor P , we can work with the corresponding non-negative TT model P̂ . For instance, as we describe
later in this chapter, a typical use case of TTGO in robotics is to find x∗

d = argmax
xd

P(xt, xd)

where P(xt, xd) could be negative. So, we first find the normalized TT model P̂ and then
x∗
d = argmax

xd

P̂(xt, xd) can be found using TTGO for various xt on the conditioned TT model

P̂
xt

xd
(as defined in Section A.7). So, unless otherwise specified, we assume the TT model P is

normalized to be non-negative while using TTGO.

A.12 POLICY COMPUTATION USING TTGO
Recall that TTPI represents the advantage function in TT format obtained using TT-Cross. The policy
at each iteration given by π(s) = argmax

a
A(s,a) is computed using TTGO. Suppose A denotes

the TT representation of the advantage function. In practice, we first normalize the TT model A to
get a normalized TT model Â as described in Section A.11. Then given any state s, we can compute
the policy π(s) = argmax

a
Â(s, a) using TTGO. More specifically, it is done by applying TTGO

on the conditioned TT model Â
s

a as defined in Section 12.
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