
1

Ergodic Exploration using Tensor Train:
Applications in Insertion Tasks

Suhan Shetty1,2, João Silvério1, and Sylvain Calinon1,2

Abstract—In robotics, ergodic control extends the tracking
principle by specifying a probability distribution over an area
to cover instead of a trajectory to track. The original problem is
formulated as a spectral multiscale coverage problem, typically
requiring the spatial distribution to be decomposed as Fourier
series. This approach does not scale well to control problems
requiring exploration in search space of more than 2 dimensions.
To address this issue, we propose the use of tensor trains, a
recent low-rank tensor decomposition technique from the field
of multilinear algebra. The proposed solution is efficient, both
computationally and storage-wise, hence making it suitable for
its online implementation in robotic systems. The approach is
applied to a peg-in-hole insertion task requiring full 6D end-
effector poses, implemented with a 7-axis Franka Emika Panda
robot. In this experiment, ergodic exploration allows the task to
be achieved without requiring the use of force/torque sensors.

Index Terms—Ergodic control, low-rank approximation, tensor
methods, tensor train, tensor factorization, peg-in-hole insertion
task, learning from demonstration.

I. INTRODUCTION

AUTONOMOUS systems are often encountered with cov-
erage tasks such as localization, tracking, and active

learning. In such tasks, the agent might be required to explore
a region of its state space, either due to the nature of the
task at hand (e.g. surveillance) or due to uncertainties induced
by sensory inaccuracies (e.g. peg-in-hole insertion). In such
problems, the coverage task can be specified by a reference
probability density function, which encodes the importance of
exploration at any point of the state space. For such problems,
a pattern-based coverage approach (e.g., a “lawnmower-type”
strategy), as commonly used in low-dimensional state space,
is not scalable, and hence not applicable to most of the
applications encountered in practice [1]. Maximizing informa-
tion gain, another popular approach to circumvent uncertainty,
is not suitable for exploration since the coverage is likely
to be concentrated in regions around information maxima
disproportionately over the period of exploration [2].

Ergodic control provides an elegant solution to design con-
trol policies for such autonomous systems, in order to equip
them with natural search behaviors. For a given reference
probability density function over a domain of interest in
the state space of the robot, a dynamical system is said to
be ergodic if the fraction of time spent in a given region

1 Idiap Research Institute, Martigny, Switzerland.
2 École Polytechnique Fedérale de Lausanne (EPFL), Switzerland.
E-mails: name.surname@idiap.ch
This work was supported by the CoLLaboratE project (https://collaborate-

project.eu), funded by the EU within H2020-DT-FOF-02-2018 under grant
agreement 820767, and by the LEARN-REAL project (https://learn-real.eu),
funded by the Swiss National Science Foundation (CHIST-ERA project).

Fig. 1: The 6D robot trajectory generated by ergodic controller offline for the
insertion task.

is proportional to the probability mass of that region [3].
This is formalized in ergodic theory, where the goal is to
characterize how ergodic a given dynamical system is. Er-
godic control, on the other hand, aims to design a control
policy for a given autonomous system so that the trajectory
evolution of the resulting dynamical system is ergodic for the
reference probability distribution. Systems engineered in such
a way have already found applications in robotics [2], [4].
The original approach to ergodic control is called Spectral
Multiscale Coverage (SMC) and involves spectral analysis
of the dynamical system evolution [3]. This elegant method
was proposed for point-mass systems having receding horizon
control with infinitesimal control horizon. This original work
paved the way for various extensions, with other types of
dynamical systems and finite-horizon controllers [4], [2], [5].
The idea behind SMC [3] is to minimize a metric, called the
ergodic metric, that quantifies the match between the Fourier
coefficients of a reference distribution and those of the time-
averaged statistics of the system trajectory. As we will see
in Section III-B, this method unfortunately suffers from the
curse of dimensionality, prohibiting its applications to search
spaces with more than 2 or 3 dimensions, which are often
encountered in robot manipulation problems (e.g. exploration
in the task space of an end-effector is often a 6D problem).

In this paper, we propose a solution to overcome the
challenges in SMC by using low-rank tensor approximation

ar
X

iv
:2

10
1.

04
42

8v
2

 [
cs

.R
O

]
 1

7
M

ay
 2

02
1

2

techniques, in the form of a tensor train (TT), and hence ex-
panding the domain of ergodic control to robot manipulation.
Figure 1 shows an ergodic exploration behavior generated by
the proposed method for the peg-in-hole task considered in
this paper.

We showcase our approach in a 6D peg-in-hole insertion
task using a robot manipulator, by considering the position
and orientation of the end-effector1. In peg-in-hole scenarios,
perception and modeling inaccuracies often compromise suc-
cess, requiring the robot to leverage smart control strategies.
Here, we propose to apply ergodic control to facilitate the
insertion by letting the robot explore around the hole location
in the 6D state space of the end-effector. In this application,
we rely on human demonstrations to specify the distribution
that the robot should use for an ergodic exploration.

The main contribution of this work is an algorithm for SMC
to generate ergodic exploration in multi-dimensional spaces,
which was previously considered to be an intractable problem.
In particular, we improve the state of the art by proposing:
• Fast ways to compute the Fourier coefficients of multi-

variate functions, a well-known bottleneck in the ergodic
control literature;

• The use of tensor train to exploit the inherent low-rank
structure in the problem, which is used to overcome the
curse of dimensionality in both real-time computation
and storage requirements and facilitate implementation
of ergodic control online on robotic systems.

The proposed ergodic control algorithm paves the way for
two additional contributions in robotics. Particularly, we:
• Extend ergodic control to peg-in-hole tasks solved with an

online policy, with a novel, principled and theoretically-
grounded exploratory strategy for insertion tasks that
does not rely on specialized sensors but only on human
demonstrations;

• Provide a formal way to perform ergodic exploration in
orientation by relying on the S3 Riemannian manifold.

To the best of our knowledge, this is the first time ergodic con-
trol is implemented online on a physical robot for exploration
in dimension greater than 2. Note that the strategies to mitigate
the curse of dimensionality introduced in this paper have the
potential to be applied to many other applications in robotics
to address real-time computation and limited storage require-
ments. Similarly, the proposed control strategy is not limited
to manipulation applications, and can be extended to other
robotics scenarios requiring high-dimensional coverage (e.g.
3D-object modeling, 6D surveillance).2 Finally, even though
we rely on human demonstrations to obtain the reference
distribution, this reference can in practice be specified/learned
in different ways (e.g. from sensor uncertainty models).

The paper is organized as follows: Section II gives a
literature survey on ergodic control, tensor methods and
control strategies for insertion tasks. Section III covers the
necessary mathematical background to introduce our contri-
bution. Particularly, Section III-A introduces tensor algebra.

1A video of the experiment is available at https://sites.google.com/view/
ergodic-exploration/

2The proposed algorithm has been numerically evaluated for state space of
up to 15 dimensions.

In Section III-B, the mathematical formulation of ergodic
control is described, where the underlying challenges of the
algorithm are outlined. Section III-C briefly introduces tensor
decomposition techniques and Section III-D gives an overview
of the tensor train decomposition, which is the main tool for
low-rank approximation used in this paper. In Section IV, we
propose low-rank approximation using the tensor train as a
solution for multidimensional ergodic exploration. In Section
V, we evaluate the proposed algorithm in simulation. Lastly, in
Section VI we showcase the results of our approach in a peg-
in-hole insertion task using a torque-controlled 7-axis Franka
Emika Panda robot.

II. MOTIVATION AND RELATED WORK

A. Ergodic Control

A solution to ergodic control was originally proposed by
[3] using Spectral Multiscale Coverage (SMC) in the form
of a feedback control law designed for multi-agent systems,
with an objective defined so that the agents trajectories cover a
reference probability distribution. Here, the system considered
is a point-mass system. The control policy is obtained by
solving an optimization problem with an ergodic metric as
the cost function (see Section III-B). The ergodic metric
compares the Fourier series coefficients associated to the
spatial reference distribution and the trajectory evolution of
the system.

Although other possible choices of basis functions would be
interesting to investigate (e.g. wavelets), the Fourier transform
holds essential properties that are relevant to the considered
problem. In [6], we discuss the use of Fourier series within
ergodic control, including their links to cosine basis functions,
and their properties for reference distributions in the form of
mixtures of Gaussians.

The ergodic metric can be used as a starting point to design
other forms of controllers. For example, ergodic controllers
have been proposed using nonlinear dynamical systems and
finite control horizons [2], using projection-based trajectory
optimization [7], or using hybrid systems theory [5]. An
overview of these methods with finite control horizon can be
found in [8].

The main drawback of these methods is that they suffer
from the curse of dimensionality (see Section III-B) when the
dimension of the state space for ergodic exploration increases.
This is due to the computational complexity and storage
demanded in working with the ergodic metric and the control
policy derived from it. For low dimensional exploration tasks
(2D), Dressel and Kochenderfer used supervised learning to
reduce the computational burden [9]. However, it does not
scale to higher dimensional problems. Several authors deviated
from the approach used in SMC to tackle this limitation. In
[10] and [11], the authors relied on a different ergodic metric
based on a Kullback-Leibler (KL) divergence measure for
finite sensor footprint, where the control policy is obtained
using sampling-based techniques. Here, the ergodic metric
(KL-divergence) is approximated using the samples from
the reference distribution. Sampling-based methods avoid the
curse of dimensionality but they can still be computationally

https://sites.google.com/view/ergodic-exploration/
https://sites.google.com/view/ergodic-exploration/

3

expensive to address the real-time computational requirements
of robotics systems. Moreover, the performance of the method
is heavily dependent on the quality of the samples obtained,
which is hard to assess. While most sampling-based methods
generate the ergodic trajectory offline, its online implementa-
tion on real robots, which is the focus of the current paper,
is still a challenging problem. Based on [10], Abraham et
al. provides an online version of ergodic control with KL-
divergence as ergodic metric [11], at the expense of potentially
losing ergodicity in the exploration (e.g., by limiting the search
to high density regions).

This paper keeps the original methodology (SMC) proposed
by [3], which is the foundation of most literature on ergodic
control, and which has the advantage of providing closed form
solutions for many of the commonly used models of dynamical
systems (kinematics-based) [4], while providing multi-scale
coverage behaviour. To do so, we propose a solution based
on a low-rank tensor approximation to overcome the curse of
dimensionality. The proposed algorithm has intuitive hyper-
parameters that can be adjusted to address the storage and
computational constraints of the application.

B. Tensor Methods

As we will see in Section III-B, the difficulty in ergodic con-
trol essentially arises from the storage and computation with
multi-dimensional arrays involved in the algorithm. Tensor
methods have recently gained popularity in signal processing,
physics, applied mathematics, and machine learning commu-
nities due to their efficiency in storing and working with
multidimensional arrays. These methods exploit the structure
inherent in multidimensional arrays such as symmetry, parallel
proportionality, and separability to represent them compactly
and robustly. Furthermore, they allow performing algebraic
operations efficiently in the compact format. Thus, the storage
complexity and the algebraic operations complexity are signif-
icantly reduced. For a survey of classical tensor methods, we
refer the readers to [12]. For applications of tensor methods in
signal processing and machine learning, we refer to [13], [14].
In control, tensor methods have been used in [15] and [16] to
solve multidimensional optimal control problems which were
previously considered to be intractable.

C. Insertion Tasks

Peg-in-hole insertion is a typical and important problem
in robotics. Many strategies to solve this problem depend
on expensive force and torque sensors [17], [18]. Sensorless
strategies [19], [20], [21], on the other hand, rely only on
the state of the end-effector and provide a low cost solution.
However, most of the sensorless strategies depend either on a
predetermined trajectory that the robot end-effector needs to
follow [21], or a full modeling of the insertion behavior [19],
[20]. In [21], insertion is treated as a 3D (2D position and 1D
orientation of the end-effector) trajectory tracking problem,
where the reference trajectory for the robot end-effector is
generated offline by using a coverage strategy such as ergodic
control. As we will show, this strategy fails for the peg-in-hole
insertion task considered in this paper, as a trajectory generated

offline is often not possible to track due to obstructions from
the surface of the hole and the peg. To address this challenge,
our approach instead formulates the coverage problem in an
online manner, with exploration simultaneously in the full 6D
state space of the robot end-effector (3D position and 3D
orientation).

In order to handle the exploration in orientation jointly with
the position, we extend the control strategy to Riemannian
manifolds by modeling the probability distribution of orien-
tations, see [22], [23] for details. Subsequently, we use an
online implementation of ergodic control as the solution for
coverage. The algorithm proposed in this paper allows us to
run the ergodic controller online on the robot for 6D insertion
tasks.

TABLE I: Description of key notations and variables.

d Dimension of the state space

K
Number of elementary basis functions along each
dimension (Kd basis functions for the state space)

N Degree of Gaussian quadrature rule (N ∈ Z+)
b 1D array (vector)
A 2D array (matrix)
G tensor of order > 2
Gk k-th element of a tensor G (a scalar)
Gi i-th core (a third order tensor) of G in TT-format
Gi:,:,k k-th frontal slice (a matrix) of Gi
Ω Search space for ergodic exploration: Ω = [0, L]d

P (x) Reference probability distribution defined on Ω
P Tensor formed by discretizing P (x)

φk(x)
Elementary Fourier basis function for [0, L],
φk(x) = cos(

2π(k−1)x
L

)

φ(x)
A vector of elementary Fourier basis functions for
[0, L], φ(x) = (φ1(x), . . . , φK(x))

Φ(x)
The Fourier basis functions for Ω (a d-th order
tensor)

Ct(x)
Spatial statistics of the trajectory evolution x(t) of
the dynamic system

Wt Fourier series coefficients of Ct(x)

III. PROBLEM DEFINITION AND BACKGROUND

In this section we lay out the mathematical background of
our contribution. The notation used is summarized in Table I.

A. Tensors

A tensor is a multidimensional array3, whose order corre-
sponds to the number of modes (or dimensions) of the array. A
vector is a first order tensor and a matrix is a second order ten-
sor. The k-th element of a d-th order tensor X ∈ RK1×···×Kd ,
with indices k = (k1, . . . , kd) and ki ∈ {1, . . . ,Ki}, is
denoted by X k. Here, Ki ∈ Z+ represents the size of i-th
mode, with i ∈ {1, . . . , d}.

Fibers are the higher-order analogs of matrix rows and
columns. A fiber is obtained by fixing every index but one.

3The notion of tensors used in this paper is not to be confused with the
one commonly used in physics as a multilinear map with specific properties.
In this paper, a tensor is just a multidimensional array.

4

The inner product of two tensors X , Y ∈ RK1×···×Kd is
given by

〈X ,Y〉 =
∑
k∈K

X kYk,

where K = {k = (k1, . . . , kd) : ki ∈ {1, . . . ,Ki}}. The
Frobenius norm of a tensor X is defined by

‖X‖ = 〈X ,X 〉 12 .

The outer product of a tuple of one-dimensional arrays
(a1, . . . ,ad), with ai = (ai1, . . . , a

i
Ki

) ∈ RKi is denoted by
X = a1 ◦· · ·◦ad ∈ RK1×···×Kd , whose k-th element is given
by

X k = a1k1 · · · a
d
kd
.

In a wide variety of applications, observed data could be
represented naturally as tensors [12], [24]. In this article
tensors arise either due to the discretization of an underlying
multivariate function or from the tensor representation of the
variables involved in the ergodic control algorithm.

B. Ergodic Control

Ergodic control considers a point-mass dynamical system
whose trajectory evolves such that its time-averaged statistics
matches a desired reference probability distribution. In the
method proposed originally in [3], the problem reduces to
minimizing a cost function called ergodic metric, evaluating
the distance between the Fourier coefficients of the reference
distribution and that of the time-averaged statistics of the
trajectory evolution of the dynamical system.

We assume a bounded d-dimensional rectangular domain:
Ω = [0, L1] × · · · × [0, Ld] with Li > 0,∀i ∈ {1, . . . , d}.
Without loss of generality, we will consider Li = L,∀i ∈
{1, ..., d}. x(t) ∈ Rd represents the trajectory of the dynamical
system in the domain. The spatial statistics of the trajectory
x(t) is defined as the fraction of time spent by the dynamical
system at each point of the domain:

Ct(x) =
1

t

∫ t

τ=0

δ
(
x(τ)− x

)
dτ,

where δ is the Dirac delta function, and x = (x1, . . . , xd) ∈ Ω
is a point in the domain.

Let P (x) be the reference probability distribution for the
exploration defined on Ω. The goal of ergodic control is to
match the time-averaged spatial statistic Ct(x) with the spatial
distribution P (x). The idea is to choose K ∈ Z+ orthonormal
Fourier basis functions4 satisfying the Neumann boundary
conditions on the boundary of Ω: φk, ∀k ∈ {1, . . . ,K},
for each variable x, which is then organized as φ(x) =
(φ1(x), . . . , φK(x)) ∈ RK . Although the results that follow
apply to any such choice of basis function, we will use
φk(x) = cos(2π(k−1)x

L) for numerical evaluation, see [6] for
details. Then, orthonormal Fourier basis functions for Ω can be
obtained by the elements of the d-th order tensor formed by the
outer product of these vectors: Φ(x) = φ(x1) ◦ · · · ◦φ(xd) ∈

4In general, we can choose a different number of basis functions Ki for
each dimension i ∈ {1, . . . , d}. Without loss of generality, we will assume
Ki = K,∀i.

RK×···×K . With respect to this basis, the Fourier coefficients
(cosine transforms) of P (x) can be represented by a d-th order
tensor Ŵ . For a given index k = (k1, . . . , kd) ∈ K, we have
Φk(x) = φk1(x1) × · · · × φkd(xd), and Ŵk represents the
Fourier coefficient w.r.t. the basis Φk, namely

Ŵk =

∫ L

x1=0

· · ·
∫ L

xd=0

P (x)Φk(x)dx1 . . . dxd. (1)

The ergodic metric is then defined as

ξ(t) =
∑
k∈K

Λk
(
Wk(t)− Ŵk

)2
, (2)

where Λk = (1 + ‖k‖2)−
d+1
2 are the weights for different

frequencies, K = {k = (k1, . . . , kd) : ki ∈ {1, . . . ,K}} and
K is a sufficiently large positive integer. This way, higher
priority is given to lower frequency contents of the reference
distribution (i.e., exploration of large scale features), hence
resulting in a multi-scale exploration behavior. W(t) is the
Fourier coefficients for the spatial statistics of the trajectory
evolution x(t) at time t (i.e., of Ct(x)), which is given by

W(t) =
1

t

∫ t

τ=0

Φ(x(τ))dτ. (3)

The ergodic control objective is limt→∞ ξ(t) = 0. For a
dynamical system ẋ = f(x,u) where x ∈ Rd, we want the
ergodic dynamics w.r.t. the evolution of the states x(t) ∈ Ω ⊂
Rd. For infinitesimal control horizon, the solution for first-
order systems is given as (see [3], [6] for details)

ẋi(t) = α
bi(t)

‖b(t)‖
,

with bi(t) =
∑
k∈K

Λk
(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
,

b = (b1, . . . , bd), (4)

∇iΦ
(
x(t)

)
= φ(x1) ◦ · · · ◦ ∂φ(xi)

∂x
◦ · · · ◦ φ(xd), (5)

where α > 0 is a small real number.
For a fully actuated system with point-mass dynamics ẋ =

u, with u = (u1, . . . , ud) and maximum velocity umax, the
control commands ui, i ∈ {1, . . . , d} that minimize the ergodic
metric are given by

ui(t) = umax
bi(t)

‖b(t)‖
.

Similar expressions for control policies are available for
other types of dynamical systems, such as second-order point-
mass systems (acceleration command), or first order and sec-
ond order Dubin’s car models, see e.g. [3], [4]. The controller
can also be extended to other nonlinear dynamic systems,
see e.g. [8], [7], [5]. We demonstrate our approach using the
simple point-mass system, as it captures the key challenges in
scaling the ergodic control algorithm to higher-dimensional
exploration, and because it remains a classical choice for
ergodic exploration [25], [4], [26].

5In the control loop, each of the variables Ŵ,W(t),Λ,∇iΦ
(
x(t)

)
need

O(Kd) floating-point elements and each binary operation involving them has
computational complexity O(Kd).

5

Algorithm 1 Ergodic control algorithm

Input: d, L, K, umax, T , and P (x)
Preprocessing:
Compute Ŵ (evaluate Kd multivariate integrals with (1))
Compute Λ (Kd function evaluations)
Initialise: t = 0, dt (time step), x(0), W(0), u(0)
{Control Loop5}
while t < T do
t← t+ dt
Update x(t)
Update W(t) (use numerical integration)
Compute ∇iΦ

(
x(t)

)
,∀i ∈ {1, . . . , d}

for i=1,. . . ,d do
bi(t) =

∑
k∈KΛk

(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
end for
Update u(t) = umax

b(t)
‖b(t)‖

end while

The ergodic control algorithm (see Algorithm 1) is simple
but it suffers from the curse of dimensionality when the
dimension d of the exploration domain Ω increases, which
typically limits the use of the algorithm to problems of 2 or 3
dimensions. This is a drawback since many applications, in
practice, are of dimensions d > 3. For example, the end-
effector of a robot manipulator has 6 DOF (position and
orientation). A naive implementation of the above algorithm
for an exploration in the task space of a manipulator is then
not feasible in practice.
The main challenges in the algorithm are listed below:

1) Computation and storage of the Fourier series coeffi-
cients of the reference distribution Ŵ:
This requires evaluation of the multidimensional integral
in (1) Kd times to completely determine Ŵ . Although
this is a preprocessing step, the computational com-
plexity involved and the storage requirement make it
infeasible for engineering applications.

2) Computation and storage of Λ:
This is a preprocessing step. The computation of each
element Λk is straightforward, but the number of func-
tion evaluations to find the complete tensor Λ and the
required storage grow exponentially (i.e., Kd).

3) Real-time implementation of the control loop:
The control loop will be very slow as the algebraic
operations (such as addition, element-wise product, sum-
mation, Frobenius norm of tensors) are more time-
consuming as the order of the tensors involved in
computing the control policy increases. So, a realtime
implementation of the control loop may not be possible.

To give an example of the computation time involved in
ergodic control, we used the Python software implementation
of ergodic control described in [3] 6. By using K = 10
for the Fourier series coefficients and a spherical Gaussian
of variance 0.01 at the center of Ω with L = 1 as the
reference probability distribution, the preprocessing time to

6The configuration of computing system used is mentioned in Section V.

compute the coefficients7 Ŵ is approximately 16s in 2D,
5400s in 3D, and 2300000s in 4D (d = 4) with the mul-
tivariate integration (1) evaluated using the Python package
scipy.integrate.nquad.8 Note that the number of elements to
be stored in these cases is 10d, and for larger d (such as
d > 6) it is highly likely that memory/storage requirement for
each of the multidimensional arrays involved exceeds the limit.
Moreover, the average time taken per control loop in the above
setting for d = 3, 4, 5, 6, 7 are 7×10−4s, 1×10−3s, 4×10−3s,
6×10−2s, and 8×10−1s correspondingly. For d = 2, [9] uses
a supervised learning approach based on convolutional neural
network for the fast computation of the Fourier coefficients.
For higher dimensional problems, as we will see next, the
above-mentioned challenges can be solved using the capability
of a state-of-the-art tensor decomposition technique called
tensor train (TT). Using the proposed solution, for the above
reference distribution with d = 7, Ŵ can be represented using
approximately Kd parameters and it can be computed in less
than 2 × 10−3s and the average control loop takes less than
1×10−3s. Also, for other reference distributions and larger d,
the pre-processing step and the control loop can be processed
very fast.

C. Tensor Decomposition Techniques

Tensor decomposition (or tensor factorization) extends ma-
trix decomposition techniques (e.g. matrix singular value de-
composition) to multidimensional arrays. They allow tensors
to be encoded compactly using a set of lower-order and/or
lower-rank tensors (called factors). These factor elements are
operated, depending on the decomposition technique, using
various algebraic operations to represent elements of the given
tensor. The accuracy of the representation is often controlled
by the rank of the tensor decomposition. The rank of a tensor
has different meanings for different tensor decomposition
techniques. If the tensor has some low-rank structure (often
due to separability arising from symmetry or smoothness or
parallel proportionality), the number of elements required to
represent the given tensor using the decomposition techniques
will be far fewer than the original tensor.9 In addition to
compactly representing tensors, tensor decomposition allows
efficient application of algebraic operations in the compressed
format.10

Popular tensor decomposition techniques include CANDE-
COMP/PARAFAC (CP), also known as canonical polyadic,
Tucker, hierarchical Tucker (HT), and tensor train (TT), see
[27] for a survey. For d = 2, all these techniques reduce
to the well known singular value decomposition (SVD) of
matrices. They can be interpreted as higher-order extensions of

7Here, each coefficient is computed independently.
8https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
9For example, in matrix singular value decomposition, the low-rank corre-

sponds to the case when many of the singular values are zero or negligible.
10This is analogous to algebraic operations on large matrices in their

decomposition such as SVD, LU, etc. If we consider the right multiplication
of a matrix A ∈ Rm×s with B ∈ Rs×n, and if we have a decomposition of
A = QR with R ∈ Rp×n and p�s, then computing C = QRB using the
decomposition ofA is more efficient than directly computingC = AB using
the raw A. Similarly, for scalar multiplication of A, computing C = (kQ)R
is more efficient than C = kA.

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

6

SVD, where these decomposition techniques differ for tensors
of order d > 2. There exist many powerful algorithms to
find the decomposition for each technique, most of them are
based on the idea of alternating least squares (ALS). The CP
decomposition of a tensor is formed by sum of rank-1 tensors.
Although the number of parameters used by CP decomposition
is small and scales well to higher order tensors, the space of
CP tensors with a finite maximal rank is not closed. This
may result in an ill-posed problem to find the best low-
rank approximation. The Tucker decomposition overcomes
this issue but it suffers from the curse of dimensionality, see
[12] for details.

The TT decomposition [28] shares the good properties of
the Tucker decomposition because the space of the tensors
in TT format (with a fixed maximal rank) forms a smooth
manifold, thus allowing robust algorithms to determine the
TT decomposition of a tensor. It also shares good properties
with CP, as it scales well to high-order tensors. We exploit the
tensor train (TT) decomposition in our approach, as it gathers
the good properties of both CP and Tucker decomposition.
In the next section, a brief overview of TT decomposition is
given.

D. Tensor Train Decomposition

A d-th order tensor G ∈ RK1×···×Kd in TT format is rep-
resented using a tuple of d third-order tensors (G1, . . . ,Gd).

Here, Gi ∈ Rri−1×ri×Ki , i ∈ {2, . . . , d−1}, G1 ∈
R1×r1×K1 and Gd ∈ Rrd−1×1×Kd . As shown in Fig. 2,
the k-th element, with k ∈ K = {(k1, . . . , kd) : ki ∈
{1, . . . ,Ki}, i ∈ {1, . . . , d}}, is given by

Gk = G1
:,:,k1G

2
:,:,k2 · · · G

d
:,:,kd

, (6)

where Gi:,:,ki ∈ Rri−1×ri represents the ki-th frontal slice
(a matrix) of the third order tensor Gi. The TT-rank of
the tensor in TT representation is then defined as the tuple
r = (r1, r2, . . . , rd−1). We call r = max (r1, . . . , rd−1) as the
maximal TT rank. For any given tensor, there always exists a
TT decomposition (6).

The TT decomposition of a tensor can be considered as
a particular way of writing the elements of a given tensor
as a finite sum of separable products [27]. To explain this
intuitively, consider a multivariate function g : Ωg ⊂ Rd → R
such that g(x) = g(x1, . . . , xd) which can be approximated
as a finite sum of products of one dimensional functions
(gir̂i : R → R, i ∈ {1, . . . , d} and r̂i ∈ {1, . . . , ri}, ri ∈ Z+),
namely

g(x1, . . . , xd) ≈
r1∑
r̂1=1

· · ·
rd∑
r̂d=1

g1r̂1(x1) · · · gdr̂d(xd). (7)

Suppose we have a discretization of the domain Ωg ⊂ Rd
given by the set {y = (yk1 , . . . , ykd) : yki ∈ R, ki ∈
{1, . . . ,Ki},Ki ∈ Z+} with the corresponding index set K
as define above. Let G be the tensor formed by evaluating
the function g at these discretization points (i.e., Gk =
g(yk1 , . . . , ykd),∀k = (k1, . . . , kd) ∈ K). Then, the TT

Fig. 2: An element of a tensor in TT-format can be accessed by multiplying the
selected slices (matrices represented in red color) of the core tensors (factors).
The figure depicts an example for a 4th order tensor G ∈ R5×6×7×8 of rank
r = (2, 3, 4).

decomposition of G is analogous to the representation (7) of
the underlying multivariate function g, and it is given by

Gk =

r1∑
r̂1=1

· · ·
rd∑
r̂d=1

G1
1,r̂1,k1 · · ·G

d
r̂d−1,1,kd

, ∀k ∈ K,

which is compactly written in (6) using matrix multiplication.
Let r be the maximal TT-rank and K = max(K1, . . . ,Kd).

Then, the number of elements in the TT representation is
O(Kdr2) as compared to O(Kd) elements in the original
tensor. For small r, the representation is thus very efficient.
In addition to storage efficiency, many numerical algebraic
operations on tensors such as addition, scalar multiplication,
Hadamard (or element wise) product, Frobenius norm can be
directly and efficiently applied in TT representation11. These
operations are explained in [28], [29]. Most algebraic opera-
tions on tensors in TT format have computational complexity
linear in d and K, and polynomial (often quadratic or cubic)
in r. As we will see in Section IV, the proposed algorithm
for ergodic control in this paper will exploit this efficiency
in algebraic operation offered by TT format to speed up the
computation in the control loop.

As explained above, the existence of low-rank structure (i.e.,
a low maximal TT-rank) of a given tensor is closely related
to the separability of the underlying multivariate function.
Although separability of functions is not a very well under-
stood problem, it is known that smoothness12 and symmetry of
functions often induces better13 separability of the functions.
This has been exploited to solve PDEs and problems involving
high-dimensional integration [27], and it is used in this paper
to solve the challenges in ergodic control.

11For example, to gain an intuition about the efficiency of algebraic
operations in TT format, consider two d-th order tensors of same shape G and
H with known TT representations. The TT cores of the tensor S = G+H can
be directly obtained as Si:,:,k = diag(Gi:,:,k,H

i
:,:,k) for i ∈ {2, . . . , (d−1)}

and Sj:,:,k = concatenate(Gj:,:,k,H
j
:,:,k) for j ∈ {1, d}, where diag is

the block diagonal matrix construction and concatenate represents vector
concatenation operation. Also, the TT cores of the tensor formed by scalar
multiplication Q = c · G can be obtained by multiplying the scalar only to
the first core: Q1 = c · G1 and Qi = Gi for i ∈ {2, . . . , d}.

12By smoothness, we mean the degree of variation of the function across its
domain. For example, a probability density function in the form of Gaussian
mixture model (GMM) is considered to become less smooth as the number
of mixture components (i.e., multi-modality) increases or the variance of
the component Gaussians decreases (i.e., sharper peaks). More formally, the
degree of smoothness can be defined using the properties of higher-order
derivatives.

13By better, we mean fewer low-dimensional functions in the sum of
products representation.

7

Finding TT Decompositions
There exist many algorithms to find the TT decomposition of
a tensor. The popular methods are TT-SVD, TT-DMRG, and
TT-cross. TT-SVD and TT-DMRG, like matrix SVD, require
the full tensor in memory to find the decomposition, and
hence they are infeasible for higher order tensors. TT cross
approximation (TT-cross) [30][31] is an extension of the cross
approximation technique (also called CUR or skeleton decom-
position) in matrix theory [32], see Fig. 3. It is appealing for
many practical problems as it approximates the given tensor
with controlled accuracy, by using only a small number of its
elements. When applied to tensors, the cross approximation
method needs access to only certain fibers of the original
tensor at a time, and hence works as a black box method.

Given a function (or a procedure) g that evaluates an
element of a tensor G given its index and an approximation
accuracy ε in the Frobenius norm, TT-cross returns an approx-
imate tensor in TT format Ĝ = TT-cross(g, ε) to the tensor G
by querying only a portion of its elements. The expected error
in approximation is less than the accuracy ε specified.

Thus, TT-cross avoids the need to store explicitly the
original tensor, which may not be possible for higher order
tensors. It can approximate a d-th order tensor, with maximal
TT-rank r and size of each mode K, using only O(Kdr2)
samples and O(Kdr3) operations (flops). This is very efficient
if the TT-rank r of the tensor is low, which is typically the
case in many engineering applications, including robotics.
In this paper, we will use TT-cross to find TT decompositions.

TT-rounding
TT-rounding [28] is an important operation on a tensor in
TT format. Most binary operations on tensors in TT format,
although efficient, result in an increase in the TT-rank of the
resultant tensor, where the resultant tensor is often not in its
optimal TT representation. A repeated application of binary
operations to a given tensor may result in an explosion of
its TT-rank, which would effect the efficiency of subsequent
operations on the tensor. For example, the addition of two
tensors, both with TT-rank r = (r1, . . . , rd), results in a tensor
in TT format with rank r = (2r1, . . . , 2rd). TT-rounding is an
operation applied to tensors already in TT format to compress
it to optimal TT representation and hence reduces its TT-rank.
For a d-th order tensor G in TT-format with maximal TT-rank
r, TT-rounding has computational complexity O(Kdr3). The
TT-rounding procedure returns a tensor Ĝ = TT-round(G, r̂),
for a given r̂ < r, such that its maximal TT-rank is less than
r̂ and the Frobenius norm of the residual ‖Ĝ−G‖ is as small
as possible. Alternatively, we can specify an approximation
accuracy ε to a tensor G in TT format and the TT-rounding
returns a tensor Ĝ = TT-round(G, ε) with optimal TT-rank
and ‖Ĝ − G‖ ≤ ε.

IV. ALGORITHM DESCRIPTION

In this section, we give details of the solution proposed in
this paper to overcome the challenges mentioned in Section
III-B. Additionally, as part of our proposed strategy for 6D
exploration in manipulation tasks, we propose a Riemannian

Fig. 3: TT-cross is an extension of skeleton decomposition in matrix theory.
A rank-r matrix A ∈ Rm×n can be exactly recovered if we know r
independent columns of A indexed by j = (j1, . . . , jr), A:,j ∈ Rm×r

and r independent rows of A indexed by i = (i1, . . . , ir), Ai,: ∈ Rr×n of
matrix A, with their intersection Ai,j ∈ Rr×r being nonsingular. Then, by
skeleton decomposition we have A = A:,jA

−1
i,jAi,:.

manifold extension to allow ergodic exploration for orientation
data represented as unit quaternions.

We use the TT representation for the variables involved
in the algorithm, namely Ŵ ,W(t),Λ,∇iΦ

(
x(t)

)
.14 These

variables, as described below, can be compactly represented in
TT format, within a desired accuracy. Since all the operations
to find the control policy, at each step of the control loop, are
done on variables in TT format, the computational complexity
is significantly reduced.

Λ can be found using the TT-cross approximation. Because
of the involved symmetry (see the definition of Λ), the
resultant tensor in TT format is of very low rank. Maximal
TT rank of 2 accurately captures the tensor with error less
than 10−2 in Frobenius norm and it can be computed in a
fraction of a second (for d<15). We also represent W(t)
in TT format and use time integration in TT format [33] to
compute it efficiently at each iteration of the control loop. Due
to integration, as the TT-rank of this tensor may increase in an
unbounded manner over time, we specify an upper bound (a
hyperparameter) on its TT-rank. If other integration schemes
are used, one can periodically use TT-rounding to cut off the
TT-rank.

Finding Ŵ is a preprocessing step for the algorithm, and
it is the most challenging part as it requires to evaluate Kd

times a d-dimensional integral given by (1), if implemented
naively. By using the properties of the TT format, the Fourier
Coefficients can be computed in the following ways:
Method 1: By exploiting the properties of Gaussian mixture
model (GMM) and the efficiency of TT-cross for reference
distributions in the form of a GMM.
By using TT-cross the above integral needs to be computed
only at the query points (Fourier coefficients) of the TT-
cross, thus we obtain a significant savings in the number of
evaluations of the multidimensional integral. This will require
the integral in (1) to be evaluated O(Kdr2) times and r is
often small due to the structure of Ŵ . However, computation
of each multidimensional integral is still time consuming.

14By its definition in (5), ∇iΦ
(
x(t)

)
,∀i ∈ {1, . . . , d}

can be represented as a rank-1 TT. Its TT cores are(
φ(x1), . . . ,φ(xi−1),

∂φ(xi)
∂x

,φ(xi+1), . . . ,φ(xd)
)
. Similarly, Φ(x)

by its definition can be represented as a rank-1 TT, with TT cores(
φ(x1), . . . ,φ(xd)

)

8

For reference distributions in the form of a GMM, we have
presented an analytical expression for the above integral in [6].
This avoids computation of the multi-dimensional integration
using numerical schemes for distributions in the form of GMM
for reasonably15 large d as we use the analytical expression
to compute the Fourier coefficients at the query points of TT-
cross. Thus the method directly exploits the structure (i.e.,
smoothness) of the Fourier coefficients in Ŵ .
Method 2: By exploiting the properties of TT decomposition
for arbitrary reference distributions.
We provide a solution to the Fourier coefficients Ŵ without
having to perform any multidimensional integration directly.
By exploiting the properties of Gaussian quadrature rule
for the integration of multivariate functions, we derive an
analytical expression for the Fourier coefficients Ŵ in the
TT representation for arbitrary functions. In this method, we
exploit the smoothness of the reference probability distribution
P (x) to find Ŵ indirectly by evaluating P (x) at a few points
in its domain. This will be the method we use in the rest of
the paper for finding Ŵ unless otherwise stated. This method
to find Fourier coefficients is very efficient for smooth high-
dimensional functions, which will be explained in the next
section.

Note that, in practice, the reference distributions are smooth
and/or the Fourier coefficients vary smoothly across their in-
dices. Hence, a low-rank TT representation of Ŵ is expected.
For GMM with very sharp peaks, one may prefer Method 1 as
it relies directly on the structure of Ŵ and hence it could be
faster for such non-smooth reference distributions in the form
of GMM. However, the computationally complexity involved
in evaluating the analytical expression for each Fourier series
coefficient in Method 1 grows in proportion to 2d and linearly
with the number of mixture components in the GMM [6].
Moreover, Method 1 requires the GMM to have negligible tail
outside the domain of exploration Ω. Since Method 2 applies
to arbitrary reference distributions and it is observed in practice
to be equally fast compared to Method 1 for smooth GMM as
reference distribution, in the remaining sections we consider
only this method to find the Fourier series coefficients Ŵ .

A. Finding the Fourier Series Coefficients

In this section, we provide an analytical expression for
the Fourier coefficients of a smooth but arbitrary distribution
introduced in method 2 of Section IV. The proof is inspired
by [34] where they have used separability structure in TT
representation to find polynomial approximations of multi-
variate functions. A similar strategy has been used in [35]
to evaluate high-dimensional integration of smooth functions.
We use this strategy to find an analytical expression for the
Fourier coefficients of functions directly in TT representation.
The proof relies on quadrature rules (see Appendix A for the
details) for numerical integration of multivariate functions.
There are many possible options to choose the quadrature
rule depending on the type of function P (x) to be integrated.

15Here, we consider d approximately up to 10 as the computation com-
plexity of each Fourier coefficient using the analytical solution provided in
[6] grows in proportion to 2d. For details, refer to [6].

The following result applies to any choice of quadrature rule,
however, for simplicity, we use Gaussian quadrature rule (G-
Q) in this paper.

The idea is to find the TT representation P of the multi-
variate function P (x) evaluated at the discretization induced
from the quadrature rule. Then, as we will see below, the TT
representation of Ŵ can be obtained directly using P .

Let xj ∈ R be the discretization points of the interval
[0, L] and αj be the weights obtained from the quadrature
rule, where j ∈ {1, . . . , N}, with N representing the speci-
fied degree of approximation of the function. Then, we can
discretize the domain Ω at xj = (xj1 , . . . , xjd), with j ∈ J ,
where J = {j = (j1, . . . , jd) : ji ∈ {1, . . . , N}} is the
index set. Let P be the tensor formed by evaluating the
reference distribution P (x) at the discretization points, so that
Pj = P (xj),∀j ∈ J .

Let (P1,P2, . . . ,Pd) be the TT cores of P in its TT
representation16, so that for j = (j1, . . . , jd) ∈ J we have,

Pj = P1
:,:,j1P

2
:,:,j2 · · ·P

d
:,:,jd

,

then the TT cores of Ŵ are (see Appendix A for the proof)

Ŵ
i

:,:,k=

N∑
j=1

αj Pi
:,:,j φk(xj),

∀k ∈ {1, . . . ,K},
∀i ∈ {1, . . . , d}, (8)

so that
Ŵk = Ŵ

1

:,:,k1 · · ·Ŵ
d

:,:,kd
, ∀k ∈ K.

Thus, we can compute the Fourier coefficients Ŵ by only
investing in computing the TT decomposition P of the dis-
cretized reference distribution. This can be done in O(Ndr2)
function evaluations of P (x) using the TT-cross algorithm.
The TT-rank of the tensor Ŵ will be same as that of the TT-
rank of P . For a smooth reference distribution, P will have
low TT-rank. This is a tremendous saving in computing the
Fourier coefficients Ŵ , and thus it overcomes the curse of
dimensionality. The TT based algorithm for ergodic control is
outlined in Algorithm 2.17

B. Ergodic Control on Riemannian Manifolds

Most manipulation tasks concern the full robot end-effector
pose, which includes both its position and orientation. Hence,
when designing exploration strategies for manipulation it is
desirable to consider both. In the case of position, the ergodic
control formulation in Section IV-A can be directly applied.
However, since orientation data do not lie on a Euclidean
space, exploration in orientation requires a special mathemat-
ical treatment. In this section, we extend ergodic control to
handle data on a Riemannian manifold [22], [23], particularly
the orientation manifold S3.

16This can be obtained using TT-cross: P = TT-Cross(P (x), ε).
17Our implementation of Algorithm 2 in Python can be found at https:

//sites.google.com/view/ergodic-exploration/.
18In the control loop, the memory of each variable and the computational

complexity of each algebraic operation has complexity grow linearly with
d. Thus it avoids the curse of dimensionality. In particular, the computation
of bi(t) requires a subtraction, a Hadamard product and an inner product
involving tensors in TT format, hence it can be computed efficiently.

https://sites.google.com/view/ergodic-exploration/
https://sites.google.com/view/ergodic-exploration/

9

Algorithm 2 Ergodic Control using TT

Input: d, L, K, umax, T , and P (x)
Pre-Processing:
Compute P using TT-cross
Find Ŵ using (8)
Compute Λ using TT-cross
TT-rounding of Ŵ (remove low-energy contents)
Initialise: dt (time step), x(0), W(0) in TT format, u(0),
and t = 0
{Control Loop18}
while t < T do
t← t+ dt
Update x(t) (time integration)
Update W(t) (Use TT time integration [33] with a fixed
maximal TT-rank. Alternatively, use numerical integra-
tion such as Euler integration followed by TT-rounding)

Compute ∇iΦ
(
x(t)

)
, i ∈ {1, . . . , d}(rank-1 TT)

{Using algebraic operations in TT}
for i=1,. . . ,d do
bi(t) =

∑
k∈KΛk

(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
end for
Update u(t) = umax

b(t)
‖b(t)‖

end while

The orientation of the robot end-effector can be represented
by a unit quaternion q ∈ S3, comprised of a scalar part qs ∈ R
and a vector part qv ∈ R3 such that q = [qs q

>
v]
>. For any

point on the manifold g ∈ S3 there exists a tangent space
TgS3 in which standard Euclidean methods can be applied to
orientation. The function that maps a quaternion q from the
manifold to a tangent space is called the logarithmic map and
is given by

Log(q) =

{
acos∗(qs)

qv
‖qv‖ , qs 6= 1

[0, 0, 0]
>
, qs = 1

, (9)

where acos∗(·) is a modified arc-cosine function [22]. Equa-
tion (9) maps q to the tangent space of the manifold origin.
The mapping of q to the tangent space of an arbitrary point
g is given by [22]

Logg(q) = Log(ḡ ∗ q), (10)

where (̄·) and ∗ denote the quaternion conjugate and product,
respectively. The logarithmic map represents a unit quaternion
q as a 3-dimensional Euclidean vector v ∈ R3. Quaternions
can be retrieved from the tangent space through the exponen-
tial map

Exp(v) =

[
cos(‖v‖), sin(‖v‖) v

>

‖v‖

]>
, ‖v‖ 6= 0

[1, 0, 0, 0]
>
, ‖v‖ = 0

, (11)

which, analogously to (10), maps from an arbitrary tangent
space TgS3 back to the manifold through

Expg(v) = g ∗ Exp(v). (12)

Given a set of unit quaternions (e.g. obtained from demon-
strations), we formulate orientation-ergodic control by model-
ing their distribution in the tangent space of their mean. For M
end-effector orientations {qi}Mi=1, the mean on the manifold
µ ∈ S3 is computed iteratively with (see [22], [23] for details)

v =
1

M

M∑
i=1

Logµ(qi), µ← Expµ(v). (13)

All quaternions in the dataset can thus be mapped to the
tangent space of the mean through {vi}Mi=1 = {Logµ(qi)}Mi=1,
allowing the proposed ergodic exploration (Algorithm 2) to be
performed in R3, even for orientation. As desired orientations
are computed, in the tangent space, at each time step by
v̂(t) = v(t)+u(t)dt, the exponential map generates a desired
unit quaternion for the robot to track, using

q̂(t) = Expµ(v̂(t)). (14)

In this way, ergodic control for end-effector poses is formu-
lated as a 6D problem, where the first 3 dimensions correspond
to position and the last 3 to orientation.

V. NUMERICAL EVALUATION

In this section, we demonstrate the computational efficiency
of the TT-based algorithm for ergodic control through simula-
tions. We use Method 2 described in Section IV to compute the
Fourier series coefficients. The simulations are performed on a
Lenovo Thinkpad personal computer with Intel(R) Core(TM)
i7-8565U CPU at 1.80GHz with 24GB RAM. We use ttpy, a
Python-based toolbox for working with TT.19

A naive implementation without using tensor decomposition
techniques would require Kd elements to store each of the
tensors: Ŵ , Λ, and ∇iΦ

(
x
)

(i ∈ {1, . . . , d}). However, a
TT representation requires less than 4Kd elements for Λ (with
approximation error 10−2 in the Frobenius norm) and only Kd
elements to exactly represent ∇iΦ

(
x
)
. As ∇iΦ

(
x
)

is a rank-
1 tensor with explicit analytical expressions for its TT cores,
it can be computed very fast. Computing the weights Λ can
be done in a fraction of a second for d ≤ 15.

The computation and storage of Ŵ depends on the smooth-
ness of the reference probability distribution. For the eval-
uation, we define our reference distribution as an isotropic
Gaussian distribution at the centre of the domain with variance
0.015, where we used L = 1, K = 5, N = 10 and an
approximation accuracy of 10−2 in the TT representation of
Ŵ and Λ. As can be seen in Fig. 4, the time taken to compute
Ŵ grows approximately linearly with d, and it is less than
a second for the chosen reference distribution with d ≤ 10
and the average time taken per control loop increases almost
linearly with the number of dimensions d, whereas with a
naive implementation (without using TT) the time taken in the
control loop grows exponentially with d. The trend remains the
same for other reference distributions, see Table II.

The computation of W(t) in the control loop requires some
attention. At each iteration of the control loop, the rank of the
tensor W(t) may keep increasing due to the integration, see

19https://github.com/oseledets/ttpy

https://github.com/oseledets/ttpy

10

Gaussian mixture model Uniform distribution
2 components 4 components 6 components

With TT Without TT With TT Without TT With TT Without TT With TT Without TT

5D
parameters

∇iΦ 50 105 50 105 50 105 50 105

Λ 160 105 160 105 160 105 160 105

Ŵ 160 105 548 105 1032 105 50 105

Average time per loop 2×10−3 4×10−3 3×10−3 4×10−3 3.6×10−3 4×10−3 2×10−3 4×10−3

Pre-processing time 0.2 − 0.87 − 2.4 − 33×10−3 −

6D
parameters

∇iΦ 60 106 60 106 60 106 60 106

Λ 200 106 200 106 200 106 200 106

Ŵ 200 106 695 106 1431 106 60 106

Average time per loop 3.2×10−3 63×10−3 4.6×10−3 63×10−3 5.4×10−3 63×10−3 3×10−3 63×10−3

Pre-processing time 30×10−3 − 1.26 − 3.6 − 40×10−3 −

7D
parameters

∇iΦ 70 107 70 107 70 107 70 107

Λ 240 107 240 107 240 107 240 107

Ŵ 233 107 860 107 1801 107 70 107

Average time per loop 4.8×10−3 0.8 6.8×10−3 0.8 7.5×10−3 0.8 3.6×10−3 0.8

Pre-processing time 35×10−3 − 1.53 − 4.9 − 43×10−3 −

TABLE II: Computational speed and storage requirements in ergodic control for different reference probability distributions with K = 10 and L = 1m. The
components of GMM are spherical Gaussians with 0.005 variance. All the tensors in TT format are approximated with an accuracy of 10−2 in the Frobenius
norm. The preprocessing time for the naive approach (without using TT) is not given in the table as it is computationally infeasible in the computing device
used for the experiment.

Fig. 4: Time taken (linear scale) to compute the Fourier coefficients Ŵ (left)
and the average time taken (in log-10 scale) per control loop (right) of the
ergodic control algorithm using the proposed technique for K = 5, l =
1, and a reference distribution in the form of an isotropic Gaussian with
variance 0.015. In the right figure, the exponential growth in the computational
complexity in the control loop can be observed for the standard approach
(without using tensor decomposition), whereas the proposed approach avoids
the curse of dimensionality. In the left figure, it can be observed that the
computational complexity in computing the Fourier series coefficients using
the proposed approach tends to grow linearly with d.

(3). This could be a problem if the time period of ergodic
exploration is very high. So, it is necessary to upper bound
the TT-rank of this tensor using TT-rounding with a specified
maximal TT-rank. Setting an excessively low value for the
maximal rank may lead to convergence issues and specifying
a large value for maximal rank slows down the speed of
computation of each control loop. Thus, this hyperparameter
must be chosen carefully. In the numerical evaluation, our
experiments revealed that a maximal rank of d · r for W(t),
where r is maximal TT-rank of Ŵ , worked well for d < 15.

The TT representation allows compact representation of
the tensors involved and the storage complexity also grows
linearly with d. These properties allow our algorithm to
be implemented for real-time applications on devices with
small memory and limited computational power, which are
often the case in robotic systems. Another important property
of our algorithm is that the approximation of the tensors
involved such as Ŵ , W(t) and Λ can be controlled precisely
using TT-rounding. In practice, TT-rounding with accuracy

10−2 is observed to be sufficient for all practical purposes
considered here. Furthermore, doing these approximations in
the spectral domain results in negligible impact on the time
domain behaviour of the system, thanks to Parseval’s theorem
as the approximation can be considered as a noise filter in
the ergodic motion. This also provides a convenient trade-off
between accuracy of approximation in ergodic exploration and
the speed of computation in the control loop.

VI. EXPERIMENT: SENSORLESS PEG-IN-HOLE INSERTION
USING ERGODIC EXPLORATION

We evaluate the proposed approach in an insertion task. We
formulate the insertion task as a 6D exploration problem where
we simultaneously address the uncertainty about the insertion
pose in position (3D) and orientation (3D) in the robot task
space. Our method is well suited for peg-in-hole insertion tasks
where uncertainties may arise from several sources, including
variable grasps of the peg, unprecise locations of the hole, and
unmodeled manufacturing defects of the involved components
(gripper fingers, pegs and holes). In the considered experiment,
the reference probability distribution for exploration is found
using information from human demonstrations. The human
demonstrates the key regions for exploration in the state space
of the end-effector and we use a Gaussian mixture model
(GMM) to model the reference probability distribution based
on the datapoints collected during the demonstrations. As a
means to intuitively show the effectiveness of our approach,
we begin by comparing it to three baselines of exploratory
behaviors commonly used in insertion tasks. For this we use
a toy example in 2D and 3D.

A. Simulation experiments

In this section we provide the motivation for using ergodic
control for exploration, and its significance for insertion tasks,
using simulation of exploration behavior in 2D and 3D.

11

We use a GMM as the reference distribution in the space
Ω with L = 1m. The GMM is chosen such that it has 6
equally weighted mixture components with its centers placed
randomly in the exploration space Ω and each component is
a spherical Gaussian with variance 0.01. As a first metric, we
compute the average time taken to reach a spherical region
with volume 0.5% of the volume of Ω. The spherical region is
representative of the target detection region during exploration.
For the insertion task, this corresponds to the set of end-
effector states at which the peg is inside the hole. For all the
trials, we fix a maximum duration of 1000s for detection (i.e.,
reaching the target region) and the magnitude of the point-
mass-system velocity is constant and fixed to umax = 0.1 m/s.
For the analysis we choose 10 different GMMs as described
above and for each choice of GMM, we conduct 10 trials.
For each trial, the center of the target region is chosen by
sampling in Ω from the reference GMM and the point-mass
system starts with the same initial state: (0.5, 0.5) for 2D and
(0.5, 0.5, 0) for 3D.

We compare four different exploration strategies:
1) Strategy 1: Ergodic exploration (proposed approach),
2) Strategy 2: Sampling-based exploration

3) Strategy 3: Cylindrical spiral, as a representative of
sweeping patterns,

4) Strategy 4: Mixture of ellipsoidal spirals, as a sweeping
pattern customized for GMM.

Fig. 5 shows an example of exploration behaviors for these
different strategies.

In strategy 2, we explore by tracking samples from the
GMM sequentially. In this approach, the simulated system
tracks GMM samples using a constant speed, with a new
sample being computed every time the previous one is reached.
Unlike ergodic exploration, such approaches based on sam-
pling from the reference distribution are typically inefficient
at handling distributed information [2].

In strategy 3, we use an Archimedean spiral for 2D and
its cylindrical extension for 3D (see Fig. 5). These are
conventionally used in robotics as heuristic search strategies
for uniform coverage in 2D and 3D search spaces (i.e. for
uniform reference probability distributions) [36] [37]. Strategy
4 is similar to strategy 3 but uses spherical/ellipsoidal spiral
trajectories that are customized to sweep the GMM search
space. In this approach, the Gaussians are swept in sequence
with spherical/ellipsoidal spiral paths starting from the centers
of the Gaussian and sweeping the area up to a given number
of standard deviations before moving to the next component.
These approaches suffer from the curse of dimensionality and
perform poorly for d > 3. Moreover, they require careful
tuning of hyperparameters to generate efficient spiral paths.
Furthermore, the resulting trajectories are deterministic and do
not consider the stochasticity of target detection. Namely, the
trajectory generated by such sweeping pattern passes through a
given point in the search space only once. If the measurement
system fails to detect the target during its first pass, the strategy
has no future possibilities for detection.

The first metric we use for comparison is the average time
taken to reach the target region for the first time. Table III

Fig. 5: Example trajectories (red) of the four different exploration strategies to
reach an target region (blue sphere) within a reference probability distribution
(in this case a GMM) for d = 2 (top) and d = 3 (bottom). The green point
indicates the initial state of the point-mass system. The goal is to reach this
target region the information about which is known to the search strategies
only through the reference probability distribution.

shows the obtained results for 2D and 3D. We see that, on
average, ergodic exploration reaches the target region faster
due to its multiscale search behavior. Additionally, ergodic
control has a 100% success rate. Despite being slower, spiral
search is equally successful, but this success comes at the
cost of optimally choosing the spiral parameters. This is often
cumbersome in practice, especially in higher dimensions and
considering that the tolerance of the detection region is often
not known with high certainty.

A desirable property for exploration strategies is that the
system takes into account the already visited regions to cover
the unvisited regions more often. In order to evaluate this
property, we consider a second metric: the cumulative average
time to reach the target region over several successful attempts.
We define this as Tc

c , where c is the number of successful
attempts and Tc is the cumulative time until successful attempt

12

Fig. 6: Cumulative average time to reach a specified target region (spherical
region with 1% of the volume of Ω with d = 3) with ergodic exploration
(left), sampling-based strategy (center) and spiral movement (right). The x-
axis represents the number of attempts to reach the target (reset count) and
the y-axis represents the cumulative average of the time taken to reach the
target at each number of attempts. Every time the target is reached, the system
is re-initialized to the same initial state (starting a new attempt). The ergodic
controller is aware of the lack of exploration inside the target region and
tries to visit it more frequently. The cumulative average therefore converges
to the time it takes to go from the initial state directly to the target at every
re-initialization.

c. In this evaluation, as soon as the system reaches the
boundary of the target region, we re-initialize it to the initial
state and repeat this process for a fixed number of times.
The results in Fig. 6 show that, for ergodic control, the
cumulative average decreases with the number of successful
attempts and converges to a fixed value. This suggests that
the ergodic exploration tries to visit the unexplored regions
more frequently as the number of attempts increases. In this
case, the value that the cumulative average converges to is
the time it takes to go from the initial state directly to the
target at every re-initialization. This is an essential feature for
insertion tasks as the exploration inside the hole (representing
successful insertion of the peg) is not easy due to obstacles
(e.g., uncertainties and collision of the surface of the hole
against the peg) and we need the exploration strategy to
drive exploration towards the unexplored region as the time
evolves. This is an inherent property of ergodic exploration
that the other approaches lack. This property plays a crucial
role to cope with the stochasticity involved either in the
measurement systems for detection, or the dynamics of the
process (e.g., insertion task). To exploit this feature in real
robot experiments, it is necessary that the ergodic controller
is implemented online on the robot manipulator, i.e., that the
controller knows the actual observed end-effector states. Our
proposed algorithm for ergodic controller allows this online
implementation on robot manipulators for d = 6, which is
demonstrated in the next section.

In the insertion task, the target region for detection corre-
sponds to a set of states of the peg that are necessary to be
passed through for a successful insertion of the peg. This infor-
mation is obtained from the reference probability distribution
for exploration in the search space. Considering stochasticity
is important for a search strategy to be useful in practice. In
general, stochasticity may arise either from the measurement
system (e.g., uncertainties in the location of the hole, grasp of
the peg or manufacturing defects) and/or the dynamics of the
system (e.g., stochasticity in the contact dynamics involved in
the insertion). For example, during the insertion, the peg might
be at the correct relative location to the hole according to the
sensor system, but the insertion may still not be successful

TABLE III: Average time taken to reach a target region for different explo-
ration strategies.

Strategy
Success rate

Time taken
Trials # Success (seconds)

2D
Strategy 1 100 100 66.9

Strategy 2 100 96 106.8

Strategy 3 100 100 122.9

Strategy 4 100 98 155.4

3D
Strategy 1 100 100 84.7

Strategy 2 100 92 141.4

Strategy 3 100 98 292.3

Strategy 4 100 95 247.5

every time in that configuration due to the stochasticity of the
process. We need the search strategy to explore more often
in these target regions (correct configurations for insertion) to
increase the likelihood of insertion. Ergodic control considers
this stochasticity by driving the system to regions in the state
space such that the amount of time it spends there is in
proportion to the probability mass of that region. For more
details on search strategies and their desired characteristics,
see the seminal work of Koopman on the theory of search
[38], [39], [40]. Ergodic exploration satisfies the standards for
optimal search behavior set by Koopman. Although strategies
3 and 4 do not satisfy these properties, we included them in
our evaluation for completeness.

B. Experimental Setup for Peg-in-hole Task

We use a torque-controlled 7-axis Franka Emika Panda
robot, with an insertion task based on the Siemens gear set
benchmark (see Fig. 7)20, by using the 25.4mm-diameter
peg and the 26.29mm-diameter receptacle, with the length
of insertion of 47mm. We employed a Cartesian impedance
controller to control the robot end-effector by computing a
desired Cartesian wrench according to

f̂ = Kp

[
p̂− p

Log (q̂ ∗ q̄)

]
−Kd

[
ṗ
ω

]
,

where p̂ ∈ R3, q̂ ∈ S3 are, respectively, the desired
position and orientation of the end-effector (with q̂ ob-
tained from (14)), p, q, ṗ,w are the end-effector position,
orientation, linear and angular velocity and Kp,Kd are
6×6 diagonal stiffness and damping gains, experimentally
set to Kp = diag (500, 500, 500, 160, 160, 160) and Kv =
diag (40, 40, 40, 10, 10, 10). The symbol ∗ denotes the unit
quaternion product and q̄ the conjugate of quaternion q. Log(·)
is the logarithmic map defined in (9).

We obtain the desired robot joint torques with
τ̂ = J(θ)>f̂ + g (θ) + h(θ, θ̇), where θ, θ̇ ∈ R7 are
the robot joint positions and velocities and J ∈ R6×7,
g ∈ R7, h ∈ R7 are the Jacobian matrix of the end-effector,
gravity and Coriolis terms. Note that the impedance gains
were selected such that the robot remained compliant enough
to safely interact with the environment during exploration,
while still being able to track the ergodic trajectory.

20https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

13

Fig. 7: The Siemens gear benchmark used for evaluation of the peg-in-hole
insertion task using ergodic control.

(a) A grasp with an offset in position (b) A grasp with an offset in
orientation

Fig. 8: Two instances of grasps typically appearing when testing the ergodic
control for insertion. The demonstrations included different types of grasps
to let the robot cope with this uncertainty during ergodic exploration.

We compare three different implementations of our ap-
proach. First, a closed loop version where the ergodic con-
troller runs in real-time on the robot as an online coverage
problem (Fig. 9). In that case, at every time step, we read the
end-effector pose and feed it back to the ergodic controller,
which computes the next pose to track based on the current
state. Second, an open loop version where the controller tracks
a reference ergodic trajectory computed offline (as used in [21]
for a lower dimensional state space). Lastly, GMM-sampling-
based exploration as presented in Section VI-A.

C. Ergodic Controller Initialization

In our setup, the location of the hole is fixed (but unknown
to the robot) and the main source of uncertainty comes from
the different possible grasps of the peg by the end-effector,
see Fig. 8. We model these uncertainties using a probability
density function that indicates the importance of spending time

Fig. 9: Control diagram of open and closed loop implementations. In the latter,
the ergodic controller takes the robot state (end-effector pose) into account
while computing the desired pose. In this way, the history of observed states
is kept and new desired poses are computed accordingly.

Fig. 10: Human demonstration of peg-in-hole insertion task. Datapoints are
collected for different grasps of the peg through kinesthetic teaching to show
the regions in the vicinity of the receptacle to be used by the ergodic controller.

in each region of the state space of the robot end-effector. We
use ergodic control to insert the peg under such uncertainties.

To model the reference probability distribution for ergodic
exploration of insertion, we collected M = 204 data points
using kinesthetic teaching, which corresponds to less than 2
minutes of recording, see Fig. 10. Each datapoint corresponds
to the position and orientation of the end-effector holding
the peg. The datapoints in the vicinity of the location of the
hole were recorded for successful insertions with different
orientation and position offsets inherent to the grasps of the
peg. To give higher importance to insertion, almost half the
data points were taken from the states corresponding to the
peg within the hole. A variation of about 15mm in position
of the grasp for each axis and about ∼ 10◦ variation in the
orientation of the grasp were demonstrated (see accompanying
video of the experiment).

Once data are collected, we preprocess the end-effector
orientations as described in Section IV-B. Subsequently, we
concatenate the position data with the obtained 3D orientation
representation into a 6D vector. We then transform the data
into the domain of ergodic control Ω with L = 1 (ergodic
space) using a bijective linear transformation. We model the
data points in this transformed space using a Gaussian mixture
model (GMM) with full covariances. We empirically selected 8
mixture components with a minimal isotropic covariance prior
of 5× 10−3. Figure 11 shows the obtained GMM for position
and orientation (marginal distributions). The GMM is used as
reference probability distribution P (x) for ergodic control in
Ω. With K = 10 and N = 10, the computation of Fourier
coefficients Ŵ for the reference probability distribution took
less than 2 minutes. The closed-loop ergodic controller could
be run at 100Hz (dt = 0.01 in Algorithm 2) on the robot.
The same settings are applied to the open-loop version of
the insertion task. In this case, the trajectory is generated
offline using ergodic control. It is then tracked using the
above-mentioned settings of the impedance control. Figure 11
shows examples of generated ergodic trajectories. We allow
a maximum of 40 seconds for insertion. Figure 1 shows
trajectory generated from ergodic control in one of the trials
of the experiment.

14

(a) Position distribution (b) Orientation distribution

Fig. 11: Position and orientation marginals from the distribution used for
full pose exploration (the figure does not show correlations between position
and orientation). The 6D pose distribution is encoded as a GMM with 8
components (red ellipsoids) and full covariances, trained on a dataset of M =
204 datapoints (blue points). The trajectory for the exploration (orange lines)
is generated by ergodic control for the insertion task.

D. Experimental Results

The obtained results, summarized in Table IV, show that the
closed loop approach clearly outperforms the other approaches
that do not consider the history of observed states during the
exploration. Indeed, while using the former, the robot was able
to successfully insert the peg in the hole in 20 out of the 20
trials, where 10 were performed using the grasp in Fig. 8a and
the other 10 using the one in Fig. 8b. On average, the insertion
using the closed loop approach succeeded in 9.9s with a
standard deviation of 8.5s. Figure 12 shows snapshots of the
insertion using ergodic exploration in the closed loop setting.
Note that the only required input was a set of demonstrations to
show the robot the regions it should explore. This has proven
important to deal with the uncertainty in the peg grasping pose.
Note that interaction forces during exploration can also cause
the grasp pose to change due to the limited gripping force
of the robot (either from hardware and software limitations,
or set on purpose to handle fragile objects). Our experimental
results show that the closed loop ergodic strategy is also robust
in these situations.

The open loop version succeeded in only 2 out of 10 trials
and the naive approach of GMM-sampling-based exploration
succeeded in none of the 5 trials. This shows the importance of
exploiting the history of the real observed end-effector poses
to compute control commands. This is particularly important
for tasks requiring contacts with the environment, where the
commands need to be re-evaluated according to the history
of poses retrieved by the impedance controller. Notably, this
allows the use of low gains to remain compliant and enable
safe contacts. In the closed loop approach, the algorithm is
aware of the locations that were previously effectively visited,
which is exploited to fulfill the insertion task in an online and
robust fashion.21

VII. CONCLUSION AND FURTHER WORK

We proposed a solution to the multidimensional ergodic
exploration problem with d > 3, which was previously consid-
ered to be intractable for applications in robotic manipulation.

21A video of the experiment is available at https://sites.google.com/view/
ergodic-exploration/.

TABLE IV: Performance of the peg-in-hole task for different variations of the
grasps.

Strategy
Success rate

Time taken
Trials Successful Trials (seconds)

Closed loop 20 20 9.9± 8.5

Open loop 10 2 -
GMM-sampling 5 0 -

Fig. 12: Snapshots of an insertion using ergodic control in closed loop.

The proposed approach relies on tensor train decompositions
and is evaluated in simulated examples of target detection and
a real robot experiment using a peg-in-hole insertion task.
The obtained results show that ergodic control has a 100%
success rate in all tasks, succeeding faster than the competing
approaches. In addition to the novelty of exploiting ergodic
control in an online fashion for insertion tasks, the com-
putational techniques we used demonstrate how algorithms
in robotics, in general, can benefit from tensor methods to
overcome the limitations in computational speed and storage
requirements. To achieve this, tensor methods exploit the
smoothness and symmetry of the functions underlying the
problem. If the underlying problem does not have low rank
structure, there may not be significant saving in the storage and
computational cost using tensor methods. However, ergodic
control problem as formulated in SMC has such low rank
structure by design.

The main challenges of extending ergodic control to state
space of more than 3 dimensions concern the computation
of Fourier coefficients (preprocessing step) and the speed
of the control loop (for online implementation). This arti-
cle addressed both of these challenges using the properties
of tensor train decomposition. We leveraged this improved
ergodic control formulation to propose a sensorless strategy
for peg-in-hole insertion tasks. We validated our approach
with a compliant robot manipulator, where the 6D regions to
explore are obtained from kinesthetic human demonstrations.

https://sites.google.com/view/ergodic-exploration/
https://sites.google.com/view/ergodic-exploration/

15

Our experimental results show that by using our approach,
the robot is capable of achieving challenging insertion tasks
without force/torque sensors.

By using the reproducible Siemens gears benchmark, inser-
tion tasks with unknown gripping variations could be achieved
in less than 10 seconds on average. This is, in part, due to
the multi-scale exploration behavior that is inherent to the
ergodic metric we employed. With such metric, the resulting
controller first crudely explores the region of interest, and
then progressively refines the search until insertion, efficiently
exploiting information about the already covered regions. This
is also due to the fast processing that we propose (through
tensor train factorization), that allows ergodic control to be
run in an online manner, even by considering distributions
of full end-effector poses. Indeed, re-estimating the control
commands on-the-fly allows the proposed ergodic control
strategy to be used together with an impedance controller with
low gains, which is important for tasks requiring contacts with
the environment.

There is still room for improvement of the proposed ap-
proach. First, designing demonstrations for insertion tasks can
be further optimized. In future work, we plan to study alterna-
tive demonstration strategies (including different distributions),
which could speed up the insertion time using ergodic control.
We will also apply the insertion tasks to different physical
setups by using different sensory modalities. We also plan to
study applications of our algorithm to other applications in
robotics, either requiring exploration, active sensing, or, more
generally, for applications requiring multidimensional basis
functions with a low rank structure.

APPENDIX A
PROOF OF FOURIER COEFFICIENTS DECOMPOSITION

A one-dimensional integral

s =

∫ l

x=0

f(x)dx

can be computed numerically with the Gaussian-Quadrature
(GQ) rule as

s =

N∑
j=1

αjf(xj),

where N represents the degree of approximation (specified
by the user), xj represents the discretization points, and αj
are the corresponding weights. For any polynomial function
of degree less than 2N − 1, the above summation gives exact
result without any error in the integration. For a given N ,
xj and αj can be computed and are readily available using
software packages for scientific computing.

We need to evaluate the multidimensional integral (1) to
find Ŵk. Let xj be the discretization points and αj the
corresponding weights, with j ∈ {1, . . . , N}, obtained from
the GQ rule for a given N . Let J = {j = (j1, . . . , jd) : ji ∈
{1, . . . , N}} be the index set. We can discretize the domain
Ω at xj = (xj1 , . . . , xjd), with j ∈ J . Let P be the tensor
formed by evaluating the reference distribution P (x) at the
discretization points, i.e., Pj = P (xj).

Then, we can evaluate (1) using GQ as

Ŵk =
∑
j∈J

αj1 · · ·αjdP (xj)Φk(xj)

=
∑
j∈J

αj1 · · ·αjdP (xj)φi1(xj1) · · ·φid(xjd), ∀k ∈ K.

(15)

Discretizing P (x) at the GQ points xj = (xj1 , . . . , xjd)
with j ∈ J , we can get the tensor P , with Pj = P (xj).

Consider a TT-representation of P given by the TT-cores
(P1,P2, . . . ,Pd), so that for j = (j1, . . . , jd) ∈ J we have

Pj = P1
:,:,j1P

2
:,:,j2 · · ·P

d
:,:,jd

.

Substituting the above expression in (15) yields

Ŵk =
∑
j∈J

αj1 · · ·αjdP
1
:,:,j1 · · ·P

d
:,:,jd

φk1(xj1) · · ·φkd(xjd)

=
(N∑
j1=1

αj1P
1
:,:,j1φk1(xj1)

)
· · ·
(N∑
jd=1

αjdP
d
:,:,jd

φkd(xjd)
)
.

(16)

Also, we know that the TT-decomposition of Ŵ takes the
form

Ŵk = Ŵ
1

:,:,k1 · · ·Ŵ
d

:,:,kd
, ∀k ∈ K. (17)

Comparing (16) with (17), we obtain an expression for the
TT-cores of the TT-decomposition of Ŵ as

Ŵ
i

:,:,k =

N∑
j=1

αjPi
:,:,jφk(xj),

∀k ∈ (1, . . . ,K),
∀i ∈ (1, . . . , d).

(18)

REFERENCES

[1] A. Hubenko, V. A. Fonoberov, G. Mathew, and I. Mezic, “Multiscale
adaptive search,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 41, no. 4, pp. 1076–1087, 2011.

[2] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic
exploration of distributed information,” IEEE Transactions on Robotics,
vol. 32, pp. 36–52, 2016.

[3] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena,
vol. 240, no. 4-5, pp. 432–442, 2011.

[4] G. Mathew, S. Kannan, A. Surana, S. Bajekal, and K. R. Chevva, “Ex-
perimental implementation of spectral multiscale coverage and search
algorithms for autonomous UAVs,” in AIAA Guidance, Navigation, and
Control (GNC) Conference, 2013, p. 5182.

[5] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey,
“Real-time area coverage and target localization using receding-horizon
ergodic exploration,” IEEE Transactions on Robotics, vol. 34, pp. 62–80,
2018.

[6] S. Calinon, “Mixture models for the analysis, edition, and synthe-
sis of continuous time series,” in Mixture Models and Applications,
N. Bouguila and W. Fan, Eds. Springer, 2019, pp. 39–57.

[7] L. M. Miller and T. D. Murphey, “Trajectory optimization for continuous
ergodic exploration,” in American Control Conference. IEEE, 2013, pp.
4196–4201.

[8] L. Dressel and M. J. Kochenderfer, “Tutorial on the generation of ergodic
trajectories with projection-based gradient descent,” IET Cyper-Phys.
Syst.: Theory & Appl., vol. 4, pp. 89–100, 2019.

[9] ——, “Using neural networks to generate information maps for mobile
sensors,” in IEEE Conference on Decision and Control (CDC), 2018,
pp. 2555–2560.

[10] E. Ayvali, H. Salman, and H. Choset, “Ergodic coverage in constrained
environments using stochastic trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 5204–5210.

16

[11] I. Abraham, A. Prabhakar, and T. D. Murphey, “An ergodic measure for
active learning from equilibrium,” IEEE Transactions on Automation
Science and Engineering, 2021.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[13] A. Cichocki, D. P. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. F.
Caiafa, and A. H. Phan, “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,” IEEE
Signal Processing Magazine, vol. 32, pp. 145–163, 2015.

[14] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor
decompositions and their applications in machine learning,” ArXiv, vol.
1711.10781, 2017.

[15] M. B. Horowitz, A. Damle, and J. W. Burdick, “Linear Hamilton
Jacobi Bellman equations in high dimensions,” 53rd IEEE Conference
on Decision and Control, pp. 5880–5887, 2014.

[16] A. A. Gorodetsky, S. Karaman, and Y. M. Marzouk, “Efficient high-
dimensional stochastic optimal motion control using tensor-train decom-
position,” in Robotics: Science and Systems, 2015.

[17] S.-k. Yun, “Compliant manipulation for peg-in-hole: Is passive compli-
ance a key to learn contact motion?” in IEEE International Conference
on Robotics and Automation. IEEE, 2008, pp. 1647–1652.

[18] P. R. Giordano, A. Stemmer, K. Arbter, and A. Albu-Schaffer, “Robotic
assembly of complex planar parts: An experimental evaluation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 3775–3782.

[19] H. Park, J. Park, D.-H. Lee, J.-H. Park, M.-H. Baeg, and J.-H. Bae,
“Compliance-based robotic peg-in-hole assembly strategy without force
feedback,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8,
pp. 6299–6309, 2017.

[20] M. P. Polverini, A. M. Zanchettin, S. Castello, and P. Rocco, “Sensorless
and constraint based peg-in-hole task execution with a dual-arm robot,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 415–420.

[21] D. Ehlers, M. Suomalainen, J. Lundell, and V. Kyrki, “Imitating human
search strategies for assembly,” in International Conference on Robotics
and Automation (ICRA), Montréal, Canada, May 2019, pp. 7821–7827.

[22] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G.
Caldwell, “An approach for imitation learning on Riemannian mani-
folds,” IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3, pp.
1240–1247, June 2017.

[23] S. Calinon, “Gaussians on Riemannian manifolds: Applications for robot
learning and adaptive control,” IEEE Robotics and Automation Magazine
(RAM), vol. 27, no. 2, pp. 33–45, June 2020.

[24] P. M. Kroonenberg, Applied multiway data analysis. John Wiley &
Sons, 2008, vol. 702.

[25] T. Sahai, G. Mathew, and A. Surana, “A chaotic dynamical system that
paints and samples,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10 760 –
10 765, 2017, 20th IFAC World Congress.

[26] G. Mathew, A. Surana, and I. Mezic, “Uniform coverage control
of mobile sensor networks for dynamic target detection,” 49th IEEE
Conference on Decision and Control (CDC), pp. 7292–7299, 2010.

[27] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36(1),
pp. 53–78, 2013.

[28] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Scientific Com-
puting, vol. 33, pp. 2295–2317, 2011.

[29] N. Lee and A. Cichocki, “Fundamental tensor operations for large-scale
data analysis using tensor network formats,” Multidimensional Systems
and Signal Processing, vol. 29, no. 3, pp. 921–960, 2018.

[30] D. V. Savostyanov and I. V. Oseledets, “Fast adaptive interpolation of
multi-dimensional arrays in tensor train format,” The 2011 International
Workshop on Multidimensional (nD) Systems, pp. 1–8, 2011.

[31] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multidi-
mensional arrays,” Linear Algebra and its Applications, vol. 432, no. 1,
pp. 70–88, 2010.

[32] N. Kishore Kumar and J. Schneider, “Literature survey on low rank
approximation of matrices,” Linear and Multilinear Algebra, vol. 65,
no. 11, pp. 2212–2244, 2017.

[33] C. Lubich, I. V. Oseledets, and B. Vandereycken, “Time integration of
tensor trains,” SIAM J. Numerical Analysis, vol. 53, pp. 917–941, 2015.

[34] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk, “Spectral tensor-
train decomposition,” SIAM Journal on Scientific Computing, vol. 38,
no. 4, pp. A2405–A2439, 2016.

[35] S. Dolgov and D. Savostyanov, “Parallel cross interpolation for high-
precision calculation of high-dimensional integrals,” Computer Physics
Communications, vol. 246, p. 106869, 2020.

[36] Hyeonjun Park, Ji-Hun Bae, Jae-Han Park, Moon-Hong Baeg, and
Jaeheung Park, “Intuitive peg-in-hole assembly strategy with a compliant
manipulator,” in IEEE ISR, 2013, pp. 1–5.

[37] J. C. Triyonoputro, W. Wan, and K. Harada, “Quickly inserting pegs
into uncertain holes using multi-view images and deep network trained
on synthetic data,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 5792–5799.

[38] B. O. Koopman, “The theory of search. I. kinematic bases,” Operations
research, vol. 4, no. 3, pp. 324–346, 1956.

[39] ——, “The theory of search. II. target detection,” Operations research,
vol. 4, no. 5, pp. 503–531, 1956.

[40] ——, “The theory of search: III. the optimum distribution of searching
effort,” Operations research, vol. 5, no. 5, pp. 613–626, 1957.

Suhan Shetty received the M.E. degree in mechani-
cal engineering from the Indian Institute of Science,
Bangalore, India. He is currently a Research As-
sistant with the Idiap Research Institute in Switzer-
land, working toward the Ph.D. degree in electrical
engineering with the École Polytechnique Fedérale
de Lausanne (EPFL). His Ph.D. thesis research is
focusing on low-rank approximation techniques in
robot learning.

João Silvério is a postdoctoral researcher at the
Idiap Research Institute since July 2019. He received
his M.Sc in Electrical and Computer Engineering
(2011) from Instituto Superior Técnico (Lisbon, Por-
tugal) and Ph.D. in Robotics (2017) from the Univer-
sity of Genoa (Genoa, Italy) and the Italian Institute
of Technology, where he was also a postdoctoral re-
searcher until May 2019. He is interested in machine
learning for robotics, particularly imitation learning
and control. Webpage: http://joaosilverio.eu.

Sylvain Calinon received the Ph.D. degree from the
École Polytechnique Fedérale de Lausanne (EPFL)
in 2007. He is a Senior Researcher at the Idiap
Research Institute, and a Lecturer at the EPFL.
From 2009 to 2014, he was a Team Leader at
the Italian Institute of Technology. From 2007 to
2009, he was a Postdoc at EPFL. His research inter-
ests cover robot learning, human-robot collaboration,
Riemannian geometry and optimal control. Website:
https://calinon.ch.

http://joaosilverio.eu
https://calinon.ch

	I Introduction
	II Motivation and Related Work
	II-A Ergodic Control
	II-B Tensor Methods
	II-C Insertion Tasks

	III Problem Definition and Background
	III-A Tensors
	III-B Ergodic Control
	III-C Tensor Decomposition Techniques
	III-D Tensor Train Decomposition

	IV Algorithm Description
	IV-A Finding the Fourier Series Coefficients
	IV-B Ergodic Control on Riemannian Manifolds

	V Numerical Evaluation
	VI Experiment: Sensorless Peg-in-Hole Insertion using Ergodic Exploration
	VI-A Simulation experiments
	VI-B Experimental Setup for Peg-in-hole Task
	VI-C Ergodic Controller Initialization
	VI-D Experimental Results

	VII Conclusion and Further Work
	Appendix A: Proof of Fourier Coefficients Decomposition
	References
	Biographies
	Suhan Shetty
	João Silvério
	Sylvain Calinon

