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Abstract

This paper presents a framework to learn the sequential structure in the demonstrations for robot imitation learning. We

first present a family of task-parameterized hidden semi-Markov models that extracts invariant segments (also called sub-

goals or options) from demonstrated trajectories, and optimally follows the sampled sequence of states from the model

with a linear quadratic tracking controller. We then extend the concept to learning invariant segments from visual obser-

vations that are sequenced together for robot imitation. We present Motion2Vec that learns a deep embedding space by

minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while

being pushed away from randomly sampled images of other segments, and a time contrastive loss is used to preserve the

temporal ordering of the images. The trained embeddings are segmented with a recurrent neural network, and subse-

quently used for decoding the end-effector pose of the robot. We first show its application to a pick-and-place task with

the Baxter robot while avoiding a moving obstacle from four kinesthetic demonstrations only, followed by suturing task

imitation from publicly available suturing videos of the JIGSAWS dataset with state-of-the-art 85:5% segmentation accu-

racy and 0:94 cm error in position per observation on the test set.
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1. Introduction

Imitation learning provides a promising approach to teach

new robotic manipulation skills from expert demonstra-

tions (Argall et al., 2009; Billard et al., 2016; Schaal

et al., 2003). Generalizing robot manipulation skills to

new situations requires extracting disentangled representa-

tions from demonstrations that capture the relationships

between objects and the environment while being invar-

iant to lighting, background, and other geometric proper-

ties such as position, size of external objects, and

viewpoint of the camera. When the demonstrations have

sequential, recursive, relational, or other kinds of struc-

ture, structured representations can be useful to infer

meaningful hidden associations for learning of manipula-

tion skills.

Consider, for example, a frequently used pick-and-place

task in robotics applications that may be decomposed into

temporally connected shorter segments such as reach,

grasp, move, drop, and so on. Similarly, the surgical sutur-

ing task may be decomposed into temporally connected

movement primitives or action segments such as needle

insertion, needle extraction, needle hand-off, etc. Such a

hierarchical decomposition is analogous to the speech rec-

ognition and synthesis problem where words and sentences

are synthesized from phoneme- and triphone-based seg-

ments (Rabiner, 1989; Zhang et al., 2017). Recent trends

in imitation leaning are forgoing such a task structure for

end-to-end supervised learning which requires a large-

scale collection and labeling of training demonstrations.

The focus of this paper is on exploiting the sequential

structure in the demonstrations by extracting invariant seg-

ments and sequencing them together for robot imitation.

We first present a family of task-parameterized hidden

semi-Markov models (HSMMs) (Rabiner, 1989; Tanwani,

2018; Yu, 2010) for spatiotemporal encoding of the

demonstrations, and combine it with a linear quadratic

tracking (LQT) controller (Borrelli et al., 2011) to
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reproduce the robot movement. The task-parameterized

formulation systematically adapts the generated trajec-

tories to changing situations such as pose/size of the

objects in the environment (Calinon, 2016; Tanwani and

Calinon, 2016; Wilson and Bobick, 1999).

We then present Motion2Vec for acquiring motion-

centric representations of manipulation skills from videos

for imitation learning (Tanwani et al., 2020). We use

metric learning with a Siamese network to bring similar

action segments, images with same discrete labels,

together in an embedding space, while preserving the tem-

poral ordering in the embedded observations. Motion2Vec

moves the video observations into a low-dimensional vec-

tor domain where closeness refers to spatiotemporal

grouping of the same action segments.

We show two applications of sequential robot imitation

learning: (1) pick-and-place an object while avoiding a

moving obstacle with the Baxter robot using four kines-

thetic demonstrations only (see Figure 1); (2) segmenta-

tion and imitation of surgical suturing motions on the

dual-arm da Vinci robot from publicly available videos of

the JIGSAWS dataset (see Figure 2), while obtaining bet-

ter segmentation accuracy of 85:5% on the leave one

super trial out test set than reported in the literature, e.g.,

DiPietro et al. (2016) and Lea et al. (2016) report accuracy

of 83:3% and 81:4%, respectively.

This paper unifies and extends our previous work on

encoding manipulation skills in a task-adaptive manner

from trajectories and videos (Tanwani et al., 2018, 2020).

The main contributions are as follows.

1. A task-parameterized generative model that combines

the HSMM with a LQT controller for imitation learn-

ing from kinesthetic demonstrations.

2. A representation learning approach for spatiotemporal

alignment of action segments/sub-goals/options in an

embedding space from video observations that is

invariant to nuisance variables such as lightning,

background, and camera viewpoint.

3. Learning manipulation skills for a pick-and-place task

while avoiding a moving obstacle from a few kines-

thetic demonstrations, and for a vision-based suturing

task with a da Vinci robot from the publicly available

JIGSAWS dataset with performance improvement

over state-of-the-art methods.

1.1. Organization of the paper

We give a brief overview of imitation learning approaches

in Section 2. Section 3 describes our sequential learning

from trajectories approach followed by task-parameterized

formulations in Section 4. In Section 5, we present the

imitation learning from videos approach and then evaluate

Fig. 1. Top-left: Baxter robot picks the glass plate with a

suction lever and places it on the cross after avoiding an

obstacle of varying height. Top-right: reproduction for

previously unseen object and obstacle position. Here f ~A1, ~b1g
and f ~A2, ~b2g indicate the reference frame positions attached to

the glass plate (green rectangle) and the obstacle (gray rod),

respectively. Ellipsoids of different colors represent the 3D

cross-sections of the Gaussians that encode the observation

distributions. Bottom-left: left–right HSMM encoding of the

task with duration model shown next to each state. Bottom-

right: evolution of the forward variable of HSMM over time.

Fig. 2. Motion2Vec groups similar action segments together in

an embedding space. The embedding space is represented above

with a t-distributed stochastic neighbor embedding (t-SNE) plot.

Action segments are obtained by sequence learning with a

recurrent neural network (RNN) for a given parametrization of

the Siamese network. The learned representation is applied to

surgical suturing segmentation and pose imitation in simulation

and real on the da Vinci robot.
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the performance on pick-and-place with the Baxter robot

and surgical suturing with the da Vinci robot in Section 6.

Finally, we conclude the paper with an outlook to our

future work.

2. Related work

The two main challenges in imitation learning include

(Nehaniv and Dautenhahn, 2004): (1) what to learn,

acquiring meaningful features of the task from demonstra-

tions for imitation; and (2) how to learn, learning a control

policy from the features to reproduce the demonstrated

behavior. Common approaches to imitation learning

include behavior cloning and inverse reinforcement learn-

ing (IRL) with dynamic movement primitives (Ijspeert

et al., 2013), Gaussian mixture models (Calinon and Lee,

2018), task-parametrized generative models (Tanwani,

2018), generative adversarial imitation learning (Ho and

Ermon, 2016), one-shot imitation learning (Duan et al.,

2017), Dagger (Ross et al., 2011), and behavior cloning

from observation (Torabi et al., 2018) (see Osa et al.

(2018) for an overview). In contrast to direct trajectory

learning from demonstrations, we focus on the contextual

understanding by exploiting the sequential structure in the

demonstrations.

2.1. Sequential learning from trajectories

Hidden Markov models (HMMs) have been typically used

as a generative model for recognition and generation of

movement skills in robotics (Asfour et al., 2008; Duque

et al., 2019; Lee and Ott, 2010; Mor et al., 2021; Rozo

et al., 2020; Tanwani and Calinon, 2017; Vakanski et al.,

2012). For example, Kulic et al. (2008) used HMMs to

incrementally group whole-body motions based on their

relative distance in HMM space. Lee and Ott (2010) pre-

sented an iterative motion primitive refinement approach

with HMMs. Niekum et al. (2012) used the beta process

autoregressive HMM for learning from unstructured

demonstrations. Figueroa and Billard (2017) used the

transformation invariant covariance matrix for encoding

tasks with a Bayesian non-parametric HMM. Yang et al.

(2019) and Pignat and Calinon (2017) combined HSMM

with Gaussian mixture regression for assisted teleopera-

tion and dressing. Conditional random fields (CRFs), on

the other hand, directly encode the conditional probability

distribution of the output labels given the input observa-

tion sequence in a discriminative manner (Lafferty et al.,

2001; Sutton and McCallum, 2012). The interested reader

can find connections of probabilistic inference methods

for planning and control in Todorov (2008), Toussaint

(2009), Kappen et al. (2012), and Levine (2018). Other

related application contexts in imitation learning include

options framework (Fox et al., 2017; Krishnan et al.,

2017), sequencing primitives (Medina R. and Billard,

2017), temporal alignment (Bowen and Alterovitz, 2020;

Shiarlis et al., 2018), intention recognition (Tanwani and

Calinon, 2017; Ti et al., 2019), and neural task programs

(Fox et al., 2018; Xu et al., 2017). This paper emphasizes

learning manipulation skills from human demonstrations

using a family of HMMs by sequencing the atomic move-

ment segments or primitives. We build upon these works

to present a task-parameterized HSMM for segmentation,

recognition, and synthesis of robot movement. We observe

the demonstrations with respect to different coordinate

systems describing virtual landmarks or objects of interest,

and adapt the model according to the environmental

changes in a systematic manner. Capturing such invariant

representations allows us to compactly encode the task

variations than using a standard regression problem.

2.2. Weakly supervised learning from videos

Acquiring robot manipulation skills from videos by imita-

tion provides a scalable alternative to traditional kines-

thetic and teleoperation interfaces. However, uncontrolled

variables such as lighting, background and camera view-

point pose a challenge to robot learning from video obser-

vations. Learning from multiple viewpoints, temporal

sequences, labeled action segments, weakly supervised

signals such as order of sub-actions, text-based annotations

or unsupervised learning are feasible alternatives to learn-

ing dense pixel-wise visual descriptors from observations

(Florence et al., 2018; Schmidt et al., 2017; Zeng et al.,

2017). Kuehne and Serre (2015) presented a generative

framework for end-to-end action recognition by extracting

Fisher vectors from videos and sequencing them with

HMMs, followed by a weakly supervised approach for

temporal action segmentation with RNN–HMM (Kuehne

et al., 2019). Tang (2012) learn temporal structure in the

videos for complex event detection. Liu et al. (2017) learn

a translation invariant policy between the expert and the

learner contexts. Doersch et al. (2015) use spatial coher-

ence in the neighboring pixels for learning unsupervised

visual representations. Misra et al. (2016) proposed shuffle

and learn to maintain temporal order in learning the visual

representation. Wang and Gupta (2015) used triplet loss to

encourage the first and the last frame of the same video

together in the embedding space, while pushing away the

negative sample from another class. Sermanet et al. (2017)

used metric learning loss for getting a temporally coherent

viewpoint invariant embedding space with multi-view or

single-view images and used nearest neighbors in the

embedding space for imitation learning. Dwibedi et al.

(2018) extended the approach to multiple frames, and use

a temporal cycle consistency (TCC) loss by matching

frames over time across videos in Dwibedi et al. (2019).

Finn and Levine (2016) and Ebert et al. (2018) presented a

deep action-conditioned visual foresight model with

model-predictive control for learning from pixels directly.

Visual imitation is gaining traction in several emerging

robotics applications (Finn et al., 2017; Hoque et al., 2020;

Sundaresan et al., 2020; Young et al., 2020).
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Siamese networks learn a similarity function across

images in an embedding space (Hermans et al., 2017;

Koch et al., 2015; Schroff et al., 2015). In this paper, we

encode the video observations based on spatiotemporal

alignment of action segments/options, in addition to using

time only with self-supervised representations (Sermanet

et al., 2017). We use metric learning with triplet loss to

attract similar actions in an embedding space and segment

the resulting embedding space with a hybrid deep neural

network (DNN)–RNN model. We apply the approach for

downstream tasks of learning action segments/surgemes

and end-effector poses on the dual-arm da Vinci robot

from publicly available suturing videos of the JIGSAWS

dataset (Gao et al., 2014). Results suggest performance

improvement in segmentation over state-of-the-art base-

lines (Ahmidi et al., 2017; DiPietro et al., 2016), while

introducing pose imitation on this dataset with 0:94 cm

error in position per observation, respectively.

3. Imitation from trajectories

Let fjtg
T
t = 1 denote the sequence of observations with

jt 2 R
D collected while demonstrating a task. The obser-

vations may represent the kinesthetic data such as the pose

and the velocities of the end-effector of the human arm,

haptic information, or any arbitrary features defining the

task variables of the environment. The observation

sequence is associated with an unknown hidden state

sequence fztgT
t = 1 with zt 2 f1 . . . Kg belonging to the dis-

crete set of K hidden states. For example, the hidden states

may correspond to different segments of the task such as

reach, grasp, move, etc. The transition between one seg-

ment i to another segment j is denoted by the transition

matrix a 2 R
K ×K with ai, j ¼D P(zt = jjzt�1 = i). The para-

meters fmS
j ,S

S
j g represent the mean and the standard

deviation of staying s consecutive time steps in state j as

p(s) estimated by a Gaussian N (sjmS
j ,S

S
j ). The hidden

state follows a categorical distribution with zt;Cat(pzt�1
)

where pzt�1
2 R

K is the next state transition distribution

over state zt�1 with Pi as the initial probability, and the

observation jt is drawn from the output distribution of

state j, described by a multivariate Gaussian with para-

meters fmj,Sjg. The overall parameter set is defined by

Q = fPi, fai,mgK
m = 1,mi,Si,m

S
i ,S

S
i g

K
i = 1. We seek to

model and infer the semantic structure of the hidden state

sequence fztgT
t = 1 from the observations. We learn the

joint probability density of the observation and the hidden

state sequence P(jt, zt), where the data generating emis-

sion distribution P(jtjzt) is simplified for exact inference

of the model structure P(ztjjt).

3.1. HMMs

HMMs encapsulate the spatiotemporal information by

augmenting a mixture model with latent states that

sequentially evolve over time in the demonstrations

(Rabiner, 1989). A HMM is thus defined as a doubly sto-

chastic process, one with a sequence of hidden states and

another with a sequence of observations/emissions.

Spatiotemporal encoding with HMMs can handle move-

ments with variable durations, recurring patterns, options

in the movement, or partial/unaligned demonstrations.

Without loss of generality, we present our formulation

with semi-Markov models for the remainder of the paper.

Semi-Markov models relax the Markovian structure of

state transitions by relying not only upon the current state

but also on the duration/elapsed time in the current state,

i.e., the underlying process is defined by a semi-Markov

chain with a variable duration time for each state. The

state duration stay is a random integer variable that

assumes values in the set f1, 2, . . . , smaxg. The value cor-

responds to the number of observations produced in a

given state, before transitioning to the next state. HSMMs

associate an observable output distribution with each state

in a semi-Markov chain (Yu, 2010), similar to how we

associate a sequence of observations with a Markov chain

in a HMM.

3.2. Encoding with HSMM

For learning and inference in a HMM (Rabiner, 1989), we

make use of the intermediary variables as: (1) forward

variable, aHMM
t, i ¼D P(zt = i, j1 . . . jtju), probability of a

datapoint jt to be in state i at time step t given the partial

observation sequence fj1, . . . , jtg; (2) backward variable,

bHMM
t, i ¼D P(jt + 1 . . . jT jzt = i, u), probability of the

partial observation sequence fjt + 1, . . . , jTg given that

we are in the i th state at time step t; (3) smoothed node

marginal gHMM
t, i ¼D P(zt = ijj1 . . . jT , u), probability of jt

to be in state i at time step t given the full observation

sequence j; and (4) smoothed edge marginal

zHMM
t, i, j ¼

D
P(zt = i, zt + 1 = jjj1 . . . jT , u), probability of jt to

be in state i at time step t and in state j at time step t + 1

given the full observation sequence j. The intermediary

variables are mathematically represented as

aHMM
t, i =

XK

j = 1

aHMM
t�1, j aj, i

 !
N (jtj mi,Si)

bHMM
t, i =

XK

j = 1

ai, j N (jt + 1j mj,Sj) bHMM
t + 1, j

gHMM
t, i =

aHMM
t, i bHMM

t, iPK
k = 1

aHMM
t, k bHMM

t, k

zHMM
t, i, j =

aHMM
t, i ai, j N (jt + 1j mj,Sj) bHMM

t + 1, jPK
k = 1

PK
l = 1

aHMM
t, k ak, l N (jt + 1j ml,Sl) bHMM

t + 1, l

ð1Þ
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The expected complete log-likelihood of HMMs for a

set of M demonstrations,

Q(u, u old)=E

XM
m = 1

XT

t = 1

logP(jm, t, ztju) j j, u old

( )

is maximized in an expectation–maximization (EM) man-

ner with

Q(u, uold)=
XK

i = 1

XM
m = 1

gHMM
m, 1, i logPi

+
XK

i = 1

XK

j = 1

XM
m = 1

XT

t = 1

zHMM
m, t, i, j log ai, j

+
XM
m = 1

XT

t = 1

XK

i = 1

P(zt=ijjm, t, u
old) logN (jm, tjmi,Si)

ð2Þ

E � step : gHMM
m, t, i =

aHMM
t, i bHMM

t, iPK
k = 1

aHMM
t, k bHMM

t, k

M � step : Pi  

PM
m = 1

gHMM
m, 1, i

M

ai, j  

PM
m = 1

PTm�1

t = 1

zHMM
m, t, i, j

PM
m = 1

PTm�1

t = 1

gHMM
m, t, i

mi  

PM
m = 1

PTm

t = 1

gHMM
m, t, i jm, t

PM
m = 1

PTm

t = 1

gHMM
m, t, i

Si  

PM
m = 1

PTm

t = 1

gHMM
m, t, i (jm, t � mi)(jm, t � mi)

T

PM
m = 1

PTm

t = 1

gHMM
m, t, i

Note that numerical underflow issues occur with a

naive implementation of the above algorithm. In practice,

a simple approach to avoid this issue is to rely on

scaling factors during the computation of the forward and

backward variables, which get canceled out when normal-

izing the posterior (Rabiner, 1989). Parameters

fPi, fai,mgK
m = 1,mi,SigK

i = 1 are estimated using the EM

algorithm for HMMs, and the duration parameters

fmS
i ,S

S
i g

K
i = 1 are estimated empirically from the data after

training using the most likely hidden state sequence

zt = fz1 . . . zTg. In simple words, if the computed hidden

state sequence for a given observation sequence reads as

1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 2, 2, 2, the state duration

mean for the three states would be 5, 6, and 3 steps (see

Figure 3 for an overview of the approach).

3.3. Viterbi decoding with HSMM

The most probable sequence of the hidden states z�t for a

given observation sequence and the model parameters is

determined by the Viterbi algorithm (Rabiner, 1989; Yu,

2010). The decoding problem is

z�t = arg max
z1...zT

P(j1 . . . jT , z1 . . . zT jQ) ð3Þ

The Viterbi algorithm employs the max operator in the

forward pass, followed by a backward pass to recover the

most probable path z�t . Let us denote dt, i as the likelihood

of the most probable state sequence ending in state i based

on the first t observations, recursively estimated as

dt, i = max
s

max
j

dt�s, j aj, i

� �
P(sji)

Yt

c = t�s + 1

P(jtji) ð4Þ

The maximum over dT , i gives the maximum likelihood

estimate of the observed sequence and the terminal state

zT . Backtracking over the auxiliary variable

ct, i = argmaxj dt�1, i aj, i

� �
, 8t 2 f2 . . . Tg, gives the

Fig. 3. Conceptual illustration of HSMM for imitation learning. Left: three-dimensional Z-shaped demonstrations composed of five

equally spaced trajectory samples. Middle: demonstrations are encoded with a three-state HMM represented by Gaussians (shown as

ellipsoids) that represent the blue, green, and red segments, respectively. The transition graph shows a duration model (Gaussian)

next to each node. Right: the model is combined with LQT to synthesize motion in performing robot manipulation tasks from five

different initial conditions marked with orange squares (see also Figure 4).
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desired hidden state sequence. Taken over all T and K val-

ues, the Viterbi decoding takes O(K2T2).

3.4. Synthesis with HSMM

Given the learned model parameters, the probability of the

observed sequence fj1 . . . jtg to be in a hidden state zt = i

at the end of the sequence (also known as filtering prob-

lem) is computed with the help of the forward variable as

P(ztjj1, . . . , jt)= hHMM
t, i =

aHMM
t, iPK

k = 1

aHMM
t, k

=
piN (jtjmi,Si)PK

k = 1

pkN (jtjmk ,Sk)

ð5Þ

Sampling from the model for predicting the

sequence of states over the next time horizon

P(zt, zt + 1, . . . , zTp
jj1, . . . , jt) can be done in two ways.

(1) Stochastic sampling: the sequence of states is sampled

in a probabilistic manner given the state duration and the

state transition probabilities. By stochastic sampling,

motions that contain different options and do not evolve

only on a single path can also be represented. Starting

from the initial state zt = i, the s duration steps are

sampled from fmS
i ,S

S
i g, after which the next transition

state is sampled zt + s + 1;pzt + s
. The procedure is repeated

for the given time horizon in a receding horizon manner.

(2) Deterministic sampling: the most likely sequence of

states is sampled and remains unchanged in successive

sampling trials. We use the forward variable of HSMM

for deterministic sampling from the model. The forward

variable aHSMM
t, i ¼D P(zt = i, j1 . . . jtju) requires margina-

lizing over the duration steps along with all possible state

sequences. The probability of a datapoint jt to be in state i

at time step t given the partial observation sequence

fj1, . . . , jtg is now specified as (Yu, 2010)

aHSMM
t, i =

Xmin (smax, t�1)

s = 1

XK

j = 1

aHSMM
t�s, j aj, i N (sjmS

i ,S
S
i )

Yt

c = t�s + 1

N (jcj mi,Si)

ð6Þ

where the initialization is given by aHSMM
1, i = Pi N

(1jmS
i ,S

S
i ) N (j1j mi,Si), and the output distribution in

state i is conditionally independent for the s duration steps

given as
Qt

c = t�s + 1N (jcj mi,Si). Note that for t\smax,

the sum over duration steps is computed for t � 1 steps,

instead of smax. Without the observation sequence for the

next time steps, the forward variable simplifies to

aHSMM
t, i =

Xmin (smax, t�1)

s = 1

XK

j = 1

aHSMM
t�s, j aj, i N (sjmS

i ,S
S
i ) ð7Þ

The forward variable is used to plan the movement

sequence for the next Tp steps with t = t + 1 . . . Tp. During

prediction, we only use the transition matrix and the dura-

tion model to plan the future evolution of the initial/cur-

rent state and omit the influence of the spatial data that we

cannot observe, i.e., N (jtjmi,Si)= 1 for t . 1. This is

used to retrieve a step-wise reference trajectory N (m̂t, Ŝt)
from a given state sequence zt computed from the forward

variable with

zt = fzt, . . . , zTp
g= arg max

i

aHSMM
t, i ð8Þ

m̂t = mzt
, Ŝt = Szt

ð9Þ

Figure 4 shows a conceptual representation of the step-

wise sequence of states generated by deterministically

sampling from HSMM encoding of the Z-shaped data. In

the next section, we show how to synthesise robot move-

ment from this step-wise sequence of states in a smooth

manner.

3.5. Motion generation with LQT

We formulate the motion generation problem given the

step-wise desired sequence of states fN (m̂t, Ŝt)gTp

t = 1 as

sequential optimization of a scalar cost function with LQT

(Borrelli et al., 2011). The control policy ut 2 R
p at each

time step is obtained by minimizing the cost function over

the finite time horizon Tp,

ct(jt, ut)=
XTp

t = 1

(jt � m̂t)
TQt(jt � m̂t)+ uTt Rtut ð10Þ

s:t: jt + 1 =Adjt +Bdut

starting from the initial state j1 and following the discrete

linear dynamical system specified by Ad and Bd with

positive-definite weighting matrices Qt and Rt. We con-

sider a linear time-invariant double integrator system to

describe the system dynamics. Alternatively, a time-

varying linearization of the system dynamics along the

reference trajectory can also be used to model the system

dynamics without loss of generality. Both discrete and

continuous time linear quadratic regulator/tracker can be

used to follow the desired trajectory. The discrete time

formulation, however, gives numerically stable results for

a wide range of values of Rt. Qt is set inversely propor-

tional to the variance in the observed demonstrated trajec-

tories, Qt = Ŝt

�1
, i.e., parts of the demonstrations where

variance is higher, the cost weight is lower to produce

lower stiffness and damping. The control law u�t that mini-

mizes the cost function in (10) under finite horizon subject

to the linear dynamics in discrete time is given as

u�t =Kt(m̂t � jt)+ uFFt ð11Þ
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u�t =� R+BT
d PtBd

� ��1
BT

dPtAd jt � m̂tð Þ

� R+BT
dPtBd

� ��1
BT

d Pt Adm̂t � m̂tð Þ+ dtð Þ

where Kt = ½KPt ,KVt � are the full stiffness and damping

matrices for the feedback term, and uFFt = R+BT
d

�
PtBdÞ�1BT

d Pt Adm̂t � m̂tð Þ+ dtð Þ is the feedforward term.

The stiffness and damping parameters are obtained as a

closed-form solution of the linear quadratic regulator with

time-varying quadratic cost function, such that the control-

ler in (11) minimizes the total cost accumulated over the

finite horizon (see the Appendix for details). Here Pt and

dt are obtained by solving the Riccati differential equation

and linear differential equation backwards in discrete

time from terminal conditions PTp
=QTp

and dTp
= 0,

respectively,

Pt�1 =Qt � AT
d (PtBd R+BT

dPtBd

� ��1
BT

dPt � Pt)Ad

dt�1 = (AT
d � AT

dPtBd R+BT
dPtBd

� ��1
BT

d )

(Pt Adm̂t � m̂t + 1

� �
+ dt)

ð12Þ

Figure 4 shows the results of applying discrete LQT on

the desired step-wise sequence of states sampled from an

HSMM encoding of the Z-shaped demonstrations. Note

that the gains can be precomputed before simulating the

system if the reference trajectory does not change during

the reproduction of the task. The resulting trajectory j�t
smoothly tracks the step-wise reference trajectory m̂t and

the gains KPt ,K
V
t locally stabilize jt to track j�t in accor-

dance with the precision required during the task.

4. Invariant task-parameterized model

adaptation

Conventional approaches to encode task variations such as

change in the pose of the object is to augment the state of

the environment with the policy parameters (Paraschos

et al., 2013). Such an encoding, however, does not capture

the geometric structure of the problem. In contrast, we

exploit the problem structure by introducing the task para-

meters in the form of coordinate systems that observe the

demonstrations from multiple perspectives. Task-parame-

terization enables the model parameters to adapt in accor-

dance with the external task parameters that describe the

environmental situation, instead of hard coding the solu-

tion for each new situation or handling it in an ad hoc

manner (Calinon, 2016; Pervez and Lee, 2018; Tanwani

and Calinon, 2016; Wilson and Bobick, 1999). When a

different situation occurs (pose of the object changes),

changes in the task parameters/reference frames are used

to modulate the model parameters in order to adapt the

robot movement to the new situation.

4.1. Model learning

We represent the task parameters with F coordinate sys-

tems, defined by fAj, bjgF
j = 1, where Aj denotes the orienta-

tion of the frame as a rotation matrix and bj represents the

origin of the frame. We assume that the coordinate frames

are specified by the user, based on prior knowledge about

the carried out task depending upon the invariant compo-

nents in the task. Typically, coordinate frames are attached

to objects, tools, or locations that could be relevant in the

Fig. 4. Sampling from HSMM from an unseen initial state j0 over the next time horizon and tracking the step-wise desired

sequence of states N (m̂t, Ŝt) with an LQT controller. Note that this converges although j0 was not previously encountered.

1312 The International Journal of Robotics Research 40(10-11)



execution of a task (see Figure 5 and Section 6 for details).

Each datapoint jt is observed from the viewpoint of F

different experts/frames, with j(j)
t =A�1

j (jt � bj) denot-

ing the datapoint observed with respect to frame j. The

parameters of the task-parameterized HSMM are

defined by

u = ffm(j)
i ,S(j)

i g
F
j = 1, fai,mgK

m = 1,m
S
i ,S

S
i g

K
i = 1

where m(j)
i and S(j)

i define the mean and the covariance

matrix of i th mixture component in frame j. Parameter

updates of the task-parameterized HSMM algorithm

remain the same as HSMM, except the computation of the

mean and the covariance matrix is repeated for each coor-

dinate system separately. The emission distribution of the

i th state is represented by the product of the probabilities

of the datapoint to belong to the i th Gaussian in the corre-

sponding j th coordinate system. The forward variable of

HMM in the task-parameterized formulation is described

as

aTP�HMM
t, i =

XK

j = 1

aHMM
t�1, j aj, i

 !YF
j = 1

N (j(j)
t jm

(j)
i ,S(j)

i ) ð13Þ

Similarly, the backward variable bTP�HMM
t, i , the

smoothed node marginal gTP�HMM
t, i , and the smoothed

edge marginal zTP�HMM
t, i, j can be computed by replacing

the emission distribution N (jtj mi,Si) with the product of

probabilities of the datapoint in each frameQF
j = 1N (j(j)

t jm
(j)
i ,S(j)

i ). The duration model N (sjmS
i ,S

S
i ) is

used as a replacement of the self-transition probabilities

ai, i. The hidden state sequence over all demonstrations is

used to define the duration model parameters fmS
i ,S

S
i g as

the mean and the standard deviation of staying s consecu-

tive time steps in the i th state.

4.2. Model adaptation in new situations

In order to combine the output from coordinate frames of

reference for an unseen situation during testing represented

by the frames f ~Aj, ~bjgF
j = 1, we linearly transform the

Gaussians back to the global coordinates with f ~Aj, ~bjgF
j = 1,

and retrieve the new model parameters f~mi,
~Sig for the i

th mixture component by computing the products of the

linearly transformed Gaussians (see Figure 5)

N (~mi,
~Si)}

YF
j = 1

N ~Ajm
(j)
i + ~bj, ~AjS

(j)
i
~A
T

j

� �
ð14Þ

Evaluating the products of Gaussians represents the

observation distribution of HSMM, whose output sequence

is decoded and combined with LQT for smooth motion

generation as shown in the previous section:

~Si =
XF

j = 1

~AjS
(j)
i
~A
T

j

� ��1

 !�1

~mi =
~Si

XF

j = 1

~AjS
(j)
i
~A
T

j

� ��1
~Ajm

(j)
i + ~bj

� � ð15Þ

Note that we transform the movement relative to the

reference frames as being observed from multiple refer-

ence frames, and then combine this information with the

products of linearly transformed Gaussians. In case there is

only one frame of reference for a goal-directed movement,

the approach is equivalent to encoding the HSMM with

relative positions between the object and the end-effector.

4.3. Latent space representations

Model-based generative models such as HSMMs tend to

suffer from the curse of dimensionality when few data-

points are available. We use statistical subspace clustering

Fig. 5. Task-parameterized formulation of HSMM: four demonstrations on left are observed from two coordinate systems that

define the start and end position of the demonstration (starting in purple position and ending in green position for each

demonstration). The generative model is learned in the respective coordinate systems. The model parameters in respective

coordinate systems are adapted to the new unseen object positions by computing the products of linearly transformed Gaussian

mixture components. The resulting HSMM is combined with LQT for smooth retrieval of manipulation tasks. Note that if we add a

moving obstacle with respect to which the model should be invariant, then we would need three frames. Similarly, if we are only

interested in grasping an object from different initial conditions, we would only need one frame on the object to be grasped.
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methods that reduce the number of parameters to be

robustly estimated to address this problem. A simple way

to reduce the number of parameters would be to constrain

the covariance structure to a diagonal or spherical/isotro-

pic matrix, and restrict the number of parameters at the

cost of treating each dimension separately. Such decou-

pling, however, cannot encode the important motor control

principles of coordination, synergies and action-perception

couplings (Wolpert et al., 2011).

Consequently, we seek out a latent feature space in the

high-dimensional data to reduce the number of model

parameters that can be robustly estimated. We consider

three formulations to this end: (1) low-rank decomposition

of the covariance matrix using mixture of factor analyzers

(MFA) approach (McLachlan et al., 2003); (2) partial

tying of the covariance matrices of the mixture model with

the same set of basis vectors, albeit different scale with

semi-tied covariance matrices (Gales, 1999; Tanwani and

Calinon, 2016); and (3) Bayesian non-parametric sequence

clustering under small variance asymptotics (SVA) (Kulis

and Jordan, 2012; Roychowdhury et al., 2013; Tanwani

and Calinon, 2019). All the decompositions can readily be

combined with invariant task-parameterized HSMM and

LQT for encapsulating reactive autonomous behavior as

shown in the previous section.

4.3.1. MFA. The basic idea of MFA is to perform subspace

clustering by assuming the covariance structure for each

component of the form,

Si = LiL
T
i + Ci ð16Þ

where Li 2 R
D× d is the factor loadings matrix with d\D

for parsimonious representation of the data, and Ci is the

diagonal noise matrix (see Figure 6 for MFA representa-

tion in comparison to a diagonal and a full covariance

matrix). Note that the mixture of probabilistic principal

component analysis (MPPCA) model is a special case of

MFA with the distribution of the errors assumed to be iso-

tropic with Ci = Is2
i (Tipping and Bishop, 1999).

The MFA model assumes that jt is generated using a

linear transformation of d-dimensional vector of latent

(unobserved) factors ft,

jt = Lift + mi + e ð17Þ

where mi 2 R
D is the mean vector of the i th factor analy-

zer, ft;N (0, I) is a normally distributed factor, and

e;N (0,Ci) is a zero-mean Gaussian noise with diagonal

covariance Ci. The diagonal assumption implies that the

observed variables are independent given the factors.

Note that the subspace of each cluster is not spanned

by orthogonal vectors with MFA, whereas it is a necessary

condition in models based on eigendecomposition such as

principal component analysis (PCA). Each covariance

matrix of the mixture component has its own subspace

spanned by the basis vectors of Si. As the number of com-

ponents increases to encode more complex skills, an

increasing large number of potentially redundant para-

meters are used to fit the data. Consequently, there is a

need to share the basis vectors across the mixture compo-

nents such as semi-tying the covariance matrices of the

mixture model.

4.3.2. Semi-tied mixture model. When the covariance

matrices of the mixture model share the same set of para-

meters for the latent feature space, we call the model a

semi-tied mixture model (Tanwani and Calinon, 2016).

The main idea behind semi-tied mixture models is to

decompose the covariance matrix Si into two terms: a

common latent feature matrix H 2 R
D×D and a

component-specific diagonal matrix S(diag)
i 2 R

D×D, i.e.,

Si =HS(diag)
i HT ð18Þ

The latent feature matrix encodes the locally important

synergistic directions represented by D non-orthogonal

basis vectors that are shared across all the mixture compo-

nents, whereas the diagonal matrix selects the appropriate

subspace of each mixture component as convex combina-

tion of a subset of the basis vectors of H. Note that the

eigendecomposition of Si =UiS
(diag)
i UT

i contains D basis

vectors of Si in Ui. In comparison, semi-tied mixture

model gives D globally representative basis vectors that

are shared across all the mixture components. The para-

meters H and S(diag)
i are updated in closed form with EM

updates of HSMM (Gales, 1999).

The underlying hypothesis in semi-tying the model

parameters is that similar coordination patterns occur at

different phases in a manipulation task. By exploiting the

spatial and temporal correlation in the demonstrations, we

reduce the number of parameters to be estimated while

locking the most important synergies to cope with pertur-

bations. This allows the reuse of the discovered synergies

in different parts of the task having similar coordination

patterns. In contrast, the MFA decomposition of each cov-

ariance matrix separately cannot exploit the temporal

synergies, but has more flexibility in locally encoding the

data.

The encoding of Z-shaped demonstrations with semi-

tied model in Figure 7 reveals the locally important basis

vectors comprising the latent feature space H. In contrast,

Fig. 6. Parameters representation of a diagonal, full, and MFA

decomposition of covariance matrix. Filled blocks represent

non-zero entries.
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PCA here would yield orthogonal basis vectors along the

directions of largest variance globally. Note that the basis

vectors are not required to be orthogonal in the semi-tied

GMM. It can be seen in Figure 7 that the basis vector in

red is shared across the first and the third mixture compo-

nent, while the basis vector in green is shared across the

first and the second mixture component. The basis vector

in blue is tied only to the second mixture component. This

yields high correlation between the first and the third mix-

ture component, and low correlation of the second

Gaussian component with other mixture components (see

Figure 7(right)).

4.3.3. Bayesian non-parametrics under SVA. Specifying

the number of latent states in a mixture model is often dif-

ficult. Model selection methods such as cross-validation or

Bayesian information criterion (BIC) are typically used to

determine the number of states. Bayesian non-parametric

approaches comprising hierarchical Dirichlet processes

(HDPs) provide a principled model selection procedure by

Bayesian inference in an HMM with infinite number of

states (Teh et al., 2006). These approaches provide flexi-

bility in model selection, however, their widespread use is

limited by the computational overhead of existing

sampling-based and variational techniques for inference.

We take a SVA approximation of the Bayesian non-

parametric model that collapses the posterior to a simple

deterministic model, while retaining the non-parametric

characteristics of the algorithm.

SVA analysis implies that the covariance matrix Si of

all the Gaussians is set to the isotropic noise s2, i.e.,

Si’ lims2!0 s2I in the likelihood function and the prior

distribution (Broderick et al., 2013; Kulis and Jordan,

2012). The analysis yields simple deterministic models,

while retaining the non-parametric nature. For example,

SVA analysis of the Bayesian non-parametric GMM leads

to the DP-means algorithm (Kulis and Jordan, 2012).

Similarly, SVA analysis of the Bayesian non-parametric

HMM under HDP yields the segmental k-means problem

(Roychowdhury et al., 2013).

Restricting the covariance matrix to an isotropic/spheri-

cal noise, however, fails to encode the coordination pat-

terns in the demonstrations. Consequently, we model the

covariance matrix in its intrinsic affine subspace of dimen-

sion di with projection matrix Ldi

i 2 R
D× di , such that

di\D and Si = lims2!0 Ldi

i Ldi
T

i + s2I (akin to a mixture

of probabilistic PCA Tipping and Bishop (1999)). Under

this assumption, we apply the SVA limit on the remaining

(D� di) dimensions to encode the most important coordi-

nation patterns while being parsimonious in the number of

parameters (see Figure 8). Performing SVA of the joint

likelihood of HDP–HMM yields the maximum a poster-

iori estimates of the parameters by iteratively minimizing

the loss function
1

L(z, d,m,U, a)=
XT

t = 1

dist(jt,mzt
,Udi

zt
)2 + l(K � 1)

+ l1

XK

i = 1

di � l2

XT�1

t = 1

log (azt , zt + 1
)+ l3

XK

i = 1

(ti � 1)

where dist(jt,mzt
,Ud

zt
)2 represents the distance of the data-

point jt to the subspace of cluster zt defined by mean mzt

and unit eigenvectors of the covariance matrix Ud
zt

(see the

supplementary material for details). The algorithm opti-

mizes the number of clusters and the subspace dimension

of each cluster while minimizing the distance of the data-

points to the respective subspaces of each cluster. The l2

term favors the transitions to states with higher transition

probability (states which have been visited more often

before), l3 penalizes for transition to unvisited states with

Fig. 7. Left: Semi-tied mixture model encoding of Z-shaped

data with 3 components and basis vectors of H shown at the

origin. Right: Pairwise correlation among the mixture

components of semi-tied mixture model.

Fig. 8. Bayesian non-parametric clustering of Z-shaped

streaming data under SVA with: (top) online DP-GMM;

(bottom) online DP-MPPCA. Note that the number of clusters

and the subspace dimension of each cluster is adapted in a non-

parametric manner.
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ti denoting the number of distinct transitions out of state i,

while l and l1 are the penalty terms for increasing the

number of states and the subspace dimension of each out-

put state distribution.

The analysis is used here for scalable online sequence

clustering that is non-parametric in the number of clusters

and the subspace dimension of each cluster. The resulting

algorithm groups the data in its low-dimensional subspace

with non-parametric mixture of probabilistic principal

component analyzers based on the Dirichlet process, and

captures the state transition and state duration information

in a HDP–HSMM. The cluster assignment and the para-

meter updates at each iteration minimize the loss function,

thereby, increasing the model fitness while penalizing for

new transitions, new dimensions, and/or new clusters. The

interested reader can find more details of the algorithm in

Tanwani and Calinon (2019). We further illustrate the

importance of latent space models in efficiently encoding

the observations in the experiments section.

5. Imitation learning from videos

Learning meaningful visual representations in an embed-

ding space can facilitate generalization in downstream

tasks such as action segmentation and imitation (Tanwani

et al., 2020). To make it concrete, consider fIn, tgN , Tn

n = 1, t = 1

as a set of N video demonstrations, where

In, t 2 R
640× 480× 3 denotes the RGB image at time t of the

n th demonstration comprising Tn datapoints. Each

demonstration describes a video of a manipulation skill

such as pick-and-place or surgical suturing task, collected

from a third-person viewpoint that does not change in a

demonstration but may change across demonstrations. We

assume access to a supervisor that assigns segment labels

to each frame as belonging to one of the segments

zn, t 2 f1 . . . Cg such as reach and grasp, resulting in a set

of labeled demonstrations fIn, t, zn, tgN , Tn

n = 1, t = 1. Without loss

of generality, we drop the index n to denote an image

frame as It for the rest of the paper.

We seek to learn a deep motion-centric representation

of video observations fQD
: It ! jt with jt 2 R

d and

d � jItj such that similar action segments are grouped

together in the embedding space while being invariant to

the nuisance variables such as lighting, background,

and camera viewpoint. The representation needs to

semantically align the videos in the embedding space, and

subsequently predict segment labels zt�l:t for the training

mini-batch of length l with a sequence learning model

hQS
: jt�l:t ! zt�l:t, i.e.,

jt = f (It; QD) ð19Þ

zt�l:t = h(jt�l:t; QD,QS) ð20Þ

The learned networks are subsequently used to train the

control policy in the embedding space pQR
: jt ! ut,

where ut 2 R
p corresponds to the end-effector pose of the

robot arm to imitate the manipulation skill in the video

demonstrations. In this work, we assume access to the

kinematic poses of the end-effector in the video demonstra-

tions, and defer autonomous learning of the manipulation

skill from the embedded observations to the future work.

We follow a three-step methodology for imitation learn-

ing from videos (see Figure 2): (1) learn the deep embed-

ding space to pull together similar segments close while

pushing away other far segments with metric learning; (2)

train the sequence model parameters using the embedded

observations; and (3) learn the control policy from the

embedded observations to control the end-effector pose of

the robot arm.

5.1. Deep embedding space

The deep embedding space reflects the task-relevant attri-

butes of the objects in the videos and how they can be

mapped onto the robot end-effector. Sample and time

complexity of collecting/labeling videos at pixel level to

reflect such associations can be very high for training

vision-based deep models in robotics. The trajectory-

centric invariant formulations, described in the previous

section, may not readily generalize to the video demon-

strations as: (1) transforming the images with respect to an

arbitrary viewpoint is non-trivial as it requires the full 3D

reconstruction of the environment, (2) the variance across

images per pixel may not be indicative of the representa-

tive features in the demonstrations.

Here, we learn a deep embedding representation using

a metric learning loss which pulls together observations

from the same action segment in the embedding space,

while pushing away observations from other action seg-

ments that functionally correspond to different sub-goals

or movement primitives. We use triplet loss for metric

learning in this work (Schroff et al., 2015). Note that the

contrastive loss or the magnet loss may also be used in a

similar way (Rippel et al., 2015). During training, the loss

operates on the tuple corresponding to the anchor image

embedding jt, a positive sample belonging to the same

action segment j+
t and a negative sample randomly cho-

sen from another action segment j�t . Triplet loss posits

that the distance of the anchor to the positive sample in

the embedding space is less than the distance to the nega-

tive sample by some constant margin z, i.e.,

L(QD)=
1

T

XT

t = 1

k jt � j+
t k2

2 � k jt � j�t k2
2 + z

� 	
+

ð21Þ

where f:g+ is the hinge loss and the representation jt is

normalized to extract scale-invariant features similar to

(Schroff et al., 2015). We compare the triplet metric learn-

ing loss with other embedding approaches including: (1)

incremental principal component analysis (iPCA) to proj-

ect video observations into an uncorrelated embedding
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space (Zhao et al., 2006); (2) TCC to align the embedding

space by matching frames over time across video demon-

strations (Dwibedi et al., 2019); (3) time-contrastive net-

work with single view (svTCN) using a window of six

neighboring frames in the sequence to find the positive

sample for each anchor image and negative sample from a

window of 12 neighboring frames (Sermanet et al., 2017);

(4) n-pairs metric that takes pairs of images from same

segment labels where a pair is used as an anchor and a

positive image, respectively, while each pair in the mini-

batch may have different labels. The n-pairs loss repels a

positive sample from all negative samples in comparison

with the nearest negative sample in triplet loss (Sohn,

2016). Note that iPCA, TCC, and svTCN are used in an

unsupervised way, whereas we use triplet loss and n-pairs

loss in a supervised manner with labeled action segments.

5.2. Sequence learning of action segments

We seek to capture the spatiotemporal dependencies in the

embedded observations and predict action segments with a

sequence learning model. We use an RNN to discrimina-

tively model the action assignment to the observation

sequence P(zt�l:tjjt�l:t) using a stride of length l in a mini-

batch. An RNN maintains an additional hidden state and

uses the previous hidden state and the current input jt to

produce a new hidden state and the output zt. The hidden

state preserves the effect of previous observations in pre-

dicting the current output. We use the bi-directional long

short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) in this work that also preserves the

effect of future observations within a sequence. We mini-

mize the cross-entropy loss between the true and the pre-

dicted labels during training with backpropogration

through time (Graves, 2012).

We compare RNNs with k -nearest neighbor (KNN)

classification accuracy in the embedding space, along with

other sequence learning models, namely: (1) CRFs that

encode the conditional probability distribution of the out-

put labels sequence given the input observation sequence

in a discriminative manner (Lafferty et al., 2001; Sutton

and McCallum, 2012; Vakanski et al., 2012); (2) HMMs;

(3) HSMMs. Note that CRFs and RNNs are discriminative

models trained in a supervised manner, whereas HMM

and HSMMs are generative models used in an unsuper-

vised way.

5.3. Imitating end-effector poses

Given the learned model parameters of the embedding

space, we map the embedded observation jt to the end-

effector pose ut of the robot arm with a feedforward neural

network pQR
. The feedforward network is defined on top

of a pretrained embedding network whose parameters are

frozen during the learning process. The pose imitation loss

is a weighted combination of the position loss measured in

terms of the mean-squared error between the ground-truth

and the predicted end-effector position, and the orientation

loss measured in terms of the cosine distance between the

ground-truth and the predicted end-effector orientation in

quaternion space.

6. Experiments, results, and discussion

In this section, we report the experiments for our approach

on: (1) pick-and-place task with the Baxter robot from

kinesthetic demonstrations; (2) suturing task with the da

Vinci robot from videos publicly available in the

JIGSAWS dataset (Gao et al., 2014). Note that we do not

model contact dynamics with the needle and the suturing

phantom, and only imitate the suturing motions on the

kinematic level. We empirically investigate: (1) what

metric/sequence learning representations generalize better

in terms of the segmentation accuracy; (2) the usefulness

of the learned embeddings in imitating the end-effector

poses on the da Vinci arms.

6.1. Pick-and-place with obstacle avoidance

Pick-and-place is a standard benchmark in robotics

because it can be applied to a wide range of environments

and applications. The objective of the task is to place the

object in a desired target position by picking it from dif-

ferent initial poses of the object, while adapting the move-

ment to avoid the obstacle. The setup of pick-and-place

task with obstacle avoidance is shown in Figure 1. The

Baxter robot is required to grasp the glass plate with a suc-

tion lever placed in an initial configuration as marked on

the setup. The obstacle rod can be vertically displaced to

one of the eight target configurations. We describe the

task with two frames, one frame for the object initial con-

figuration with fA1, b1g and other frame for the obstacle

fA2, b2g with A2 = I and b2 to specify the centre of the

obstacle. We collect eight kinesthetic demonstrations with

different initial configurations of the object and the obsta-

cle successively displaced upwards as marked with the

visual circular tags in the figure. Alternate demonstrations

are used for the training set, while the rest are used for the

test set. Each observation comprises the end-effector

Cartesian position, quaternion orientation, gripper status

(open/closed), linear velocity, quaternion derivative, and

gripper status derivative with D = 16, F = 2, and a total of

200 datapoints per demonstration. We represent the frame

fA1, b1g as

A(n)
1 =

R(n)
1 0 0 0 0

0 E(n)1 0 0 0

0 0 R
(n)
1 0 0

0 0 0 E1(n) 0

0 0 0 0 1

2
666664

3
777775, b(n)1 =

p
(n)
1

0

0

0

1

2
66664

3
77775
ð22Þ
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where p
(n)
1 2 R

3, R
(n)
1 2 R

3× 3, and E(n)1 2 R
4× 4 denote the

Cartesian position, the rotation matrix, and the quaternion

matrix in the n th demonstration, respectively. Note that

we do not consider time as an explicit variable as the dura-

tion model in HSMM encapsulates the timing information

locally.

Performance setting in our experiments is as follows:

fpi,mi,SigK
i = 1 are initialized using a k-means clustering

algorithm, R= 9I, where I is the identity matrix, learning

converges when the difference of log-likelihood between

successive demonstrations is less than 1× 10�4. Results

of regenerating the movements with seven mixture com-

ponents are shown in Figure 9. For a given initial config-

uration of the object, the model parameters are adapted by

evaluating the product of Gaussians for a new frame con-

figuration. The reference trajectory is then computed from

the initial position of the robot arm using the forward vari-

able of HSMM and tracked using LQT. The robot arm

moves from its initial configuration to align itself with the

first frame fA1, b1g to grasp the object, and follows it with

the movement to avoid the obstacle and subsequently,

align with the second frame fA2, b2g before placing the

object and returning to a neutral position. The model

exploits variability in the observed demonstrations to sta-

tistically encode different phases of the task such as reach,

grasp, move, place, and return. The imposed structure with

task parameters and HSMM allows us to acquire a new

task in a few human demonstrations, and generalize effec-

tively in picking and placing the object.

Table 1 evaluates the performance of the invariant task-

parameterized HSMM with latent space representations.

We observe significant reduction in the model parameters

with latent space models, while achieving better or similar

performance on the unseen situations compared to the

task-parameterized HSMM with full covariance matrices.

Note that SVA HDP HSMM has similar accuracy with the

Fig. 9. Task-parameterized HSMM performance on pick-and-place with obstacle avoidance task: (top) training set reproductions;

(bottom) testing set reproductions.

Table 1. Performance analysis of invariant HMMs with training MSE, testing MSE, and number of parameters for the pick-and-

place task. MSE (in meters) is computed between the demonstrated trajectories and the generated trajectories (lower is better). Latent

space formulations give comparable task performance with much fewer parameters.

Model Training MSE Testing MSE Number of parameters

Pick-and-place via obstacle avoidance (K = 7, F = 2, D = 16)

HSMM 0:002660:0009 0:01460:0085 2,198
Semi-tied HSMM 0:003360:0016 0:013160:0077 1,030
MFA HSMM (dk = 1) 0:003760:0011 0:010960:0068 742
MFA HSMM (dk = 4) 0:002560:0007 0:011960:0077 1,414
MFA HSMM (dk = 7) 0:002360:0009 0:012360:0084 2,086
SVA HDP HSMM (K = 8, �dk = 3:94) 0:007360:0024 0:014960:0072 1,352
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advantage that the number of hidden states and the sub-

space dimensionality of each state cluster is learned from

the demonstrations. It is seen that the MFA decomposition

gives the best performance on test set with much fewer

parameters. A qualitative comparison across models in

Figure 10 reveals that the parsimonious representation of

latent space models helps to avoid overfitting of skewed

Gaussian distributions.

6.2. Surgical suturing

Surgical suturing automation has been studied in several

contexts such as needle path planning (Sen et al., 2016),

collaborative human–robot suturing (Padoy and Hager,

2011), and learning from demonstrations by trajectory

transfer via non-rigid registration in simulation (Schulman

et al., 2013). The suturing motions are decomposable into

simpler sub-tasks or surgemes that can be inferred from

demonstrations (Krishnan et al., 2018; Lea et al., 2015;

Murali et al., 2016). In this work, we show how we seg-

ment a complex multi-step task into meaningful sub-tasks

from surgical videos in order to imitate the intended beha-

vior from videos.

6.3. JIGSAWS dataset

The JIGSAWS dataset contains video demonstrations of

three surgical tasks, namely suturing, needle-passing, and

knot-tying. We only present results for imitating surgical

suturing motions in this work. The suturing dataset consists

of eight surgeons with varying skill levels performing the

suturing demonstrations five times each on the dual-arm

da Vinci robot. Each demonstration consists of a pair of

videos from the stereo cameras, kinematic data of the end-

effector of the robot arms, and the action segment label for

each video frame among a distinct set of 11 suturing sub-

tasks as annotated by the experts. The discrete labels corre-

spond to no activity stage [IDLE], reach needle with right

hand [REACH-N-R], position needle [POS-N], push

needle through tissue [PUSH-N-T], transfer needle from

left to right [TRANS-L-R], move to center [MOVE-C],

pulling suture with left hand [PULL-L], orienting needle

[ORIENT-N], tighten suture with right hand [TIGHT-
R], loosening suture [LOOSE-S], and dropping suture at

the end [DROP-S]. The viewpoint of the camera, lighting

and background is fixed in a demonstration, but changes

slightly across demonstrations. The suturing style, how-

ever, is significantly different across each surgeon. We use

a total of 78 demonstrations from the suturing dataset

downsampled at 3 frames per second (fps) with an average

duration of 3 minutes per video. A total of 62 demonstra-

tions with 4 randomly chosen demonstrations from each

surgeon are used for the training set (1 demonstration from

a surgeon is corrupted and not used for training), while the

remaining demonstration from all surgeons are used as the

test set for a total of 16 demonstrations.

6.4. Network architecture(s)

The Siamese network takes as input a downsampled three-

channel RGB 320× 240 image. The network is augmen-

ted on top of the Inception architecture, pre-trained on the

ImageNet dataset. We add two convolutional layers of

depth 512 each on top of ‘‘Mixed-5 d’’ layer followed by

a spatial softmax layer (Finn et al., 2015), a fully con-

nected layer of 2,048 neurons and an embedding layer of

32 dimensions. We use the same Siamese network archi-

tecture in all the experiments. This embedding is trained

on the triplet loss with a margin of z = 0:2. We use a batch

size of 128 and 64 for Siamese network and RNN, respec-

tively. Note that 64 batch size at 3 fps corresponds to

online segmentation window of 21:3 seconds.

The embedding sequence is fed to a one-layer bi-direc-

tional LSTM of 256 hidden neurons. The CRFs network

uses 32 potential functions. The HMM/HSMMs are

trained in an iterative manner with K = 30 hidden states

and a multivariate Gaussian in the observation distribution

by pooling all the data from the embedding layer after

every 1,000 iterations. The number of hidden states are

empirically chosen between 1 and 50 components to get

the best classification accuracy on the training set.

The feedforward network for pose imitation consists of

six hidden units with 512, 256, 128, 64, 32, and 16 neu-

rons. The output of policy network corresponds to the

Fig. 10. Latent space representations of invariant task-parameterized HSMM for a randomly chosen demonstration from the test set.

Black dotted lines show human demonstration, whereas the gray line shows the reproduction from the model.
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three-dimensional Cartesian position of the end-effector,

four-dimensional quaternion orientation of the end-effector,

and a jaw angle for each of the two arms.

6.5. Role of metric and sequence learning in

segmentation

Table 2 summarizes the performance comparison of

Motion2Vec with different combinations of supervised

and unsupervised approaches to metric and sequence

learning. We use segmentation accuracy on the test set as

the performance metric defined by the percentage of cor-

rect segment predictions in comparison with the ground-

truth segments annotated by human experts. We observe

that svTCN performs better among the unsupervised

metric learning approaches without using any of the action

segment labels. The unsupervised metric learning

approaches perform well with RNN, but other sequence

models including HMMs/HSMMs and CRFs find it diffi-

cult to encode the action segments. On the other hand,

Motion2Vec representation with triplet loss performs well

with both the supervised and the unsupervised sequence

learning approaches by better grouping the action seg-

ments with the use of labeled demonstrations. Triplet loss

with RNN gives better performance among all the com-

pared approaches. M2V-T that combines supervised triplet

loss with unsupervised time contrastive loss better aligns

the images temporally with nearest-neighbor imitation

accuracy of 84:4% in the embedding space.

Figure 11 gives a qualitative performance analysis of

different sequence learning approaches on a suturing

demonstration from the test set. The sequence learning

models are able to predict temporally robust action seg-

ments on Motion2Vec trained embeddings. Although the

video frames in the test set are not observed, Motion2Vec

is able to associate them with complex segments such as

needle insertion and extraction, while being invariant to

the dataset variations including camera viewpoint, back-

ground and skill level of the surgeons in the observations.

Figure 12 shows the confusion matrix instance of

Motion2Vec with an overall evaluation segmentation

accuracy of 86:07%. We observe that the similar neigh-

boring segments in the test set tend to be more often con-

fused suggesting that the related activities are closely

grouped in the embedding space.

6.6. Kinematic imitation on the da Vinci robot

We investigate two scenarios with Motion2Vec embed-

dings: (1) a single-pose imitation model for all surgeons;

(2) a separate pose imitation model for each surgeon.

Results of pose imitation from Motion2Vec in comparison

to decoding from raw videos are summarized in Table 3.

We obtain comparable performance on the test set for all

surgeons with raw videos and Motion2Vec embeddings,

whereas the per-surgeon pose-decoding model with

Motion2Vec gives better performance with position error

of 0:94 cm per observation on the test set. We further test

the robustness of the embeddings by adding a Gaussian

noise of variance 0:15 on top of preprocessed images and

observe that Motion2Vec robustly preserves the

Table 2. Segmentation accuracy performance comparison on the evaluation set averaged over four iterations. Rows correspond to a

different embedding space approach, columns correspond to a different segmentation method. KNN results are on training with a

Siamese network only. CRF, RNN, n-pairs and triplet models are trained in a supervised manner, whereas KNN, HMM, HSMM,

PCA, TCC, and svTCN are unsupervised. Motion2Vec (M2V) uses triplet loss with RNN, whereas M2V-T combines the triplet and

svTCN loss for temporal alignment. Results are averaged across five trials.

KNN HMM HSMM CRF RNN

iPCA 0:586 0:395 0:392 0:415 0:721
TCC 0:667 0:662 0:642 0:601 0:727
svTCN 0:792 0:676 0:661 0:723 0:812
Images 0:748 0:716 0:712 0:811 0:835
n-pairs 0:835 0:799 0:794 0:824 0:854

M2V 0:829 0:831 0:812 0:838 0:855
M2V-T 0:844 0:828 0:822 0:801 0:843

Fig. 11. Top: Qualitative performance comparison of different

segmentation policies on top of Motion2Vec with the ground-

truth sequence for surgical suturing. Test set image sequence for

the first suture is shown in the top, whereas the imitation

sequence on the da Vinci robot arms is shown in the bottom.

KNN, HMM, and HSMM are unsupervised, whereas CRF and

RNN are supervised approaches. In comparison with KNN,

RNN gives temporally consistent segments by using the

sequential information in the embedded vectors.
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spatiotemporal alignment of the videos. Figure 13 shows

the mean of decoded positions (with and without noise)

from the embedded observations in comparison to the

ground-truth and the raw videos decoded positions. We

encourage the readers to see supplementary material video

for kinematic imitation in simulation and on real on da

Vinci robot arms.

7. Conclusions

Sequential robot imitation learning from demonstrations is

a promising approach to teach manipulation skills to

robots. We presented invariant task representations with

HSMMs for recognition, prediction, and reproduction of

trajectory-centric data; along with learning in latent space

representations for robust parameter estimation of mixture

model. By sampling the sequence of states from the model

and following them with a LQT controller, we are able to

autonomously perform manipulation tasks in a smooth

manner. This has enabled a Baxter robot to tackle a pick-

and-place via obstacle avoidance problem from previously

unseen configurations of the environment. We extended

the representation learning approach to videos with

Motion2Vec that groups similar action segments in a deep

embedding feature space, improving upon the interpret-

ability and the segmentation performance over several

state-of-the-art methods. We demonstrate its use on the

dual-arm da Vinci robot arm to imitate surgical suturing

poses from video demonstrations. In future work, we plan

to learn closed-loop policies on the real robot from the

embedded video representations. We are also interested in

providing useful feedback for training and assistance in

remote surgical procedures.
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Appendix A. Linear quadratic tracking

The discrete-time dynamical system for the double integra-

tor is defined as

xt + 1

xt + 2


 �zfflfflfflffl}|fflfflfflffl{jt + 1

=
I Dt

0 I


 �zfflfflfflfflfflffl}|fflfflfflfflfflffl{Ad

xt

xt + 1


 �zfflfflfflffl}|fflfflfflffl{jt

+
I 1

2
Dt2

IDt


 �zfflfflfflfflffl}|fflfflfflfflffl{Bd

ut ð23Þ

The control law u�t that minimizes the cost function in

(10) under finite horizon subject to the linear dynamics in

discrete time is given as

u�t =� R+BT
dPtBd

� ��1
BT

dPtAd jt � m̂tð Þ

� R+BT
dPtBd

� ��1
BT

d Pt Adm̂t � m̂tð Þ+ dtð Þ
ð24Þ

u�t =KPt (m̂
x
t � xt)+KVt (m̂

_x
t � _xt)

� R+BT
dPtBd

� ��1
BT

d Pt Adm̂t � m̂tð Þ+ dtð Þ
ð25Þ

where ½KPt ,KVt �= � R+BT
d PtBd

� ��1
BT

dPtAd are the full

stiffness and damping matrices for the feedback term, and

R+BT
d PtBd

� ��1
BT

d Pt Adm̂t � m̂tð Þ+ dtð Þ is the feedfor-

ward term. Here Pt and dt are obtained by solving the

Riccati differential equation and linear differential
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equation backwards in discrete time from terminal condi-

tions PTp
=QTp

and dTp
= 0, respectively,

Pt�1 =Qt � AT
d (PtBdðR+BT

dPtBdÞ�1BT
dPt � Pt)Ad

dt�1 = (AT
d � AT

dPtBdðR+BT
dPtBdÞ�1BT

d )

(PtðAdm̂t � m̂t + 1Þ+ dt)

ð26Þ

For the infinite horizon case with T ! ‘ and the

desired pose m̂t = m̂t0
, the control law in (24) remains the

same except the feedforward term is set to zero and

Pt�1 =Pt =P is the steady-state solution obtained by

eigenvalue decomposition of the discrete algebraic Riccati

equation (DARE) in (26) (Borrelli et al., 2011). To solve

DARE, we define the symplectic matrix,

Hb =
Ad +BdR

�1BT
d (A

�1
d )

T
Q BdR

�1BT
d (A

�1
d )

T

�(A�1
d )

T
Q (A�1

d )
T

" #

ð27Þ

The eigenvectors of Hb corresponding to eigenvalues

lying inside the unit circle are used to solve DARE. Let

VT
1 VT

21


 �T
denote the corresponding subspace of Hb,

then the solution of DARE is P=V21V
�1
1 and the control

law takes the form

u�t = � (R+BT
dPBd)

�1BT
d PAd(jt � m̂t) ð28Þ

Both discrete and continuous time linear quadratic reg-

ulators/trackers can be used to follow the desired pose/tra-

jectory. The discrete time formulation, however, gives

numerically stable results for a wide range of values of R.

Appendix B. Distance to cluster subspace

versus distance to cluster mean

The distance of a datapoint jt to an existing cluster with

mean mi is represented as k jt � mi k2
2. In contrast, we

define the distance of a datapoint from the subspace of a

cluster, dist(jt,mi,U
di

i )
2, as the difference between the

mean-centered datapoint and the mean-centered datapoint

projected upon the subspace Udi

i 2 R
D× di spanned by the

di unit eigenvectors of the covariance matrix, i.e.,

dist(jt,mi,U
di

i )= k (jt � mi)� riU
di

i U
di

T

i (jt � mi)k2

ð29Þ

where

ri = exp �k jt � mi k2
2

bm

� �

weighs the projected mean-centered datapoint according

to the distance of the datapoint from the cluster center

(0\ri ł 1). Its effect is controlled by the bandwidth para-

meter bm. If bm is large, then the far away clusters have a

greater influence; otherwise, nearby clusters are favored.

Note that ri assigns more weight to the projected mean-

centered datapoint for the nearby clusters than the distant

clusters to limit the size of the cluster/subspace. Our sub-

space distance formulation is different from Wang and

Zhu (2015) as we weigh the subspace of the nearby clus-

ters more than the distant clusters. This allows us to avoid

clustering all the datapoints in the same subspace (near or

far) together.
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