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An Approach for Imitation Learning on Riemannian Manifolds

Martijn J.A. Zeestrateh) loannis Havouti§®, Jd&o Silério!, Sylvain Calino’!, Darwin. G. Caldwef

Abstract—In imitation learning, multivariate Gaussians are distributions over movement trajectories [3], and the encoding
widely used to encode robot behaviors. Such approac;hes QO notof movement from multiple perspectives [4].
provide the ability to properly represent end-effector orientation, — propapilistic encoding using Gaussians is restricted to vari-
as the distance metric in the space of orientations is not ] . : .
Euclidean. In this work we present an extension of common ables that are de ned in the Euclidean space. This typically
imitation learning techniques to Riemannian manifolds. This €xcludes the use of end-effector orientation. Although one can
generalization enables the encoding of joint distributions that approximate orientation locally in the Euclidean space [5], this

include the robot pose. We show that Gaussian conditioning, gpproach becomes inaccurate when there is large variance in
Gaussian product and nonlinear regression can be achieved the orientation data

with this representation. The proposed approach is illustrated . .
with examples on a 2-dimensional sphere, with an example of 1he most compact and complete representation for orienta-

regression between two robot end-effector poses, as well as artion is the unit quaterniod. Quaternions can be represented
extension of Task-Parameterized Gaussian Mixture Model (TP- as elements of thé&-sphere, a3 dimensional Riemannian
GMM) and Gaussian Mixture Regression (GMR) to Riemannian  manjfold. Riemannian manifolds allow various notions such as
manifolds. length, angles, areas, curvature or divergence to be computed,

Index Terms—Learning and Adaptive Systems, Probability and  which is convenient in many applications including statistics,
Statistical Methods optimization and metric learning [6]-[9].

In this work we present a generalization of common prob-
abilistic imitation learning techniques to Riemannian mani-
folds. Our contributions are twofold: (i) We show how to

HE Gaussian is the most common distribution for thderive Gaussian conditioning and Gaussian product through

analysis of continuous data streams. Its popularity céikelihood maximization. The derivation demonstrates that
be explained on both theoretical and practical grounds. Tharallel transportationof the covariance matrices is essential
Gaussian is thenaximum entropgistribution for data de ned for Gaussian conditioning and Gaussian product. This aspect
in Euclidean spaces: it makes the least amount of assumptioves not considered in previous generalizations of Gaussian
about the distribution of a dataset given its rst two momentsonditioning to Riemannian manifolds [10], [11]; (ii) We show
[1]. In addition, operations such as marginalization, conditiomow the elementary operations of Gaussian conditioning and
ing, linear transformation and multiplication, all result in @aussian product can be used to extend Task-Parameterized
Gaussian. Gaussian Mixture Model (TP-GMM) and Gaussian Mixture

In imitation learning, multivariate Gaussians are widely usdgegression (GMR) to Riemannian manifolds.
to encode robot motion [2]. Generally, one encodes a jointThis paper is organized as follows: Section Il introduces
distribution over the motion variables (e.g. time and poseRiemannian manifolds and statistics. The proposed methods
and uses statistical inference to estimate an output variahle detailed in Section Ill, evaluated in Section IV, and
(e.g. desired pose) given an input variable (e.g. time). Thiéscussed in relation to previous work in Section V. Section
variance and correlation encoded in the Gaussian allow r concludes the paper. This paper is accompanied by a video.
interpolation and, to some extent, extrapolation of the origin8burce code related to the work presented is available through
demonstration data. Regression with a mixture of Gaussidmtsp://www.idiap.ch/software/pbdlib/.
is fast compared to data-driven approaches, because it does
not depend on the original training data. Multiple models
relying on Gaussian properties have been proposed, including

_ _ , Our objective is to extend common methods for imitation
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betweerp, andg equals the distance betwepp andh (see
Fig. 1b).

Action functions remove the need to compute a speci c ex-
ponential and logarithmic map for each point in the manifold at
the cost of imposing a speci c alignment of the tangent bases.
Although this does not compromise the functions de ned by
(1) and (2), one must consider it while moving vectors from
one tangent space to another.

Parallel transport moves vectors between tangent spaces

(@) (b) while keeping them parallel to the geodesic that connects their

. . . . . bases. To achieve parallel transport between any two points on
Fig. 1: Manifold mappings and action function f&2. (a) The expo- . . .
ne%tial and the Ioggrri)thr?lic map provide local one-(to)-one mzfppin e manifold, we need to compensate for the re_Iatl\{e fF’ta“O”
between the manifold and its tangent space at ppirb) An action PetweenTgM andTh M . For d-spheres this rotation is given
AS (pg) mapspg (a point de ned relative tay) to pn by moving it by
along a geodesic (dotted lines) until it reaches a point such that the
distance betweep, andh equals the distance betweeg andg ng =lgs1 sin(m)gu” +(cos(m) Luu™; (3)
(both distances visualized by black lines).

whereu = [v ;0 gives the direction of transportation. It
is constructed fromh by mapping it intoTgM , normalizing
Riemannian manifolds in Section [I-A, and then discuss thg and nally rotating it to g; i.e. v = RY Log,(h) =m with
"Riemannian Gaussian' in Section II-B. m = jjLogy(h)jj the angle of transportation (See [12], Ch.
The functions that will be introduced in this section arg). Notice that (3) is de ned in the manifold ambient space
manifold speci c. Table | provides an overview of theier+1, while we have de ned our tangent SpacesRﬁ_ To
implementation for the manifolds considered in this work. achieve parallel transport betwe&M andT,M , we de ne
the parallel action
A. Riemannian Manifolds

A manifold M is ad-dimensional smooth space, for which
each poinpp 2 M has a local bijective mapping with an operwhereB contains the direction of the bases at the origin (see
subset 2 RY. This mapping is called é&oordinate) chart Fig. 2). For the manifold$? and S® we use
Furthermore, there exists a tangent spag® of velocity 2 3.
vectors at each poinp 2 M . We indicate elements of the 1 0’ 0100
manifold in bold and elements on the tangent space in fraktur B2 = 0 0 andB3=40 0 1 ® : (5)
typeface, i.ep 2M andg2 T,M . 0001

A manifold with a Riemannian metric—a positive de nite

inner product de ned on the tangent spafgM —is called and h and e, respectively. Note that no information is

a Rm_manman ”.‘a”'fO'd- The '.’“et”c mt_roduces 'ghe .nOt'qust through the projectio , which can be understood by
of (minimum) distance: a notion that is essential in thFeaIizing that the parallel action is invertible

de nition of a Gaussian-like distribution. In Euclidean spaces, Finally, we note that the Cartesian product of two Rieman-

minimum distance paths lie on straight lines. $|m|IarIy, 'Mian manifolds is again a Riemannian manifold. This property
. o . . V&fiows us to de ne joint distributions on any combination of
called geodesicsthe generalization of straight lines. Riemannian manifolds. e.g., a robot pose is represented by
The e_xponentlal mafEXpy() - TgM I M IS a dlstance_ the Cartesian product of a 3 dimensional Euclidean space and
preserving map between the tangent space and the manlf(()il ypersphere, i.@ 2 R® S 2. The correspondingxp()

Expg(p) mapsp tp P i_n such a way tha_p lies on thegeodesic Log(), A (), and parallel transport of the Cartesian product are
thr_oughg !V'th fi|r_ect|on P. a}nd the d'Sta'."CG betweema_nd .obtained by concatenating the individual functions, e.g.

p is kpk = hp;pig, see Fig. la. The inverse mapping is
called thelogarithmic map and exists if there is only one
geodesic throughy and p. The distance preserving maps
between the linear tangent space and the manifold allow to
perform computations on the manifold indirectly.

In general, one exponential and logarithmic map is requirggl Riemannian Statistics
for each tangent space. For homogeneous manifolds, howeve
their function can be moved from the originto other points
on the manifold as follows

Aig(P) = B” R} Ryg REB (4)

= O

FurthermoreRJ and R} represent rotations betweenand

a _ Loge(a) .

LO he i =
9eal Loge, (b)

€h

Ih [7], Pennec shows that the maximum entropy distribution
given the rst two moments—mean point and covariance—is
a distribution of the exponential family. Although the exact so-

Expg(pg) = AJ (Expe(pg)) ; (1) lution is computationally impractical, it is often approximated
Logy(p) =Loge A (p) ; @ B
whereAl} p, is called the action function. It maps a point N, (x; ; )= ! e zLog Xy "log (). (p)

p, along a geodesic tp,, in such a way that the distance )9 j
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Likelihood maximization can be achieved through Gauss-
e € Newton optimization [7], [13]. We review its derivation be-
cause the proposed generalizations of Gaussian conditioning
h and Gaussian product to Riemannian manifolds rely on it.
Allg(pg) First, the likelihood function is rearranged as

Pr=Pg

()= (YW () ©®)

wherec is omitted because it has no role in the optimization,

@ (b) and
Fig. 2: (a) Tangent space alignment with respecteto(b) Even N N .
though the tangent bases are aligned with resped, toase mis- ( )= Log (xo) ;Log (x1) ;i Log (xn) 5 (9)
alignment exists betweeiygM and Th M when one of them does
not lie on a geodesic througa In such cases, parallel transport ofs g stack of tangent space vectorsTinM which give the
p from TyM t0 To M requires a rotatior kg(p) to compensate for jiqiance and direction of; with respectto . W is a weight
the misalignment of the tangent spaces. matrix with a block diagonal structure (see Table II).

M : o R, 52 53 The gradient of (8) is
Ox 1 gx!
g2M B K o b = (Pwd) 'rw (x); (10)
Ox g 8 q_z
2 33 sy ey 8 c(igi) ! with J the Jacobian of (x) with respect to the tangent
% 0 f(jgj) 19 5 s(gi) -2 jgie0 basis of T M . It is a concatenation of individual Jacobians
Expo(g) e+ : £ % - el J; corresponding td_og (x;) which have the simple form
Oxg E@OA; jgi=0 - 0’ jgi=0 Ji= lg.
, 3 8 1 T 8 @ 061 provides an estimate of the optimal value mapped into
o 300D o i 0:61 ggcs,(eb)ﬁ, e the tangent spac& M . The optimal value is obtained by
Loge(a) 4 : 8 0 mapping onto the manifold
. ; 0 ) _ 5405 ; qO:]_
Fa T %= 7 E 11
X :
AG(p) Py g+h R 2 R§ pg g h g’ pg PO ()
Ag(p) lap  B3RERGREB2p  B3QL R QgBsp

The computation of (10) and (11) is repeated untireaches
TABLE I: Overview of the exponential and logarithmic maps@ Prede ned convergence threshold. We observed fast conver-

and the action and parallel transport functions for all Riemannigience in our experiments for MLE, Conditioning, Product,

manifolds considered in this worls();c();ac () are short nota- and GMR (typically 2-5 iterations). After convergence, the
tions for the sine, cosine, and a modi ed version of the arccdsinesgvariance is computed inT M .

respectively. The elements &* are quaternions, de nes their .
product, and ! a quaternion inverseQ, and Q, represent the Note that the presented Gauss-Newton algorithm performs

quaternion matrices aj andh. optimization over a domain that is a Riemannian manifold,
while standard Gauss-Newton methods consider a Euclidean
domain.

where 2 M is the Riemannian center of mass, andthe

covariance de ned in the tangent spateM (see e.g. [10],

[11], [13)). I1l. PROBABILISTIC IMITATION LEARNING ON
The Riemannian center of mass for a set of datapoints RIEMANNIAN MANIFOLDS

fXo;::;Xn g can be estimated through a Maximum Like- o ]
lihood Estimate (MLE). The corresponding log-likelihood Many probabilistic imitation learning methods rely on some
function is form of Gaussian Mixture Model (GMM), and inference

through GMR. These include both non-autonomous (time-
driven) and autonomous systems [11], [14]. The generalization
capability of these methods can be improved by encoding
the transferred skill from multiple perspectives [4], [15]. The
where h; are weights that can be assigned to individugllementary operations required in this framework are: MLE,
datapoints. For a single Gaussian one canhset 1, but Gaussian conditioning, and Gaussian product. Table Il pro-
different weights are required when estimating the likelihooddes an overview of the parameters required to perform these
of a mixture of Gaussians. operations on a Riemannian manifold using the likelihood
maximization presented in Section |I-B.

“The space of unit quaternion§®, provides a double covering over \\e present below Gaussian conditioning and Gaussian

rotations. To ensure that the distance between two antipodal rotations is Z[SF?)dUCt in more details, which are then used to extend GMR

we de ne arccos ( ) arccos() " tos o and TP-GMM to Riemannian manifolds
arccos( ) ;0 1 :

X > 1 }
L(x)=c > hi Log (xi) Log (xi); (M
i=1
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() w J

“Log (xn)” Coor oY n P
w . . )
s : dagl | K 88 pPy— hilog (xn) pl " hiLog (xn)Log (xnY
= 1 i hi n=1 i hi n=1

Log (xn) [

3 o ;1 2 3

] Lo [ !
é 9_(1)g _ ki g1 P llp . - s
<] : diag g : : Lok ke Log p=l  kp
“ Llog (p) o ! P P
c
o
£ Logy (1) 0 1 )
g LOQ:CI,( 13) k | Logyo( 0)* @ ka LOGx (1) Ko
O

TABLE II: Overview of the parameters used in the likelihood maximization procedure presented in Sections 1I-B, IlI-A and
-B.

Ignoring the constant, we can rewrite (12) into the form (8)
by de ning

’gz (-)= Log (~):Log () ;:uijLog (=) ~; (13)
andW =diag % L% ', where~ is the mean
of the Gaussian we are approximating. The vectarg (~)
@) (b) of (~) in (13) are not dened in theT-M , but in P
Fig. 3: Log-likelihood for the product of two Gaussians on thdifferent tangent spaces. In order to perform the likelihood
manifold S2. The Gaussians are visualized on their tangent spad@@ximization we need to switch the base and argument of
by the black ellipsoids; their center and contour represent the meang() while ensuring that the original likelihood function

and covariance. The color of the sphere corresponds to the val4©) remains unchanoged. This implies that the Mahalanobis
of the log-likelihood (high=red, low=blue). The true Iog-IikeIihoog‘g.St)ance should remagn .nchan e(? ie
(equation (12) witHP = 2) is displayed on the left of each sub gure, : u in-u ged, 1.e.

while the log-likelihood approximated by the product is displayed on > 1 _ > 1 .

the right. Tﬁe con guratigrrl) of the Gausysianspin () resultspinya log- Log p(~) p Log p(~) =Log .- p kp Log- p

likelihood with a single mode, while (b) shows the special case of 14)

multiple modes. Note the existence of a saddle point to which théhere , is a modi ed weight matrix that ensures an equal

gradient descent could converge. distance measure. It is computed through parallel transporta-
tion of  from | to ~ with

A. Gaussian Product kp = Ak p(|— p) Ak p(|— p); (15)

In Euclidean space, the product Bf Gaussians is again awhere L, is obtained through a symmetric decomposition
Gaussian. This is not generally the case for Riemannian Gaoé-the covariance matrix, i.e. , = L,Lp. This operation
sians. This can be understood by studying its log-likelihoagansports the eigencomponents of the covariance matrix [16].

function It has to be performed at each iteration of the gradient descent
° because it depends on the changindror spherical manifolds,
L(x)= ¢ 1 Log (X)T . llog (x): (12) parallel trarlsport is t_he linear oE)eration (4), and (15) simpli es
2 P P to =R pRwithR =A" (lg).

=1
P Using the transported covariances we can compute the
whereP represents the number of Gaussians to multiply, argladient required to estimateand ~. The result is presented
p and , their parameters. The appearanceloy (X) in Table Il.
makes the log-likelihood potentially nonlinear. As a result The Gaussian product arises in different elds of probabilis-
the product of Gaussians on Riemannian manifolds is n@t robotics. Generalizations of the Extended Kalman Filter

guaranteed to be Gaussian. [17] and the Unscented Kalman Filter [18] to Riemannian
Figure 3 shows comparisons @* between the true log- manifolds required a similar procedure.

likelihood of a product of two Gaussians, and the log-
likelihood obtained by approximating it using a single Gau§
sian. The neighborhood in which the approximation of the’
product by a single Gaussian is reasonable will vary dependIn Gaussian conditioning, we compute the probability
ing on the values of , and . In our experiments we P (XojX) N ( o;; o;) of a Gaussian that encodes the
demonstrate that the approximation is suitable for movemdftnt probability density ofx, andx, . The log-likelihood of
regeneration in the task-parameterized framework. the conditioned Gaussian is given by

Parameter estimation for the approximated Gaussian

N ~; can be achieved through likelihood maximization.

Gaussian Conditioning

Lo)=c Zlog (xJ Log (x); (16)
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with

—_ XI . —_ | . —_ I o] .

X Xo ' o ' a @ ' (17)
where the subscriptsand indicate respectively the input and
the output, and the precision matrix = 1is introduced
to simplify the derivation.

Equation (16) is in the form of (8). Here we want to estimate
Xo givenx, (i.e. ;). Similarly to the Gaussian product, we
cannot directly optimize (16) because the dependent variable,
Xo, is in the argument of the logarithmic map. This is again.

] - d d
resolved by parallel transport, namely E'gusil zﬁ]pggcr?ég’ggz task-parameters 2 RY ¢ andb 2 S® to a

(a) TransformatiorA (b) Translationb

k= AKNVY AKV); (18)

whereV is obtained through a symmetric decomposition fl9) would require a weighted sum of manifold elements—
the precision matrix: = V~V. Using the transformed an operation that is not available on the manifold. Secondly,
precision matrix, the values for(x), andJ (both found in because directly applying (20) would incorrectly assume the
Table 1), we can apply (11) to obtain the update rule. Thalignment of the tangent spaces in which are de ned.
covariance obtained through Gaussian conditioning is given byTo remedy the computation of the mean, we employ the
K 1. Note that we maximize the likelihood only with respecapproach for MLE given in Section 1I-B, and compute the

to X, , and thereford appears in the Jacobian. weighted mean iteratively in the tangent spdeeM , namely
% .
C. Gaussian Mixture Regression = hi Loga (EIN (xojxi 5 i3 D)D) (22)
Similarly to a Gaussian Mixture Model (GMM) in Eu- N El _ 23
clidean space, a GMM on a Riemannian manifold is de ned o prO() . (23)
by a weighted sum of Gaussians Here, E[N (XojX ; ;; )] refers to the conditional mean
% point obtained using the procedure described in Section 1l1-B.
P (x) = NG Note that the computation of the responsibilitiess straight-

forward using the Riemannian Gaussian (6).

_ Py S After convergence of the mean, the covariance is computed
where ; are the priors, with  ; = 1. In imitation in the tangent space dened &, . First, ; are parallel
learning, they are used to represent nonlinear behaviors ifr@nsported fronT ‘M toTr M, and then summed similarly
probabilistic manner. Parameters of the GMM can be estimatgd(20) with
by Expectation Maximization (EM), an iterative process in %
which the data are given weights for each cluster (Expectation A h ..' where (24)
step), and in which the clusters are subsequently updated using bk
a weighted MLE (Maximization step). We refer to [10] for a
detailed description of EM for Riemannian GMMs.

A popular regression technique for Euclidean GMM ignd ; = L;L’.
Gaussian Mixture Regression (GMR) [4]. It approximates the
conditioned GMM using a single Gaussian, i.e.

i=1

AO(LIY AO(L); (25)

ki

D. Task-Parameterized Models
N

P(Xojx) N 72" One of the challenges in imitation learning is to generalize
skills to previously unseen situations, while keeping a small set
In Euclidean space, the parameters of this Gaussian are forroédiemonstrations. In task-parameterized representations [4],
by a weighted sum of the expectations and covariancelsis challenge is tackled by considering the robot end-effector
namely, motion from different perspectives (frames of reference such
as objects, robot base or landmarks). These perspectives are
A = , R de ned in a global frame of reference through thask
° M EIN Colxs i o)l (19) parametersA andb, representing a linear transformation and
translation, respectively. In Euclidean spaces this allows data

%

A = hi coMN (XojX ; i1 1 (20) t_o be project_ed to the global frame of reference through the
i1 linear operatiorAu + b.
N X oo This linear operation can also be applied to the Riemannian
with hj = p— N LI : (21) Gaussian, namely
i=1 Xis g3 i
J ab = EXp (A Loge( )); (26)

We cannot directly apply (19) and (20) to a GMM de ned

on a Riemannian manifold. First, because the computation of ap=(A A )kbA;"; 27)
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such manifolds using relatively simple statistical models. We
demonstrate this by encoding a bi-manual pouring skill with
a single multivariate Gaussian, and reproduce it using the
presented Gaussian conditioning.

We transfer the pouring task usir®) kinesthetic demon-
strations or6 different locations in Baxter's workspace while
recording the two end-effector poses (positions and orienta-
tions, 18 demonstrations in total). The motion consists of
an adduction followed by a abduction of both arms, while
holding the left hand horizontal and tilting the right hand
(left and right seen from the robot's perspective). Snapshots
of a demonstration from two users (each moving one arm) are
shown in Fig. 6. The demonstrated data lie on the Riemannian
manifoldB = R®* S 2 R® S 3. We encode the demonstra-
tions in a single Gaussian de ned on this manifold, i.e. we
assume the recorded data to be distributed adl g ( ; ),
with X = (XL;0.;XRr;0g) composed of the position and
guaternion of the left and right end-effectors.

(b) © Figure 8a shows the mean pose and its corresponding
Fig. 5: Proposed approach for task parameterization (see Sec. Igpvariance, which is de ned in the tangent spaceB. The
X1, X2 and x3 axes are displayed in red, blue and green,
respectively. The horizontal constraint of the left hand resulted
with ( )kbA;b the parallel transportation of the covariance matrii low rotational variance around the andxs axes, which
frombto ,.p. is re ected in the small covariance at the tip of the axis.

We illustrate the individual effect oA and b in Fig. 4. The low correlation of it<, andxs axes with other variables
The rotationA is expressed in the tangent spaceeofEach con rms that the constraint is properly learned (Fig. 8b).
center of the Gaussian is expressedwas Log( ) in this The bi-manual coordination required for the pouring task
tangent space. After applying the rotatiaf = Au, and by is encoded in the correlation coefcients of the covariance
exploiting the property of homogeneous space in (1), the respiatrix® visualized in Fig. 8b. The block diagonal elements of
is moved tob with Expg(u® = A (Exp(u9), see (26). To the correlation matrix relate to the correlations within the man-
maintain the relative orientation between the local frame aifdids, and the off-diagonal elements indicate the correlations
the covariance, we parallel transport the covariangefrom between manifolds. Strong positive and negative correlations
theb to ,., and obtain . The transport compensatesappear in the last block column/row of the correlation matrix.
the tangent space misalignment caused by moving the loTale strong correlation in the rotation of the right hand (lower
frame away from the origin. Fig. 4b shows the application afght corner of the matrix) con rms that the main action of
b to the result of Fig. 4a. rotation is around thes-axis (blue) which causes thg (red)

andx,(green) axes to move in synergy. The strong correlations
IV. EVALUATION of the positionx, , xr, and rotation! | with rotation! g,

The abilities of GMR and TP-GMM on Riemannian manidemonstrate their importance in the task.
folds are brie y demonstrated using a toy example. We use These correlations can be exploited to create a controller
four demonstrations of a point-to-point movement 8A, with online adaptation to a new situation. To test the responsive
which are observed from two different frames of referendeehavior, we compute the causal relat®r{ggjXr;d,;XL)
(start and end points). In each frame the spatial and tempdtalough the Gaussian conditioning approach presented in Sec.
data, de ned on the manifol&? R, are jointly encoded in 1lI-B. A typical reproduction is shown in Fig. 6, and others
a GMM (K =3). The estimated GMMs together with the datzan be found in the video accompanying this paper. In contrast
are visualized in Fig. 5a. To reproduce the encoded skill, we setthe original demonstrations showing noisy synchronization
new locations of the start and end points, and move the franpegterns from one recording to the next, the reproduction
with their GMM accordingly, using the procedure describeshows a smooth coordination behavior. The orientation of the
in Section 1lI-D. Fig. 5b shows the results in red and blue. Taght hand correctly adapts to the position of the right hand
obtain the motion in this new situation, we rst perform time-and the pose of the left hand. This behavior generalizes outside
based GMR to comput® (xjt) separately for each GMM, the demonstration area.
which results in the two “tubes' of Gaussians visualized in To assess the regression quality, we perform a cross-
Fig. 5c. The combined distribution, displayed in yellow, isalidation on 12 out of the 18 original demonstrations2(
obtained by evaluating the Gaussian product between the td&monstrations or6 different locations). The demonstra-
Gaussians obtained at each time gtéfye can observe smooth
regression results for the individual frames, as well as a smootfThe covariance matrix combines correlatior i 1 among

combination of the frames in the retrieved movement. random variables<; and X; with deviation ; of random variables<;,

The Cartesi duct all t bi et h? it has elements j = j ; j. We prefer to visualize the correlation
e Lartesian proauct allows us 1o combine a variety Qiayix which only contains the correlation coef cients, because it highlights

Riemannian manifolds. Rich behavior can be encoded e coordination among variables.

@
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Fig. 6: Snapshot sequences of a typical demonstration (top) and reproduction (bottom) of the pouring task. The colored perpendicular lines

indicate the end-effector orientations.

Fig. 7: Cross validation results described in Section IV.

Fig. 9: Visualization of Gaussian conditioning with and without
parallel transport, by computiny (xjt) with x 2 S?;t 2 R. The
gure shows the output manifold where the marginal distribution
N (x) is displayed in gray. See Section V for further details.

directional statistics [19]. Here we review related work, and
discuss differences with our approach.

In [20], [21], the authors use the central projection mapping
betweenS® and a Euclidean spad®® to project distributions
Fig. 8: The encoded task projected on the left and right end-effectotmn the orientation manifold. A (mixture of) Gaussian(s) is used
(@) G.ray eIIi_psoids visualize one standard deviation of the spatjg| [20], while Gaussian Processes are used in [21]. Since the
covariance (i.e. x  , x g ), their centers are the mean end-effectog 5| projection is not distance preserving (i.e. points equally

positions (, , . ). Each set of colored orthogonal lines visualize . . -
the end-effector mean orientation, its covariance is visualized by tBaced on the manifold will not be equally spaced in the

ellipses at the end of each axis. (b) Correlation encoded within aptojection plane), the projection plane cannot be directly used
between the different manifolds. The gray rectangles mark the ceo-compute statistics on manifold elements. From a topological
relations required for the reproduction presented in this experime@toint of view, central projection is a chart : M ! Rd:

a way to numerically identify elements in a subset of the
. . . L manifold. It is not the mapping between the manifold and
tions are Sp“f[ n tra_lmn_g slezt o8 and a vall_datlpn set of a vector space of velocities that is typically called the tangent
4 demonstrations, yleldl_ng g = 4% combl_natlons. F_or space. The Riemannian approach differs in two ways: (i) It
eaqh of theN data pomts(xL;qL;xR;qR). in the vali- relies on distance preserving mappings between the manifold
dation set, we CompUte the average rotation error betwe, its tangent spaces to compute statistics on the manifold;
the Qemons_trated rlght *!a”‘{' rotatiog, and the estllmgtejd and (i) It uses a Gaussian whose center is an element of the
r?tgtloan = E[P (Qrixr:0u;XL)], I.e. the error Statistic is o hifo1y and covariance is de ned in the tangent space at
N i KLOGy Or; k. Theresults of the cross-validation argp o canter. As a result, each Gaussian in the GMM is de ned
summ.anzed in the boxplot of Figure 7 The mgdlgn rotatl R its own tangent space, instead of a single projection space.
error is about 0.15 radian, and the interquartile indicates agoth [10] and [11] follow a Riemannian approach, although
small vaniance among the results. The far oqtlie_rs (er_rors ir_1 R explicitly mentioned in [11]. Similar to our work, they rely
range0:5  0:8 radian) correspond to combinations in whichy, 5 impii'ed version of the maximum entropy distribution
the workspace areas covered by the training set and validatji pic mannian manifolds [7]. Independently, they present a
set are disjoint. Such combinations make generalization hard@t.ihod for Gaussian conditioning. But the pr7oposed methods

(2) End-effector covariance (b) End-effector correlation

yielding the relatively large orientation error. do not properly generalize the linear behavior of Gaussian
conditioning to Riemannian manifolds, i.e. the means of the
V. RELATED WORK conditioned distribution do not lie on a single geodesic—the

The literature on statistical representation of orientatioggeneralization of a straight line on Riemannian manifolds. This
is large. We focus on the statistical encoding of orientatids illustrated in Fig. 9. Here, we computed the updatégiven
using quaternions, which is related in general to the eld ah Table Il row 3, column 4) for Gaussian conditioniNg(x jt)
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with and without parallel transport, i.e. using and , [5]
respectively. Without parallel transport the regression output
(solid blue line) does not lie on a geodesic, since it does not
coincide with the (unique) geodesic between the outer points]
(dotted blue line). Using the proposed method that relies on
the parallel transported precision matrix, the conditioned [7
means ,;; (displayed in yellow) follow a geodesic path
on the manifold, thus generalizing the ‘linear' behavior of
Gaussian conditioning to Riemannian manifolds. (8]
Furthermore, the generalization of GMR proposed in [11]
relies on the weighted combination of quaternions presentdd|
in [22]. Although this method seems to be widely accepted,
it skews the weighting of the quaternions. By applying thigo]
method, one computes the chordal mean instead of the re-
quired weighted mean [23]. [11]
In general, the objective in probabilistic imitation learning is
to model behavior as the distributio ( ). In this work we
take a direct approach and model a (mixture of) Gaussiankls?)]
over the state variables. Inverse Optimal Control (I0C) usgsl]
a more indirect approach: it uses the demonstration data t?}
uncover an underlying cost functian( ) parameterized by
. In [24], [25], pose information is learned by demonstration
by de ning cost features for speci ¢ orientation and positior!®!
relationships between objects of interest and the robot end-
effector. An interesting parallel exists between our “direct' ajjt6]
proach and recent advances in IOC where behavior is modeled
as the maximum entropy distributigaf ) = % exp( ¢ ()
[26]-[28]. The Gaussian used in our work can be seen as [aHi
approximation of this distribution, where the cost function is
the Mahalanobis distance de ned on a Riemannian manifoldg,
The bene ts of such an explicit cost structure are the ease of
nding the optimal reward (we learn its parameters throug g
EM), and the derivation of the policy (which we achiev
through conditioning). [20]

VI. (21]

In this work we showed how a set of probabilistic imitation
learning techniques can be extended to Riemannian manifoldé!
We described Gaussian conditioning, Gaussian Product and
parallel transport, which are the elementary tools required [&3]
extend TP-GMM and GMR to Riemannian manifolds. The
selection of the Riemannian manifold approach is motivategh
by the potential of extending the developed approach to other
Riemannian manifolds, and by the potential of drawing bridg ]
between other robotics challenges that involve a rich variety
of manifolds (including perception, planning and control prob—
lems). (26

CONCLUSION
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