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An Approach for Imitation Learning on Riemannian Manifolds

Martijn J.A. Zeestraten1, Ioannis Havoutis2;3, Jõao Silv́erio1, Sylvain Calinon2;1, Darwin. G. Caldwell1

Abstract—In imitation learning, multivariate Gaussians are
widely used to encode robot behaviors. Such approaches do not
provide the ability to properly represent end-effector orientation,
as the distance metric in the space of orientations is not
Euclidean. In this work we present an extension of common
imitation learning techniques to Riemannian manifolds. This
generalization enables the encoding of joint distributions that
include the robot pose. We show that Gaussian conditioning,
Gaussian product and nonlinear regression can be achieved
with this representation. The proposed approach is illustrated
with examples on a 2-dimensional sphere, with an example of
regression between two robot end-effector poses, as well as an
extension of Task-Parameterized Gaussian Mixture Model (TP-
GMM) and Gaussian Mixture Regression (GMR) to Riemannian
manifolds.

Index Terms—Learning and Adaptive Systems, Probability and
Statistical Methods

I. I NTRODUCTION

T HE Gaussian is the most common distribution for the
analysis of continuous data streams. Its popularity can

be explained on both theoretical and practical grounds. The
Gaussian is themaximum entropydistribution for data de�ned
in Euclidean spaces: it makes the least amount of assumptions
about the distribution of a dataset given its �rst two moments
[1]. In addition, operations such as marginalization, condition-
ing, linear transformation and multiplication, all result in a
Gaussian.

In imitation learning, multivariate Gaussians are widely used
to encode robot motion [2]. Generally, one encodes a joint
distribution over the motion variables (e.g. time and pose),
and uses statistical inference to estimate an output variable
(e.g. desired pose) given an input variable (e.g. time). The
variance and correlation encoded in the Gaussian allow for
interpolation and, to some extent, extrapolation of the original
demonstration data. Regression with a mixture of Gaussians
is fast compared to data-driven approaches, because it does
not depend on the original training data. Multiple models
relying on Gaussian properties have been proposed, including
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distributions over movement trajectories [3], and the encoding
of movement from multiple perspectives [4].

Probabilistic encoding using Gaussians is restricted to vari-
ables that are de�ned in the Euclidean space. This typically
excludes the use of end-effector orientation. Although one can
approximate orientation locally in the Euclidean space [5], this
approach becomes inaccurate when there is large variance in
the orientation data.

The most compact and complete representation for orienta-
tion is theunit quaternion1. Quaternions can be represented
as elements of the3-sphere, a3 dimensional Riemannian
manifold. Riemannian manifolds allow various notions such as
length, angles, areas, curvature or divergence to be computed,
which is convenient in many applications including statistics,
optimization and metric learning [6]–[9].

In this work we present a generalization of common prob-
abilistic imitation learning techniques to Riemannian mani-
folds. Our contributions are twofold: (i) We show how to
derive Gaussian conditioning and Gaussian product through
likelihood maximization. The derivation demonstrates that
parallel transportationof the covariance matrices is essential
for Gaussian conditioning and Gaussian product. This aspect
was not considered in previous generalizations of Gaussian
conditioning to Riemannian manifolds [10], [11]; (ii) We show
how the elementary operations of Gaussian conditioning and
Gaussian product can be used to extend Task-Parameterized
Gaussian Mixture Model (TP-GMM) and Gaussian Mixture
Regression (GMR) to Riemannian manifolds.

This paper is organized as follows: Section II introduces
Riemannian manifolds and statistics. The proposed methods
are detailed in Section III, evaluated in Section IV, and
discussed in relation to previous work in Section V. Section
VI concludes the paper. This paper is accompanied by a video.
Source code related to the work presented is available through
http://www.idiap.ch/software/pbdlib/.

II. PRELIMINARIES

Our objective is to extend common methods for imitation
learning from Euclidean space to Riemannian manifolds. Un-
like the Euclidean space, the Riemannian Manifold is not a
vector space where sum and scalar multiplication are de�ned.
Therefore, we cannot directly apply Euclidean methods to data
de�ned on a Riemannian manifold. However, these methods
can be applied in the Euclidean tangent spaces of the manifold,
which provide a way to indirectly perform computation on the
manifold. In this section we introduce the notions required to
enable such indirect computations to generalize methods for
imitation learning to Riemannian manifolds. We �rst introduce

1A unit quaternion is a quaternion with unit norm. From here on, we will
just usequaternionto refer to theunit quaternion.

http://www.idiap.ch/software/pbdlib/
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Fig. 1:Manifold mappings and action function forS2 . (a) The expo-
nential and the logarithmic map provide local one-to-one mappings
between the manifold and its tangent space at pointg. (b) An action
A h

g (pg ) mapspg (a point de�ned relative tog) to ph by moving it
along a geodesic (dotted lines) until it reaches a point such that the
distance betweenph and h equals the distance betweenpg and g
(both distances visualized by black lines).

Riemannian manifolds in Section II-A, and then discuss the
`Riemannian Gaussian' in Section II-B.

The functions that will be introduced in this section are
manifold speci�c. Table I provides an overview of their
implementation for the manifolds considered in this work.

A. Riemannian Manifolds

A manifold M is a d-dimensional smooth space, for which
each pointp 2 M has a local bijective mapping with an open
subset
 2 Rd. This mapping is called a(coordinate) chart.
Furthermore, there exists a tangent spaceTp M of velocity
vectors at each pointp 2 M . We indicate elements of the
manifold in bold and elements on the tangent space in fraktur
typeface, i.e.p 2 M andg 2 Tp M .

A manifold with a Riemannian metric—a positive de�nite
inner product de�ned on the tangent spaceTp M —is called
a Riemannian manifold. The metric introduces the notion
of (minimum) distance: a notion that is essential in the
de�nition of a Gaussian-like distribution. In Euclidean spaces,
minimum distance paths lie on straight lines. Similarly, in
Riemannian manifolds minimum distance paths lie on curves
calledgeodesics: the generalization of straight lines.

The exponential mapExpg (�) : Tg M ! M is a distance
preserving map between the tangent space and the manifold.
Expg (p) mapsp to p in such a way thatp lies on thegeodesic
throughg with direction p, and the distance betweeng and
p is kpk = hp; pi g , see Fig. 1a. The inverse mapping is
called thelogarithmic map, and exists if there is only one
geodesic throughg and p. The distance preserving maps
between the linear tangent space and the manifold allow to
perform computations on the manifold indirectly.

In general, one exponential and logarithmic map is required
for each tangent space. For homogeneous manifolds, however,
their function can be moved from the origine to other points
on the manifold as follows

Expg(pg ) = A g
e (Expe(pg )) ; (1)

Logg(p) = Log e

�
A e

g (p)
�

; (2)

whereA h
g

�
pg

�
is called the action function. It maps a point

pg along a geodesic toph , in such a way that the distance

betweenpg andg equals the distance betweenph andh (see
Fig. 1b).

Action functions remove the need to compute a speci�c ex-
ponential and logarithmic map for each point in the manifold at
the cost of imposing a speci�c alignment of the tangent bases.
Although this does not compromise the functions de�ned by
(1) and (2), one must consider it while moving vectors from
one tangent space to another.

Parallel transport moves vectors between tangent spaces
while keeping them parallel to the geodesic that connects their
bases. To achieve parallel transport between any two points on
the manifold, we need to compensate for the relative rotation
betweenTg M andTh M . For d-spheres this rotation is given
by

R k
h
g

= I d+1 � sin(m)gu> + (cos(m) � 1)uu > ; (3)

where u = [ v> ; 0]> gives the direction of transportation. It
is constructed fromh by mapping it intoTg M , normalizing
it, and �nally rotating it to g; i.e. v = R g

e Logg(h) =m with
m = jj Logg(h) jj the angle of transportation (See [12], Ch.
8). Notice that (3) is de�ned in the manifold ambient space
Rd+1 , while we have de�ned our tangent spaces inRd. To
achieve parallel transport betweenTg M andTh M , we de�ne
the parallel action

A k
h
g(p) = B > R e

h R k
h
g

R g
e B p; (4)

whereB contains the direction of the bases at the origin (see
Fig. 2). For the manifoldsS2 andS3 we use

B 2 =
�
1 0 0
0 1 0

� >

, andB 3 =

2

4
0 1 0 0
0 0 1 0
0 0 0 1

3

5

>

: (5)

Furthermore,R g
e and R e

h represent rotations betweene and
g, and h and e, respectively. Note that no information is
lost through the projectionB , which can be understood by
realizing that the parallel action is invertible.

Finally, we note that the Cartesian product of two Rieman-
nian manifolds is again a Riemannian manifold. This property
allows us to de�ne joint distributions on any combination of
Riemannian manifolds. e.g., a robot pose is represented by
the Cartesian product of a 3 dimensional Euclidean space and
a hypersphere, i.e.p 2 R3 � S 3. The correspondingExp() ,
Log(), A () , and parallel transport of the Cartesian product are
obtained by concatenating the individual functions, e.g.

Logh
e a
e b

i

��
a
b

��
=

�
Logea

(a)
Logeb

(b)

�
:

B. Riemannian Statistics

In [7], Pennec shows that the maximum entropy distribution
given the �rst two moments—mean point and covariance—is
a distribution of the exponential family. Although the exact so-
lution is computationally impractical, it is often approximated
by

NM (x ; � ; � ) =
1

p
(2� )d j� j

e� 1
2 Log � (x )> � � 1 Log � (x ) ; (6)
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Fig. 2: (a) Tangent space alignment with respect toe. (b) Even
though the tangent bases are aligned with respect toe, base mis-
alignment exists betweenTg M and Th M when one of them does
not lie on a geodesic throughe. In such cases, parallel transport of
p from Tg M to Th M requires a rotationA k

h
g(p) to compensate for

the misalignment of the tangent spaces.
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TABLE I: Overview of the exponential and logarithmic maps,
and the action and parallel transport functions for all Riemannian
manifolds considered in this work.s(�); c(�); ac� (�) are short nota-
tions for the sine, cosine, and a modi�ed version of the arccosine2,
respectively. The elements ofS3 are quaternions,� de�nes their
product, and� 1 a quaternion inverse.Q g and Q h represent the
quaternion matrices ofg andh .

where� 2 M is the Riemannian center of mass, and� the
covariance de�ned in the tangent spaceT� M (see e.g. [10],
[11], [13]).

The Riemannian center of mass for a set of datapoints
f x 0 ; ::: ; x N g can be estimated through a Maximum Like-
lihood Estimate (MLE). The corresponding log-likelihood
function is

L (x) = c �
1
2

NX

i =1

hi Log� (x i )
> � � 1 Log� (x i ) ; (7)

where hi are weights that can be assigned to individual
datapoints. For a single Gaussian one can sethi = 1 , but
different weights are required when estimating the likelihood
of a mixture of Gaussians.

2The space of unit quaternions,S3 , provides a double covering over
rotations. To ensure that the distance between two antipodal rotations is zero

we de�ne arccos� (� )
�

arccos(� ) � � ; � 1 � � < 0
arccos(� ) ; 0 � � � 1

.

Likelihood maximization can be achieved through Gauss-
Newton optimization [7], [13]. We review its derivation be-
cause the proposed generalizations of Gaussian conditioning
and Gaussian product to Riemannian manifolds rely on it.

First, the likelihood function is rearranged as

f (� ) = �
1
2

� (� )> W � (� ); (8)

wherec is omitted because it has no role in the optimization,
and

� (� ) =
�
Log� (x 0)> ; Log� (x 1)> ; ::: ; Log� (x N )>

�>
; (9)

is a stack of tangent space vectors inT� M which give the
distance and direction ofx i with respect to� . W is a weight
matrix with a block diagonal structure (see Table II).

The gradient of (8) is

� = � (J > W J ) � 1 J > W � (x ); (10)

with J the Jacobian of� (x ) with respect to the tangent
basis ofT� M . It is a concatenation of individual Jacobians
J i corresponding toLog� (x i ) which have the simple form
J i = � I d.

� provides an estimate of the optimal value mapped into
the tangent spaceT� M . The optimal value is obtained by
mapping� onto the manifold

�  Exp� (�) : (11)

The computation of (10) and (11) is repeated until� reaches
a prede�ned convergence threshold. We observed fast conver-
gence in our experiments for MLE, Conditioning, Product,
and GMR (typically 2-5 iterations). After convergence, the
covariance� is computed inT� M .

Note that the presented Gauss-Newton algorithm performs
optimization over a domain that is a Riemannian manifold,
while standard Gauss-Newton methods consider a Euclidean
domain.

III. PROBABILISTIC IMITATION LEARNING ON

RIEMANNIAN MANIFOLDS

Many probabilistic imitation learning methods rely on some
form of Gaussian Mixture Model (GMM), and inference
through GMR. These include both non-autonomous (time-
driven) and autonomous systems [11], [14]. The generalization
capability of these methods can be improved by encoding
the transferred skill from multiple perspectives [4], [15]. The
elementary operations required in this framework are: MLE,
Gaussian conditioning, and Gaussian product. Table II pro-
vides an overview of the parameters required to perform these
operations on a Riemannian manifold using the likelihood
maximization presented in Section II-B.

We present below Gaussian conditioning and Gaussian
product in more details, which are then used to extend GMR
and TP-GMM to Riemannian manifolds.
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TABLE II: Overview of the parameters used in the likelihood maximization procedure presented in Sections II-B, III-A and
III-B.
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Fig. 3: Log-likelihood for the product of two Gaussians on the
manifold S2 . The Gaussians are visualized on their tangent spaces
by the black ellipsoids; their center and contour represent the mean
and covariance. The color of the sphere corresponds to the value
of the log-likelihood (high=red, low=blue). The true log-likelihood
(equation (12) withP = 2 ) is displayed on the left of each sub�gure,
while the log-likelihood approximated by the product is displayed on
the right. The con�guration of the Gaussians in (a) results in a log-
likelihood with a single mode, while (b) shows the special case of
multiple modes. Note the existence of a saddle point to which the
gradient descent could converge.

A. Gaussian Product

In Euclidean space, the product ofP Gaussians is again a
Gaussian. This is not generally the case for Riemannian Gaus-
sians. This can be understood by studying its log-likelihood
function

L(x ) = c �
1
2

PX

p=1

Log� p
(x )T � � 1

p Log� p
(x ) ; (12)

whereP represents the number of Gaussians to multiply, and
� p and � p their parameters. The appearance ofLog� p

(x )
makes the log-likelihood potentially nonlinear. As a result
the product of Gaussians on Riemannian manifolds is not
guaranteed to be Gaussian.

Figure 3 shows comparisons onS2 between the true log-
likelihood of a product of two Gaussians, and the log-
likelihood obtained by approximating it using a single Gaus-
sian. The neighborhood in which the approximation of the
product by a single Gaussian is reasonable will vary depend-
ing on the values of� p and � p. In our experiments we
demonstrate that the approximation is suitable for movement
regeneration in the task-parameterized framework.

Parameter estimation for the approximated Gaussian
N

�
~� ; ~�

�
can be achieved through likelihood maximization.

Ignoring the constantc, we can rewrite (12) into the form (8)
by de�ning

� ( ~� ) =
�
Log� 1

( ~� )> ; Log� 2
( ~� )> ; ::: ; Log� P

( ~� )> �>
; (13)

and W = diag
�
� � 1

1 ; � � 1
2 ; ::: ; � � 1

P

�
, where ~� is the mean

of the Gaussian we are approximating. The vectorsLog� p
( ~� )

of � ( ~� ) in (13) are not de�ned in theT~� M , but in P
different tangent spaces. In order to perform the likelihood
maximization we need to switch the base and argument of
Log() while ensuring that the original likelihood function
(12) remains unchanged. This implies that the Mahalanobis
distance should remain unchanged, i.e.

Log� p
( ~� )> � � 1

p Log� p
( ~� ) = Log ~�

�
� p

�>
� � 1

kp Log~�

�
� p

�
;

(14)
where� kp is a modi�ed weight matrix that ensures an equal
distance measure. It is computed through parallel transporta-
tion of � p from � p to ~� with

� kp = A k
~�
� p

(L p)> A k
~�
� p

(L p) ; (15)

where L p is obtained through a symmetric decomposition
of the covariance matrix, i.e.� p = L>

pL p. This operation
transports the eigencomponents of the covariance matrix [16].
It has to be performed at each iteration of the gradient descent
because it depends on the changing~� . For spherical manifolds,
parallel transport is the linear operation (4), and (15) simpli�es
to � kp = R> � pR with R = A k

~�
� p

(I d).
Using the transported covariances we can compute the

gradient required to estimate~� and ~� . The result is presented
in Table II.

The Gaussian product arises in different �elds of probabilis-
tic robotics. Generalizations of the Extended Kalman Filter
[17] and the Unscented Kalman Filter [18] to Riemannian
manifolds required a similar procedure.

B. Gaussian Conditioning

In Gaussian conditioning, we compute the probability
P (xO jxI ) � N (� O jI ; � O jI ) of a Gaussian that encodes the
joint probability density ofxO and xI . The log-likelihood of
the conditioned Gaussian is given by

L(x ) = c �
1
2

Log� (x )> � Log� (x ) ; (16)
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with

x =
�

xI

xO

�
; � =

�
� I

� O

�
; � =

�
� II � IO

� OI � OO

�
; (17)

where the subscriptsO andI indicate respectively the input and
the output, and the precision matrix� = � � 1 is introduced
to simplify the derivation.

Equation (16) is in the form of (8). Here we want to estimate
xO given xI (i.e. � O jI ). Similarly to the Gaussian product, we
cannot directly optimize (16) because the dependent variable,
xO , is in the argument of the logarithmic map. This is again
resolved by parallel transport, namely

� k = A k
x
� (V )> A k

x
� (V ) ; (18)

whereV is obtained through a symmetric decomposition of
the precision matrix:� = V > V . Using the transformed
precision matrix, the values for� (x t ), and J (both found in
Table II), we can apply (11) to obtain the update rule. The
covariance obtained through Gaussian conditioning is given by
� � 1

k . Note that we maximize the likelihood only with respect
to xO , and therefore0 appears in the Jacobian.

C. Gaussian Mixture Regression

Similarly to a Gaussian Mixture Model (GMM) in Eu-
clidean space, a GMM on a Riemannian manifold is de�ned
by a weighted sum of Gaussians

P (x ) =
KX

i =1

� i N (x ; � i ; � i );

where � i are the priors, with
P K

i � i = 1 . In imitation
learning, they are used to represent nonlinear behaviors in a
probabilistic manner. Parameters of the GMM can be estimated
by Expectation Maximization (EM), an iterative process in
which the data are given weights for each cluster (Expectation
step), and in which the clusters are subsequently updated using
a weighted MLE (Maximization step). We refer to [10] for a
detailed description of EM for Riemannian GMMs.

A popular regression technique for Euclidean GMM is
Gaussian Mixture Regression (GMR) [4]. It approximates the
conditioned GMM using a single Gaussian, i.e.

P (xO jxI ) � N
�

�̂ O ; �̂ O

�
:

In Euclidean space, the parameters of this Gaussian are formed
by a weighted sum of the expectations and covariances,
namely,

�̂ O =
KX

i =1

hi E [N (xO jxI ; � i ; � i )] ; (19)

�̂ O =
KX

i =1

hi cov[N (xO jxI ; � i ; � i )] ; (20)

with hi =
N

�
xI ; � i ;I ; � i ;II

�

P K
j =1 N

�
xI ; � j ;I ; � j ;II

� : (21)

We cannot directly apply (19) and (20) to a GMM de�ned
on a Riemannian manifold. First, because the computation of

(a) TransformationA (b) Translationb

Fig. 4: Application of task-parametersA 2 Rd� d andb 2 S 2 to a
Gaussian de�ned onS2 .

(19) would require a weighted sum of manifold elements—
an operation that is not available on the manifold. Secondly,
because directly applying (20) would incorrectly assume the
alignment of the tangent spaces in which� i are de�ned.

To remedy the computation of the mean, we employ the
approach for MLE given in Section II-B, and compute the
weighted mean iteratively in the tangent spaceT�̂ O

M , namely

� =
KX

i =1

hi Log�̂ O
(E[N (xO jxI ; � i ; � i )]) ; (22)

�̂ O  Exp �̂ O
(�) : (23)

Here, E[N (xO jxI ; � i ; � i )] refers to the conditional mean
point obtained using the procedure described in Section III-B.
Note that the computation of the responsibilitieshi is straight-
forward using the Riemannian Gaussian (6).

After convergence of the mean, the covariance is computed
in the tangent space de�ned at̂� O . First, � i are parallel
transported fromT� i

M to T�̂ O
M , and then summed similarly

to (20) with

�̂ O =
KX

i

hi � ki ; where (24)

� ki = A k
�̂ O
� i

(L i )
> A k

�̂ O
� i

(L i ) ; (25)

and � i = L i L
>
i .

D. Task-Parameterized Models

One of the challenges in imitation learning is to generalize
skills to previously unseen situations, while keeping a small set
of demonstrations. In task-parameterized representations [4],
this challenge is tackled by considering the robot end-effector
motion from different perspectives (frames of reference such
as objects, robot base or landmarks). These perspectives are
de�ned in a global frame of reference through thetask
parametersA andb, representing a linear transformation and
translation, respectively. In Euclidean spaces this allows data
to be projected to the global frame of reference through the
linear operationAu + b.

This linear operation can also be applied to the Riemannian
Gaussian, namely

� A ;b = Exp b(A Loge(� )) ; (26)

� A ;b = ( A � A> )k� A ;b
b

; (27)
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(a)

(b) (c)

Fig. 5: Proposed approach for task parameterization (see Sec. IV).

with (�)k� A ;b
b

the parallel transportation of the covariance matrix
from b to � A ;b.

We illustrate the individual effect ofA and b in Fig. 4.
The rotationA is expressed in the tangent space ofe. Each
center� of the Gaussian is expressed asu = Log e(� ) in this
tangent space. After applying the rotationu 0 = Au , and by
exploiting the property of homogeneous space in (1), the result
is moved tob with Expb(u

0) = A b
e (Expe(u

0)) , see (26). To
maintain the relative orientation between the local frame and
the covariance, we parallel transport the covariance� A from
the b to � A ;b and obtain� A ;b. The transport compensates
the tangent space misalignment caused by moving the local
frame away from the origin. Fig. 4b shows the application of
b to the result of Fig. 4a.

IV. EVALUATION

The abilities of GMR and TP-GMM on Riemannian mani-
folds are brie�y demonstrated using a toy example. We use
four demonstrations of a point-to-point movement onS2,
which are observed from two different frames of reference
(start and end points). In each frame the spatial and temporal
data, de�ned on the manifoldS2 � R, are jointly encoded in
a GMM (K =3 ). The estimated GMMs together with the data
are visualized in Fig. 5a. To reproduce the encoded skill, we set
new locations of the start and end points, and move the frames
with their GMM accordingly, using the procedure described
in Section III-D. Fig. 5b shows the results in red and blue. To
obtain the motion in this new situation, we �rst perform time-
based GMR to computeP (x jt) separately for each GMM,
which results in the two `tubes' of Gaussians visualized in
Fig. 5c. The combined distribution, displayed in yellow, is
obtained by evaluating the Gaussian product between the two
Gaussians obtained at each time stept. We can observe smooth
regression results for the individual frames, as well as a smooth
combination of the frames in the retrieved movement.

The Cartesian product allows us to combine a variety of
Riemannian manifolds. Rich behavior can be encoded on

such manifolds using relatively simple statistical models. We
demonstrate this by encoding a bi-manual pouring skill with
a single multivariate Gaussian, and reproduce it using the
presented Gaussian conditioning.

We transfer the pouring task using3 kinesthetic demon-
strations on6 different locations in Baxter's workspace while
recording the two end-effector poses (positions and orienta-
tions, 18 demonstrations in total). The motion consists of
an adduction followed by a abduction of both arms, while
holding the left hand horizontal and tilting the right hand
(left and right seen from the robot's perspective). Snapshots
of a demonstration from two users (each moving one arm) are
shown in Fig. 6. The demonstrated data lie on the Riemannian
manifold B = R3 � S 3 � R3 � S 3. We encode the demonstra-
tions in a single Gaussian de�ned on this manifold, i.e. we
assume the recorded data to be distributed asx � N B (� ; � ),
with x = ( x L ; qL ; x R ; qR ) composed of the position and
quaternion of the left and right end-effectors.

Figure 8a shows the mean pose and its corresponding
covariance, which is de�ned in the tangent spaceT� B. The
x1, x2 and x3 axes are displayed in red, blue and green,
respectively. The horizontal constraint of the left hand resulted
in low rotational variance around thex2 and x3 axes, which
is re�ected in the small covariance at the tip of thex1 axis.
The low correlation of itsx2 andx3 axes with other variables
con�rms that the constraint is properly learned (Fig. 8b).

The bi-manual coordination required for the pouring task
is encoded in the correlation coef�cients of the covariance
matrix3 visualized in Fig. 8b. The block diagonal elements of
the correlation matrix relate to the correlations within the man-
ifolds, and the off-diagonal elements indicate the correlations
between manifolds. Strong positive and negative correlations
appear in the last block column/row of the correlation matrix.
The strong correlation in the rotation of the right hand (lower
right corner of the matrix) con�rms that the main action of
rotation is around thex3-axis (blue) which causes thex1(red)
andx2(green) axes to move in synergy. The strong correlations
of the positionx L , x R , and rotation! L with rotation ! R ,
demonstrate their importance in the task.

These correlations can be exploited to create a controller
with online adaptation to a new situation. To test the responsive
behavior, we compute the causal relationP (qR jx R ; qL ; x L )
through the Gaussian conditioning approach presented in Sec.
III-B. A typical reproduction is shown in Fig. 6, and others
can be found in the video accompanying this paper. In contrast
to the original demonstrations showing noisy synchronization
patterns from one recording to the next, the reproduction
shows a smooth coordination behavior. The orientation of the
right hand correctly adapts to the position of the right hand
and the pose of the left hand. This behavior generalizes outside
the demonstration area.

To assess the regression quality, we perform a cross-
validation on 12 out of the 18 original demonstrations (2
demonstrations on6 different locations). The demonstra-

3The covariance matrix combines correlation� 1 � � ij � 1 among
random variablesX i and X j with deviation � i of random variablesX i ,
i.e. it has elements� ij = � ij � i � j . We prefer to visualize the correlation
matrix, which only contains the correlation coef�cients, because it highlights
the coordination among variables.
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Fig. 6: Snapshot sequences of a typical demonstration (top) and reproduction (bottom) of the pouring task. The colored perpendicular lines
indicate the end-effector orientations.

Fig. 7: Cross validation results described in Section IV.

(a) End-effector covariance (b) End-effector correlation

Fig. 8:The encoded task projected on the left and right end-effectors.
(a) Gray ellipsoids visualize one standard deviation of the spatial
covariance (i.e.� X L , � X R ), their centers are the mean end-effector
positions (� x L

, � x R
). Each set of colored orthogonal lines visualize

the end-effector mean orientation, its covariance is visualized by the
ellipses at the end of each axis. (b) Correlation encoded within and
between the different manifolds. The gray rectangles mark the cor-
relations required for the reproduction presented in this experiment.

tions are split in training set of8 and a validation set of
4 demonstrations, yielding

� 12
8

�
= 495 combinations. For

each of theN data points(x L ; qL ; x R ; qR ) in the vali-
dation set, we compute the average rotation error between
the demonstrated right hand rotationqR , and the estimated
rotation q̂R = E[P (qR jx R ; qL ; x L )], i.e. the error statistic is
1
N

P
i k Logq̂R;i

�
qR;i

�
k. The results of the cross-validation are

summarized in the boxplot of Figure 7. The median rotation
error is about 0.15 radian, and the interquartile indicates a
small variance among the results. The far outliers (errors in the
range0:5 � 0:8 radian) correspond to combinations in which
the workspace areas covered by the training set and validation
set are disjoint. Such combinations make generalization harder,
yielding the relatively large orientation error.

V. RELATED WORK

The literature on statistical representation of orientation
is large. We focus on the statistical encoding of orientation
using quaternions, which is related in general to the �eld of

Fig. 9: Visualization of Gaussian conditioning with and without
parallel transport, by computingN (x jt) with x 2 S 2 ; t 2 R. The
�gure shows the output manifold where the marginal distribution
N (x ) is displayed in gray. See Section V for further details.

directional statistics [19]. Here we review related work, and
discuss differences with our approach.

In [20], [21], the authors use the central projection mapping
betweenS3 and a Euclidean spaceR3 to project distributions
on the orientation manifold. A (mixture of) Gaussian(s) is used
in [20], while Gaussian Processes are used in [21]. Since the
central projection is not distance preserving (i.e. points equally
spaced on the manifold will not be equally spaced in the
projection plane), the projection plane cannot be directly used
to compute statistics on manifold elements. From a topological
point of view, central projection is a chart� : M ! Rd;
a way to numerically identify elements in a subset of the
manifold. It is not the mapping between the manifold and
a vector space of velocities that is typically called the tangent
space. The Riemannian approach differs in two ways: (i) It
relies on distance preserving mappings between the manifold
and its tangent spaces to compute statistics on the manifold;
and (ii) It uses a Gaussian whose center is an element of the
manifold, and covariance is de�ned in the tangent space at
that center. As a result, each Gaussian in the GMM is de�ned
in its own tangent space, instead of a single projection space.

Both [10] and [11] follow a Riemannian approach, although
not explicitly mentioned in [11]. Similar to our work, they rely
on a simpli�ed version of the maximum entropy distribution
on Riemannian manifolds [7]. Independently, they present a
method for Gaussian conditioning. But the proposed methods
do not properly generalize the linear behavior of Gaussian
conditioning to Riemannian manifolds, i.e. the means of the
conditioned distribution do not lie on a single geodesic—the
generalization of a straight line on Riemannian manifolds. This
is illustrated in Fig. 9. Here, we computed the update� (given
in Table II row 3, column 4) for Gaussian conditioningN (x jt)
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with and without parallel transport, i.e. using� and � k ,
respectively. Without parallel transport the regression output
(solid blue line) does not lie on a geodesic, since it does not
coincide with the (unique) geodesic between the outer points
(dotted blue line). Using the proposed method that relies on
the parallel transported precision matrix� k , the conditioned
means� kx j t (displayed in yellow) follow a geodesic path
on the manifold, thus generalizing the `linear' behavior of
Gaussian conditioning to Riemannian manifolds.

Furthermore, the generalization of GMR proposed in [11]
relies on the weighted combination of quaternions presented
in [22]. Although this method seems to be widely accepted,
it skews the weighting of the quaternions. By applying this
method, one computes the chordal mean instead of the re-
quired weighted mean [23].

In general, the objective in probabilistic imitation learning is
to model behavior� as the distributionP (� ). In this work we
take a direct approach and model a (mixture of) Gaussian(s)
over the state variables. Inverse Optimal Control (IOC) uses
a more indirect approach: it uses the demonstration data to
uncover an underlying cost functionc� (� ) parameterized by
� . In [24], [25], pose information is learned by demonstration
by de�ning cost features for speci�c orientation and position
relationships between objects of interest and the robot end-
effector. An interesting parallel exists between our `direct' ap-
proach and recent advances in IOC where behavior is modeled
as the maximum entropy distributionp(� ) = 1

Z �
exp(� c� (� ))

[26]–[28]. The Gaussian used in our work can be seen as an
approximation of this distribution, where the cost function is
the Mahalanobis distance de�ned on a Riemannian manifold.
The bene�ts of such an explicit cost structure are the ease of
�nding the optimal reward (we learn its parameters through
EM), and the derivation of the policy (which we achieve
through conditioning).

VI. CONCLUSION

In this work we showed how a set of probabilistic imitation
learning techniques can be extended to Riemannian manifolds.
We described Gaussian conditioning, Gaussian Product and
parallel transport, which are the elementary tools required to
extend TP-GMM and GMR to Riemannian manifolds. The
selection of the Riemannian manifold approach is motivated
by the potential of extending the developed approach to other
Riemannian manifolds, and by the potential of drawing bridges
between other robotics challenges that involve a rich variety
of manifolds (including perception, planning and control prob-
lems).
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