EE613 - Machine Learning for Engineers
https://moodle.epfl.ch/course/view.php?id=16819

LINEAR REGRESSION

Sylvain Calinon
Robot Learning and Interaction Group
ldiap Research Institute
Nov 2, 2023

EEOo13 schedule

Thu. 30.11.2023
Thu. 07.12.2023
Thu. 14.12.2023
Thu. 21.12.2023

Thu. 21.09.2023 (C) 1. ML introduction
Thu. 28.09.2023 (C) 2. Bayesian 1 (C) 3. Bayesian 2
Thu. 12.10.2023 (C) 4. Hidden Markov Models
Thu. 19.10.2023 (C) 5. Dimensionality reduction
Thu. 26.10.2023 (C) 6. Decision trees
Thu. 02.11.2023 (C) 7. Linear regression
Thu. 09.11.2023 (C) 8. Nonlinear regression
Thu. 16.11.2023 (C) 9. Kernel Methods - SVM
Thu. 23.11.2023 (C) 10. Tensor factorization

(C)

(C)

(C)

(C)

R@ngssion

-

_

(response variable)

Nonlinear regression:

Approximation function
(predictor function)
(forecasting function)

Y = F(X)

Output Input

(explanatory variable)
(outcome variable) (feature variable)

~

a

/

Linear regression:

Y = XA

N

U
a

(U

Tensor regression:

Similarto Y = X A,

but with _X a tensor
instead of a matrix

)
N

)

Nonlinear regression on x
reformulated as linear

regression on f:

Y —

I fi(x)]
fa(x)

N

LEAST SQUARES

circa 1795

The pinv-net! ©

single layer,
single node,
linear activation!

@
A=X'Y

O Backfed Input Cell

A Noisy Input Cell
@ Hidden Cell
© Probablistic Hidden Cell

@ spiking Hidden Cell

@ output ceul

. Match Input Output Cell

. Recurrent Cell

. Memoary Cell

. Different Memory Cell

o Convolution or Pool

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
)) . - - o 0

.. 9,9 SRR Y9,

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

]

Deep Convolutional Netwaork (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)
e O X0,
X 20 X0,
X K0l Ky X508
e 0T X0

Generative Adversarial Network (GAN) Ligquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Netwaork (ESN)

i

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SYM) Neural Turing Machine (NTM)

SIS s e %

9.9 .-
RS

AW

Least squaves: a ubiquitous tool

Weighted least squares?

—» Regularized least squares?

T~

L1-norm instead of L2-norm?

. . T
Fast and robust X Solution with a secondary objective:

implementation?
Recursive computation?

Multivaviate lineav vegvession

By describing the input data as X € RY xD* and the output data
as y € RY, we want to find a € RP" to have y=Xa.

A solution can be found by minimizing the f5 norm
G = argmin [y — Xal’
= arg mcin (y — Xa) (y — Xa)
— arg mcin yy—2a X'y+a X' Xa.

By differentiating with respect to @ and equating to zero

2 Xy+2X Xa=0 <<= a :[(XTX)_lXT]y ly—Xal

Moore-Penrose X‘i‘ j

pseudoinverse

Sample 1

Sample 2

Sample N

N\uH'iplw mulbivaviate linear vegvession

as YE]R{NXDO) we want to find A € RP™P? to have Y = X A.

By describing the input data as X € RMP and the output data Sample 1 |} L1
Sample 2 || T2

A solution can be found by minimizing the Frobenius norm

A = arg mfiln Y — XAH% Sample N || T
= arg mfiln tr((Y - XA (Y - XA)) X
= arg mjn tr(Y'Y —2A'X'Y + A X' XA).

By differentiating with respect to A and equating to zero

OXY 42X XA=0 <— A-{(XX)'X|Y |y_xap

Moore-Penrose XT /

pseudoinverse

Polgnomial fitting with least squaves

Degree 0 (e=24.31)

g]
LTI E

Degree 3 (e=8.25)

Degree 1 (e=15.65)

0 1I0 2I0
x = |1,x]

Degree 4 (e=6.48)

Degree 2 (€=8.53)

10
>, O
0
X O - X
0 10 20
xr = [1,x,x°

Degree 5 (e=6.47)

Least squaves computed with SV

Singular value decomposition (SVD)

XE—H/QiVxDI UGERiVxN EE%J\VXDI —~
Ttooo2] Too1 0]f40 0 00] 8
00300 010 O 03 0 00 —
00000 000 =100 +500 82
04000 1 00 O 00 0 O
: oL Il 1| vos
Unitary matrix Unitary matrix
(orthogonal) (orthogonal)

X=UxXV'

<7

Least squaves computed with SV

X can be decomposed with the singular value decomposition

X =UxV'

where U and V are N X N and D*x D* orthogonal matrices, and
> is an N X D* matrix with all its elements outside of the main
diagonal equal to 0.

With this decomposition, a solution to the least squares problem is
given by

A=Vv3IUY
where the pseudoinverse of 22 can be easily obtained by inverting the
non-zero diagonal elements and transposing the resulting matrix.

Newton’s method

(least squares problem solved at each
iteration of the optimization process)

Newton's method for minimization

c(x)

13

14

Newton's method for minimization

Newton’s method attempts to solve min, ¢(x) or max, c¢(x) from an initial guess x; by
using a sequence of second-order Taylor approximations of ¢(x) around the iterates.

The second-order Taylor expansion of ¢(x) around xy, is

1
c(xp+Axy) ~ c(xg) + (ag) Axy + 50,/(%) Axs.

clxn) + () Axy + L' (2.) Ax?
C<x) (z1) + (1) A + 5" (1) Az,

The next iterate 1 = x + Az} is defined so as to minimize this
quadratic approximation in Axy.

15

Newton's method for minimization

If the second derivative is positive, the quadratic approximation is a convex
function of Axy, and its minimum can be found by setting the derivative to zero.

Since

d 1
clay) + & (x) Axy, + =" (x) Az | = (x) + ' (21) Azy = 0,
dAXk 2

the minimum is achieved for

Cl(ﬂik) C(ZC) c(zr) + ¢ (zp) Az, + 5" () Ax?

C/’(ZL’/{;).

Newton’s method thus performs the iteration

Aazk:—

c' (@)
C’/(CIZk).

Tk+1 = Tk —

16

Newton's method for minimization

The geometric interpretation of Newton's

, method is that at each iteration, the goal is

C (iUk) to fit a paraboloid to the surface of c(x) at x,,

C”(ilfk) having the same slope and curvature as the
surface at that point, and then move to the

/ maximum or minimum of that paraboloid.

c(x)
c(zy) + (wr) Az, + 5 (xg) Ax? /

c”(z) must be positive to find a minimum. ECRE
1

L+1 = Tk —

c()

If f happens to be a quadratic function, then the exact
extremum is found in one step.

\/ Newton’s method is often modified to include a small

0 x step size (either constant or estimated).

Newton’s method for minimization

L4+1 — LTk —
The multidimensional case similarly provides /

[iﬁkﬂ = Tf — H(wk)_l 9(*”3/@)7}
with g and H the gradient and Hessian matrix of f.

c(x)

c(x1) + Azig(z1) + 5 Ax] H(z1) Az

7 b "
55 -
X ¢ o ALK . -i-//f/
‘ / \ {/// v /S 4 ,>; %,()\ /\<{\§\/ :{7’7%%//
NS
' /:\(/)>‘ \W S 7 /- . //’,////
sty

4/,7'“//’9’7’7//4//,
L
Wt

c'(x)

CU@%)

17

Example: Robot inverse kinematics (|K)

Forward kinematics (FK): f = fFK(aZ)
Inverse kinematics (IK): @& = fFK_l(f) 7
IK in practice: Minimizing Hfd — fFK(ZB)HQ

- Newton’s method

f($k) + f’({[,’k) t 4 %fﬂ(%k) 2

18

19

Newton's method applied +to IK: Ganss—Newton algovithm

The Gauss-Newton algorithm is a special case of Newton’s method in which the cost is

quadratic (sum of squared function values), with c¢(x) = lezfl r#(x) = r'(x) r(x), and by

ignoring the second-order derivative terms of the Hessian.

The gradient and Hessian can in this case be computed with
o(@) — 2 (@) (@), H(z)~2d (2) J(),

with J(x) = ag(ww) c RPr*D= the Jacobian matrix of r(x) € RPs.

By considering r(x) = f*(x) — £ for our IK problem, the update

at each iteration k then becomes f FK(w)
33/<:+1:in—H() (k:)
-1 57)
= X1 — &J)) J ' (xy) r(x))

JT(wk) OM

=z + J'(zp) (£ — £(x)).

Example: Robot inverse kinematics (|K)

> ()
d
2

(@)

r(z)

Tpi1 = Tj, + JT(wk),(fd — FK(‘”))\

ori(xy) Ori(xy)
J(a?k) _ |: Of1.k O fak

2X2
Ora(xy) Ora(xy) cR

Ofik Ofak

e

20

Example: Robot inverse kinematics (|K)

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state

def controlCommand(x, param):

fkin(x, param)

Jkin(x, param)

u = np.linalg.pinv(J) @ logmap(param.Mu, f) # Position & orientation tracking

“
I

#u = J.T @ logmap(param.Mu, f) * 1E-4 # Gradient-based tracking

#u = np.linalg.pinv(J[:2,:]) @ (param.Mu[:2] - f[:2]) # Position tracking

#u = np.linalg.pinv(J3[2:,:]) @ (param.Mu[2:] - f[2:]) # Orientation tracking
#u = np.zeros(param.nbVarX) # Zero control commands

return u

o=l Object orientation

https://robotics-codes-from-scratch.github.io/

21

Nu"spaw projection
(kume/‘s in least sqyww%)

Python notebook:
demo LS polFit.ipynb

Matlab code:
demo LS polFit_nullspace0l.m

Nu"spo\w projection

The pseudoinverse provides a single least norm solution, but we
can sometimes obtain other solutions by employing a nullspace
projection matrix N

N

A=XY+(IT-X'X)V.

V' can be any vector/matrix (typically, a gradient minimizing a
secondary objective function).

The nullspace projection guarantees that |Y — X A|2 is still
minimized.

23

Nu"spo\w projection computed with SV

An alternative way of computing the nullspace projection
matrix is to exploit the singular value decomposition

X =UuxVv'
to compute o
N =UU

where U is a matrix formed by the columns of U that span
for the corresponding zero rows in 3J.

XTERDIXN UERDIXDI

TTooo2] Too1 o]T4
00300 fo10 0]f]o0
00000/ looo =1 1lo
04000/ [1o00 0]]o0

25

Exo\mplu Polgnomial fitting

d=Xvy+ Nv with x= [1,X,X2,...,X6]

v~ N(0,TI)

/anles

Exo\mplu Robot inverse kinematice

Axr — JT(w) Af +N(a:) A precondany
Primary objective: _ -
keeping the tip of /T\ 0
the robot still = J(x) {O} +N(x)

Secondary
objective:
moving the
first joint

Example: Robot inverse (singlw and dual arms

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state
def controlCommand(x, param):

f = fkin(x, param)

J = Jkin(x, param)

#N = np.eye(param.nbVarX) - np.linalg.pinv(3[:2,:]1) @ J[:2,:] # Nullspace project:
#u =u+ N@ [1, 9, @] # Prioritized tracking

Prioritized control (position tracking prioritized over orientation tracking)
dfp = (param.Mu[:2] - f[:2]) * 10 # Position correction

dfo = (param.Mu[2:] - f[2:]) * 10 # Orientation correction

Jp = J[:2,:] # Jacobian for position

Jo = 1[2:,:] # Jacobian for orientation

pinvlp = np.linalg.inv(Jp.T @ Jp + np.eye(param.nbVarX) * le-2) @ Jp.T # Damped p:
Np = np.eye(param.nbVarX) - pinvlp @ Jp # Nullspace projection operator

up = pinvlp @ dfp # Command for position tracking

JoNp = Jo @ Np

pinvJoNp = JoNp.T @ np.linalg.inv(JoNp @ JoNp.T + np.eye(1l) * lel) #

uo = pinvJoNp @ (dfo - Jo @ up) # Command for orientation tracking (! IK Prioritized IK
u=up + Np @ uo # Control commands

def controlCommand(x, param):

return u f = fkin(x, param) .
J = Jkin(x, param)
— Object crientation # Prioritized control (left tracking as main objective)

dfl = (param.Mu[:2] - f[:2,0]) * 10 # Left hand correction

dfr = (param.Mu[2:] - f[2:,0]) * 1@ # Right hand correction

J1 = J[:2,:] # Jacobian for left hand

Jr = J[2:,:] # Jacobian for right hand

pinvdl = np.linalg.inv(J1.T @ J1 + np.eye(param.nbVarX) * 1lel) @ J1.T # Damped ps¢
N1 = np.eye(param.nbVarX) - pinv]l @ J1 # Nullspace projection operator

ul = pinv]l @ dfl # Command for position tracking

JrNL = Jr @ N1

pinvdrNl = JrN1.T @ np.linalg.inv(IrN1 @ JIrN1.T + np.eye(2) * 1led) # Damped pseudt
ur = pinvIrNl @ (dfr - Jr @ ul) # Command for right hand tracking (with left hand
u=ul + Nl @ ur # Control commands

return u

https://robotics-codes-from-scratch.github.io

Rialgm vegvession

(vobus'l' vegression, Tikhonov vegulavization,
penalized least sqy\aw%)

Python notebook:
demo LS polFit.ipynb

Matlab example:
demo LS polFit02.m

RiAgQ/ vegvession

The least squares objective can be modified to give preference to a
particular solution with

A = argmfiln Y — XAlz + [[TA[}

= arg mfiln tr((Y - XA (Y - XA)) + tr((I‘A)TI‘A)

By differentiating with respect to A and equating to zero, we can
see that
—2X'Y +2X'XA+2I'TA=0

yielding |Y X All;+|TAlg

A= (X'X+T'I)'X'Y [
A

[f I'=AT with 0 < A < 1 (i.e., giving preference to solutions with
smaller norms), the process is known as €5 regularization.

29

Exo\mrlu Polgnomial fitting

D* =7 (polynomial of degree 6)

A=10"° (e=6.33) 2=10"° (e=13.67) A=10°° (€=24.55)

31

RiAgQ/ vegvession computed with SV

For the singular value decomposition
X =UxV'

with o; the singular values in the diagonal of 3, a solution to the
ridge regression problem is given by

A=VIU'Y

where 3 has diagonal values

and has zeros elsewhere.

40 0 00
02 0 00
E_000.100
00 0 00
(02498 0 00
0 0.4983 0 0
—| 0 0 50
0 0 00
0 0 00

32

V\,Q/igkl'ul loast squaves
(Gu\umlizwA least sqg\m/%)

Python notebook:
demo LS weighted.ipynb

Matlab example:
demo LS weighted01l.m

Nwig hied least squaves

By describing the input data as X e RY D" and the output data as
Y e RVP O, with a weight matrix W € RV we want to minimize

A = argmfiln Y — XAH%’W
— arg min tr((Y XA W(Y — XA))

A
= arg mfiln tr(Y WY —2A' X'WY + A X WXA).

By differentiating with respect to A and equating to zero

DX WY +2X WXA=0 < A=(XWX) XW|Y

KX];V

Sample 1

Sample 2

Sample N

1Y — XAHFW

34

Weighted least squaves A (XWX) ' XWY

Ordinary least squares Weighted least squares
9 Or
8 8
7 7
6 6
5l
> > 4
3l
ol

Color intensity
proportional
to weight

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Example: Robot inverse kinematics (wwiglo\'l's in +ask spaw)

= (JW*J+\,) ' JW?Af

01 0
0 1

(moving

2
vl

/
|

\
0

w7 Wf:[

N [0 01

Example: Robot inverse kinematics (wezigH's in +ask spaw)

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state
def controlCommand(x, param):

f = fkin(x, param)

J = Jkin(x, param)

Weights in task space

Wf = np.diag([1, 1, @])

pinvi] = np.linalg.inv(J.T @ WFf @ J + np.eye(param.nbVarX) * 1E-2) @ J.T @ Wf # We
u = pinvWl @ logmap(param.Mu, f) # Position & orientation tracking

Weights in configuration space

Wx = np.diag([©.01, 1, 1])

pinvW] = Wx @ J[:2,:].T @ np.linalg.inv(J[:2,:] @ Wx @ J[:2,:].T + np.eye(2) * :
u = pinvW] @ (param.Mu[:2] - f[:2]) # Position tracking

return u

ol Object crientation

https://robotics-codes-from-scratch.github.io/

37

Recursive least squaves

Python notebook:
demo LS recursive.ipynb

Matlab code:
demo LS recursive0l.m

Recursive least Squaves

Xt

-\

A '

A= (XX)'X" Y

X € RVx”

z
X pew € RVoewxD

‘s

herman-Morrison-Woodbury relation:

E

i

~

-

(B+UV)'=B'-B'U([I+VB'U)
\with UcR™™ and V €R™".

1

VB

1

/

When m < n, the correction term E can be computed
more efficiently than inverting B+ UV .

By defining B= X"X, the above relation can be exploited
to update a least squares solution when new datapoints

are available.

40

Recursive least squaves X/,

Ve

Anew — (Xl—ew Xnew) - X;lrev: Ynew

If X

new

=[X", V'] and Y,., =[Y",C"]', we then have

Sample 1 Sample 1

Bnew — XT Xnew

new

Sample 2 Sample 2

=X X+V'V
=B+V'V : :
whose inverse can be computed with SampleN || || Sample N
_ X Sample N+17
B!=B'-B'W (I+VB'V') VB L
Xnew

which is exploited to efficiently compute the lease squares update as
A - A+K(C-VA)
with Kalman gain K = B~'V" (I + VB_1VT)_1 (B+UV)" = 5

i,

Ve

B -B'U(I+VB'U) 'vB"'

Recursive least Squaves

Ordinary least squares (e=11.0) Recursive least squares (e=11.0)
9 9r
8t 8)
Evolution of
7t 7r the estimate
6r 6

0 02 04 06 08 1 0 02 04 06 08 1

X1 X1

-> the least squares estimate is the same in the two cases

41

Lineav wbngssion:
A move elaborated example
(bud' still only least sqy\ow%!)

Linear quadvatic vegulator (LAR)

T Track path! Use low control commands!

) 2 2
min > |||y + [
i Hi— Lt g, tl R,
t=1

S.1. L1 — Awt T But System dynamics

&, state variable (position+velocity)

. Uu

M+ desired state 1
U

U+ control command (acceleration) u=1\ .

Qt precision matrix '
ur

Rt control weight matrix

43

L1

— /
8

[—

N /
8

@

o /
8

Linear quadvatic vegulator (LAR)
T Track path! Use low control commands!

min > {le=ilg, + el
u Q, R,

t=1

S.1. L1 — Awt T But System dynamics

Pontryagin’s max. principle,
Riccati equation,
Hamilton-Jacobi-Bellman

(the Physicist perspective)

Dynamic programming

(the Computer Scientist
perspective)

Linear algebra

(the Algebraist
perspective)

Linear quadvatic vegulator (LAR)

C = ; ((Ht—xt)TQt (Ht—wt) T 'U;Rtut)
~(u-2)Qu-=) + wRw

M2

,u1

|HT_

|

Linear quadvatic vegulator (LAR)

[ath:AaztnLBut }

Iro = AiBl + B’LL1
x3 = Axs + Bus = A(Ax| + Bu,) + Buy

xr=A""le,+ AT ?Bu, + AL Buy + -+ Br_jup_

Exn T 0 0 0 0] ok
5 A B 0 00 ul
x| = | A* | 4, 4+ | AB B 00| "
xr| AT ATB AT3B ... B o "]
%_J g ~ J
S S

Linear quadvatic vegulator (LAR)

The constraint can then be inserted in the cost function:

Solving for u is similar to a weighted ridge regression problem, and results in the analytic solution:

C

iaz = S%x2, + S%u

(p — w)TQ(lL —x) + u'Ru

(u —S%x, —S“’u)TQ (u, —S%x —S“u) + u'Ru

a=(8""QS"+R) 'S*'Q (n— S®x))

47

Linear quadvatic vegulator (LQR) 48

a=(S*'QS"+ R) 'SV'Q (u — S*z))

Passing through
3 keypoints with
varying precision

—)

T =S%x + S"u

The control trajectories can then
be converted to state trajectories

t=0.3
t=0.6

|

o)

Linear quadvatic vegulator (LAR)

- |eft hand motion (Agent 1)
Right hand motion (Agent 2)
== Ball motion (Agent 3)
® Left hand initial point
Right hand initial point
® Ball releasing point
Ball hitting point
® Ball target

- Exo\mplez

49

Linear quadvatic vegulator (LAR) - Example

For t <X (left hand holding the ball), we have

%

=

———

X1t
X1
S
X2t
Ko
So
X3¢
X3¢

Fiu |

T

071000000O0OT7 /[xu 00
00I00000OO]/|]| %y I0
0000000O0O Jiu 00
00007 0O0OO,||xay 00
00000TI0OO]/]|x%y OI[ul’t]
00000000O]|]|fy oo L]
07000000 O,/ |x3 00| w
000000O0GOT||x%y 00
| 000000000] |5 [00O0)]
. 0
fiu=mig with 9:[_9.81}

X
At t:% (right hand hitting the ball), we have
| X [0 T 00000007 [x,] [00]
TS| R 00I0000O0O]|]|%x, I0
S 0000000O0O S 00
%o, 0000IO000O0O]||xy 00
S| %o 0000071000 xg,t+01[:ﬁ”
fou 0000000O0O fou 00 |L 2]
X34 00007T00O0O]| |xs 00 w
X34 0000000O0OTI]|/|xy 00
Fo (000000000 |fs:| [0O]
L " . A; _.wt_/ ;E}_J

Ty

For L<t<T and t>7 (free motion of the ball), we have

=

=

N———

X1t
X1
S
X ¢
Xt
fou
X3¢
X3¢

Fae |

Ty

X1t
X1t

fu

X9t
X9t

for

C OO OO O OO O0o

C OO OO OOOMN
C OO OO OO MNO
C OO OO0 OO OoOO0o

C OO ONOOCOCO
== B en B en] e B e B an] i e e e}
CONOOOOOCO
ONO OO OO oo

M oooooNoOoO

X3t
X3¢
VEX,

Tt

N————

o NO
o oo

+
o= e an)
o ~NO

s R e B an)
s R e B an)

(

50

Linear quadvatic vegulator (LAR) - Example

SR

51

RMP: Costs funchions and associated solutions

Univariate output y:

y— Xa
y— Xa
y— Xa

Y - XA
Y - XA
Y - XA

X

2 _ EXTX)—lx?y

by = (XTWX) ' X Wy

2 4 Tall? = (X'X+TI'TD) 'X'y
X

2 - (XXX Y

= (XWX)'XWY

24HTAZ = (X'X+T'D)'X'Y

52

H'um'l'ivdg veweighted least squaves
(RLS)

Python notebook:
demo LS weighted.ipynb

Matlab code:
demo LS IRLSO1.m

Hevatively veweighted least squaves (RLS)

1/p
N
- lell = (201 leal?)
: L , . - . N P
* IRLS is useful to minimize £, norms with argmin ||e||, = argmin) ", |e,|

}p—Z 62

e The strategy of IRLS is that |€»|” can be rewritten as |ex n

* |e,|P~? can be interpreted as a weight, which is used to minimize €2 with
weighted least squares.

— we solve a least squares problem at each iteration of the algorithm

* p=1 corresponds to least absolute deviation regression.

54

55

For an £, norm cost function defined by transformed as
weight W

Hevatively veweighted least squaves (RLS)

A = arg min HY — XAH
A p

A is estimated by starting from W =1 and iteratively computing

R : o 2
A o (XTWX>_1XTWY A = arg min Y — XA|gw Sample 1
Sample 2
Won — |Y,— X, AP? Vne{l,...,N} _
Sample N

X

Hevatively veweighted least squaves (RLS)

Ordinary least squares (e=14.6)

Iteratively reweighted least squares (e=12.6)

6r 6
® [)
®
5 5
4+ 4
3r 3
> >
2r 2
1F 1
Color darkness

}/ proportional

0 O¢ to weight
¢ °

-1 : : : : ! -1 : : : : '

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

*

%4

- regression that can sometimes be more robust to outliers

56

Logis'l'ic vegvession

Python notebook:
demo LS IRLS logRegr.ipynb

Matlab code:
demo LS IRLS logRegrOl.m

Logis-l'io vegvession

Example: Pass/fail in function of the time spent to study at an exam:

1 ° (] [(] e o o o o

Regression
/ Classification

Y 0.5%

-> Regression exploited for
classification problem

Logistic function: MW

Ha() = 1+el—a;\ua(x))

 14e—(agtaga)

Logisﬁo vegvession

Bernoulli distribution (for binary variables):

P(Qn — 1)

" 1—p)ify, =0.
P(Qn — O)
= p" (1 —p)tt=o)

Likelihood of nt" datapoint:

Ly = pa(xn)" (1 - Na(mn))(l_yn)

Logistic function:

Likelihood of N datapoints (independence assumption):

£ =TT, ta(@a)? (1 = pra(a,))

59

Logisﬁo vegvession

Likelihood of N datapoints:

yo.s,
1— n
£ =TT, ta() (1 = prala,)) "
Cost function as negative log-likelihood: I

log(a®) log(ab) = ()
zblog(N log(a) +log(b) u(z) = 1+}g—x
| c=—>_ Ynlog (,ua(wn)) + (1 — yp) log (1 — ,ua(a:n)) o
%mg%%\ 75 = (1 — p)

C _ _ N\ _J

9a — — Zyn Mal,ua, (1 — Na) Ln — (1 — yn><1 — Na> 1:ua (1 — Na> Ln

n

Zyn(l,ua)wn_ (1 — yn) ta Ty

Logisﬁo vegvession

It can for example be solved with Newton’s method, by iterating Ha(Zn) = It+e—aTzn
a+—a—H g,

with gradient g = > (ta(®n) — yn)xn = X (e —y) and Hessian H = X ' W X,
with diagonal matrix W = diag (ua x (1 — ua)).

Hadamard (elementwise) product ,LL<CC> — 1+1e—33
_ 0
We then obtain —Qf = pu(l — p)

a+a— H g
—a— (XWX)'X (e —y)

Geneval vefevences

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

The Matrix
Cookbook

Kaare Brandt Petersen
Michael Syskind Pedersen

62

