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R@ngssion
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(response variable)

Nonlinear regression:

Approximation function
(predictor function)
(forecasting function)

Y = F(X)

Output Input

(explanatory variable)
(outcome variable) (feature variable)
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Linear regression:

Y = XA

N

U
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Tensor regression:

Similarto Y = X A,

but with _X a tensor
instead of a matrix

)
N
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Nonlinear regression on x
reformulated as linear

regression on f:

Y —

I fi(x) ]
fa(x)
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LEAST SQUARES

circa 1795



The pinv-net! ©

single layer,
single node,
linear activation!

@
A=X'Y

O Backfed Input Cell

A Noisy Input Cell
@ Hidden Cell
© Probablistic Hidden Cell

@ spiking Hidden Cell

@ output ceul

. Match Input Output Cell

. Recurrent Cell

. Memoary Cell

. Different Memory Cell

o Convolution or Pool

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
) ) . - - o 0

.. 9,9 SRR Y9,

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

]

Deep Convolutional Netwaork (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)
e O X0,
X 20 X0,
X K0l Ky X508
e 0T X0

Generative Adversarial Network (GAN) Ligquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Netwaork (ESN)

i

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)
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Least squaves: a ubiquitous tool

Weighted least squares?

—» Regularized least squares?

T~

L1-norm instead of L2-norm?

. . T
Fast and robust X Solution with a secondary objective:

implementation?
Recursive computation?



Multivaviate lineav vegvession

By describing the input data as X € RY xD* and the output data
as y € RY, we want to find a € RP" to have y=Xa.

A solution can be found by minimizing the f5 norm
G = argmin [y — Xal’
= arg mcin (y — Xa) (y — Xa)
— arg mcin yy—2a X'y+a X' Xa.

By differentiating with respect to @ and equating to zero

2 Xy+2X Xa=0 <<= a :[(XTX)_lXT]y ly—Xal

Moore-Penrose X‘i‘ j

pseudoinverse

Sample 1

Sample 2

Sample N




N\uH'iplw mulbivaviate linear vegvession

as YE]R{NXDO) we want to find A € RP™P? to have Y = X A.

By describing the input data as X € RMP and the output data Sample 1 |} L1
Sample 2 || T2

A solution can be found by minimizing the Frobenius norm

A = arg mfiln Y — XAH% Sample N || T
= arg mfiln tr((Y - XA (Y - XA)) X
= arg mjn tr(Y'Y —2A'X'Y + A X' XA).

By differentiating with respect to A and equating to zero

OXY 42X XA=0 <— A-{(XX)'X|Y |y_xap

Moore-Penrose XT /

pseudoinverse



Polgnomial fitting with least squaves

Degree 0 (e=24.31)

g ]
LTI E

Degree 3 (e=8.25)

Degree 1 (e=15.65)

0 1I0 2I0
x = |1,x]

Degree 4 (e=6.48)

Degree 2 (€=8.53)

10
>, O
0
X O - X
0 10 20
xr = [1,x,x°

Degree 5 (e=6.47)




Least squaves computed with SV

Singular value decomposition (SVD)

XE—H/QiVxDI UGERiVxN EE%J\VXDI —~
Ttooo2] Too1 0]f40 0 00] 8
00300 010 O 03 0 00 —
00000 000 =100 +500 82
04000 1 00 O 00 0 O
: oL Il 1| vos
Unitary matrix Unitary matrix
(orthogonal) (orthogonal)

X=UxXV'

<7



Least squaves computed with SV

X can be decomposed with the singular value decomposition

X =UxV'

where U and V are N X N and D*x D* orthogonal matrices, and
> is an N X D* matrix with all its elements outside of the main
diagonal equal to 0.

With this decomposition, a solution to the least squares problem is
given by

A=Vv3IUY
where the pseudoinverse of 22 can be easily obtained by inverting the
non-zero diagonal elements and transposing the resulting matrix.




Newton’s method

(least squares problem solved at each
iteration of the optimization process)



Newton's method for minimization

c(x)

13
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Newton's method for minimization

Newton’s method attempts to solve min, ¢(x) or max, c¢(x) from an initial guess x; by
using a sequence of second-order Taylor approximations of ¢(x) around the iterates.

The second-order Taylor expansion of ¢(x) around xy, is

1
c(xp+Axy) ~ c(xg) + (ag) Axy + 50,/(%) Axs.

clxn) + () Axy + L' (2.) Ax?
C<x) (z1) + (1) A + 5" (1) Az,

The next iterate 1 = x + Az} is defined so as to minimize this
quadratic approximation in Axy.



15

Newton's method for minimization

If the second derivative is positive, the quadratic approximation is a convex
function of Axy, and its minimum can be found by setting the derivative to zero.

Since

d 1
clay) + & (x) Axy, + =" (x) Az | = (x) + ' (21) Azy = 0,
dAXk 2

the minimum is achieved for

Cl(ﬂik) C(ZC) c(zr) + ¢ (zp) Az, + 5" () Ax?

C/’(ZL’/{;).

Newton’s method thus performs the iteration

Aazk:—

c' (@)
C’/(CIZk).

Tk+1 = Tk —
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Newton's method for minimization

The geometric interpretation of Newton's

, method is that at each iteration, the goal is

C (iUk) to fit a paraboloid to the surface of c(x) at x,,

C”(ilfk) having the same slope and curvature as the
surface at that point, and then move to the

/ maximum or minimum of that paraboloid.

c(x)
c(zy) +  (wr) Az, + 5 (xg) Ax? /

c”(z) must be positive to find a minimum. ECRE
1

L+1 = Tk —

c()

If f happens to be a quadratic function, then the exact
extremum is found in one step.

\/ Newton’s method is often modified to include a small

0 x step size (either constant or estimated).



Newton’s method for minimization

L4+1 — LTk —
The multidimensional case similarly provides /

[iﬁkﬂ = Tf — H(wk)_l 9(*”3/@)7}
with g and H the gradient and Hessian matrix of f.

c(x)

c(x1) + Azig(z1) + 5 Ax] H(z1) Az

7 b "
55 -
X ¢ o ALK . -i-//f/
‘ / \ {/// v /S 4 ,>; %,()\ /\<{\§\/ :{7’7%%//
NS
' /:\(/ )>‘ \W S 7 /- . //’,////
sty

4/,7'“//’9’7’7//4//,
L
Wt

c'(x)

CU@%)
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Example: Robot inverse kinematics (|K)

Forward kinematics (FK): f = fFK(aZ)
Inverse kinematics (IK): @& = fFK_l(f) 7
IK in practice: Minimizing Hfd — fFK(ZB)HQ

- Newton’s method

f($k) + f’({[,’k) t 4 %fﬂ(%k) 2

18
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Newton's method applied +to IK: Ganss—Newton algovithm

The Gauss-Newton algorithm is a special case of Newton’s method in which the cost is

quadratic (sum of squared function values), with c¢(x) = lezfl r#(x) = r'(x) r(x), and by

ignoring the second-order derivative terms of the Hessian.

The gradient and Hessian can in this case be computed with
o(@) — 2 (@) (@), H(z)~2d (2) J(),

with J(x) = ag(ww) c RPr*D= the Jacobian matrix of r(x) € RPs.

By considering r(x) = f*(x) — £ for our IK problem, the update

at each iteration k then becomes f FK(w )
33/<:+1:in—H( ) ( k:)
-1 57 )
= X1 — &J )) J ' (xy) r(x))

JT(wk) OM

=z + J'(zp) (£ — £(x)).



Example: Robot inverse kinematics (|K)

> ()
d
2

(@)

r(z)

Tpi1 = Tj, + JT(wk),(fd — FK(‘”))\

ori(xy) Ori(xy)
J(a?k) _ |: Of1.k O fak

2X2
Ora(xy) Ora(xy) cR

Ofik Ofak

e
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Example: Robot inverse kinematics (|K)

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state

def controlCommand(x, param):

fkin(x, param)

Jkin(x, param)

u = np.linalg.pinv(J) @ logmap(param.Mu, f) # Position & orientation tracking

“
I

#u = J.T @ logmap(param.Mu, f) * 1E-4 # Gradient-based tracking

#u = np.linalg.pinv(J[:2,:]) @ (param.Mu[:2] - f[:2]) # Position tracking

#u = np.linalg.pinv(J3[2:,:]) @ (param.Mu[2:] - f[2:]) # Orientation tracking
#u = np.zeros(param.nbVarX) # Zero control commands

return u

o=l Object orientation

https://robotics-codes-from-scratch.github.io/

21



Nu"spaw projection
(kume/‘s in least sqyww%)

Python notebook:
demo LS polFit.ipynb

Matlab code:
demo LS polFit_nullspace0l.m



Nu"spo\w projection

The pseudoinverse provides a single least norm solution, but we
can sometimes obtain other solutions by employing a nullspace
projection matrix N

N

A=XY+(IT-X'X)V.

V' can be any vector/matrix (typically, a gradient minimizing a
secondary objective function).

The nullspace projection guarantees that |Y — X A|2 is still
minimized.

23



Nu"spo\w projection computed with SV

An alternative way of computing the nullspace projection
matrix is to exploit the singular value decomposition

X =UuxVv'
to compute o
N =UU

where U is a matrix formed by the columns of U that span
for the corresponding zero rows in 3J.

XTERDIXN UERDIXDI

TTooo2] Too1 o]T4
00300 fo10 0]f]o0
00000/ looo =1 1lo
04000/ [1o00 0]]o0




25

Exo\mplu Polgnomial fitting

d=Xvy+ Nv with x= [1,X,X2,...,X6]

v~ N(0,TI)

/anles




Exo\mplu Robot inverse kinematice

Axr — JT(w) Af +N(a:) A precondany
Primary objective: _ -
keeping the tip of /T\ 0
the robot still = J(x) {O} +N(x)

Secondary
objective:
moving the
first joint




Example: Robot inverse (singlw and dual arms

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state
def controlCommand(x, param):

f = fkin(x, param)

J = Jkin(x, param)

#N = np.eye(param.nbVarX) - np.linalg.pinv(3[:2,:]1) @ J[:2,:] # Nullspace project:
#u =u+ N@ [1, 9, @] # Prioritized tracking

# Prioritized control (position tracking prioritized over orientation tracking)
dfp = (param.Mu[:2] - f[:2]) * 10 # Position correction

dfo = (param.Mu[2:] - f[2:]) * 10 # Orientation correction

Jp = J[:2,:] # Jacobian for position

Jo = 1[2:,:] # Jacobian for orientation

pinvlp = np.linalg.inv(Jp.T @ Jp + np.eye(param.nbVarX) * le-2) @ Jp.T # Damped p:
Np = np.eye(param.nbVarX) - pinvlp @ Jp # Nullspace projection operator

up = pinvlp @ dfp # Command for position tracking

JoNp = Jo @ Np

pinvJoNp = JoNp.T @ np.linalg.inv(JoNp @ JoNp.T + np.eye(1l) * lel) #

uo = pinvJoNp @ (dfo - Jo @ up) # Command for orientation tracking (! IK Prioritized IK
u=up + Np @ uo # Control commands

def controlCommand(x, param):

return u f = fkin(x, param) .
J = Jkin(x, param)
— Object crientation # Prioritized control (left tracking as main objective)

dfl = (param.Mu[:2] - f[:2,0]) * 10 # Left hand correction

dfr = (param.Mu[2:] - f[2:,0]) * 1@ # Right hand correction

J1 = J[:2,:] # Jacobian for left hand

Jr = J[2:,:] # Jacobian for right hand

pinvdl = np.linalg.inv(J1.T @ J1 + np.eye(param.nbVarX) * 1lel) @ J1.T # Damped ps¢
N1 = np.eye(param.nbVarX) - pinv]l @ J1 # Nullspace projection operator

ul = pinv]l @ dfl # Command for position tracking

JrNL = Jr @ N1

pinvdrNl = JrN1.T @ np.linalg.inv(IrN1 @ JIrN1.T + np.eye(2) * 1led) # Damped pseudt
ur = pinvIrNl @ (dfr - Jr @ ul) # Command for right hand tracking (with left hand
u=ul + Nl @ ur # Control commands

return u

https://robotics-codes-from-scratch.github.io



Rialgm vegvession

(vobus'l' vegression, Tikhonov vegulavization,
penalized least sqy\aw%)

Python notebook:
demo LS polFit.ipynb

Matlab example:
demo LS polFit02.m



RiAgQ/ vegvession

The least squares objective can be modified to give preference to a
particular solution with

A = argmfiln Y — XAlz + [[TA[}

= arg mfiln tr((Y - XA (Y - XA)) + tr((I‘A)TI‘A)

By differentiating with respect to A and equating to zero, we can
see that
—2X'Y +2X'XA+2I'TA=0

yielding |Y X All;+|TAlg

A= (X'X+T'I)'X'Y [
A

[f I'=AT with 0 < A < 1 (i.e., giving preference to solutions with
smaller norms), the process is known as €5 regularization.

29



Exo\mrlu Polgnomial fitting

D* =7 (polynomial of degree 6)

A=10"° (e=6.33) 2=10"° (e=13.67) A=10°° (€=24.55)

31



RiAgQ/ vegvession computed with SV

For the singular value decomposition
X =UxV'

with o; the singular values in the diagonal of 3, a solution to the
ridge regression problem is given by

A=VIU'Y

where 3 has diagonal values

and has zeros elsewhere.

40 0 00
02 0 00
E_000.100
00 0 00
(02498 0 00
0 0.4983 0 0
—| 0 0 50
0 0 00
0 0 00

32




V\,Q/igkl'ul loast squaves
(Gu\umlizwA least sqg\m/%)

Python notebook:
demo LS weighted.ipynb

Matlab example:
demo LS weighted01l.m



Nwig hied least squaves

By describing the input data as X e RY D" and the output data as
Y e RVP O, with a weight matrix W € RV we want to minimize

A = argmfiln Y — XAH%’W
— arg min tr((Y XA W(Y — XA))

A
= arg mfiln tr(Y WY —2A' X'WY + A X WXA).

By differentiating with respect to A and equating to zero

DX WY +2X WXA=0 < A=(XWX) XW|Y

KX];V

Sample 1

Sample 2

Sample N

1Y — XAHFW

34



Weighted least squaves A (XWX) ' XWY

Ordinary least squares Weighted least squares
9 Or
8 8
7 7
6 6
5l
> > 4
3l
ol

Color intensity
proportional
to weight

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1



Example: Robot inverse kinematics (wwiglo\'l's in +ask spaw)

= (JW*J+\,) ' JW?Af

01 0
0 1

(moving

2
vl

/
|

\
0

w7 Wf:[

N [0 01



Example: Robot inverse kinematics (wezigH's in +ask spaw)

IK Damped IK Weighted IK Prioritized IK

X = [-np.pi/4, np.pi/2, np.pi/4] # Initial robot state
def controlCommand(x, param):

f = fkin(x, param)

J = Jkin(x, param)

# Weights in task space

Wf = np.diag([1, 1, @])

pinvi] = np.linalg.inv(J.T @ WFf @ J + np.eye(param.nbVarX) * 1E-2) @ J.T @ Wf # We
u = pinvWl @ logmap(param.Mu, f) # Position & orientation tracking

# # Weights in configuration space

# Wx = np.diag([©.01, 1, 1])

# pinvW] = Wx @ J[:2,:].T @ np.linalg.inv(J[:2,:] @ Wx @ J[:2,:].T + np.eye(2) * :
# u = pinvW] @ (param.Mu[:2] - f[:2]) # Position tracking

return u

ol Object crientation

https://robotics-codes-from-scratch.github.io/
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Recursive least squaves

Python notebook:
demo LS recursive.ipynb

Matlab code:
demo LS recursive0l.m



Recursive least Squaves

Xt

-\

A '

A= (XX)'X" Y

X € RVx”

z
X pew € RVoewxD

‘s

herman-Morrison-Woodbury relation:

E

i

~

-

(B+UV)'=B'-B'U([I+VB'U)
\with UcR™™ and V €R™".

1

VB

1

/

When m < n, the correction term E can be computed
more efficiently than inverting B+ UV .

By defining B= X"X, the above relation can be exploited
to update a least squares solution when new datapoints

are available.
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Recursive least squaves X/,

Ve

Anew — (Xl—ew Xnew) - X;lrev: Ynew

If X

new

=[X", V'] and Y,., =[Y",C"]', we then have

Sample 1 Sample 1

Bnew — XT Xnew

new

Sample 2 Sample 2

=X X+V'V
=B+V'V : :
whose inverse can be computed with SampleN || || Sample N
_ X Sample N+17
B!=B'-B'W (I+VB'V') VB L
Xnew

which is exploited to efficiently compute the lease squares update as
A - A+K(C-VA)
with Kalman gain K = B~'V" (I + VB_1VT)_1 (B+UV)" = 5

i,

Ve

B -B'U(I+VB'U) 'vB"'



Recursive least Squaves

Ordinary least squares (e=11.0) Recursive least squares (e=11.0)
9 9r
8t 8 )
Evolution of
7t 7r the estimate
6r 6

0 02 04 06 08 1 0 02 04 06 08 1

X1 X1

-> the least squares estimate is the same in the two cases

41



Lineav wbngssion:
A move elaborated example
(bud' still only least sqy\ow%!)



Linear quadvatic vegulator (LAR)

T Track path!  Use low control commands!

) 2 2
min > |||y + [
i Hi— Lt g, tl R,
t=1

S.1. L1 — Awt T But System dynamics

&, state variable (position+velocity)

. Uu

M+ desired state 1
U

U+ control command (acceleration) u=1\ .

Qt precision matrix '
ur

Rt control weight matrix

43
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Linear quadvatic vegulator (LAR)
T Track path!  Use low control commands!

min > {le=ilg, + el
u Q, R,

t=1

S.1. L1 — Awt T But System dynamics

Pontryagin’s max. principle,
Riccati equation,
Hamilton-Jacobi-Bellman

(the Physicist perspective)

Dynamic programming

(the Computer Scientist
perspective)

Linear algebra

(the Algebraist
perspective)




Linear quadvatic vegulator (LAR)

C = ; ((Ht—xt)TQt (Ht—wt) T 'U;Rtut)
~(u-2)Qu-=) + wRw

M2

_,u1_

|HT_

|




Linear quadvatic vegulator (LAR)

[ath:AaztnLBut }

Iro = AiBl + B’LL1
x3 = Axs + Bus = A(Ax| + Bu,) + Buy

xr=A""le,+ AT ?Bu, + AL Buy + -+ Br_jup_

Exn T 0 0 0 0] ok
5 A B 0 00 ul
x| = | A* | 4, 4+ | AB B 00| "
xr| AT ATB AT3B ... B o "]
%_J g ~ J
S S




Linear quadvatic vegulator (LAR)

The constraint can then be inserted in the cost function:

Solving for u is similar to a weighted ridge regression problem, and results in the analytic solution:

C

iaz = S%x2, + S%u

(p — w)TQ(lL —x) + u'Ru

(u —S%x, —S“’u)TQ (u, —S%x —S“u) + u'Ru

a=(8""QS"+R) 'S*'Q (n— S®x))

47



Linear quadvatic vegulator (LQR) 48

a=(S*'QS"+ R) 'SV'Q (u — S*z))

Passing through
3 keypoints with
varying precision

—)

T =S%x + S"u

The control trajectories can then
be converted to state trajectories

t=0.3
t=0.6

|

o)




Linear quadvatic vegulator (LAR)

- |eft hand motion (Agent 1)
Right hand motion (Agent 2)
== Ball motion (Agent 3)
® Left hand initial point
Right hand initial point
® Ball releasing point
Ball hitting point
® Ball target

- Exo\mplez

49



Linear quadvatic vegulator (LAR) - Example

For t <X (left hand holding the ball), we have

%

=

———

X1t
X1
S
X2t
Ko
So
X3¢
X3¢

Fiu |

T

071000000O0OT7 /[ xu 00
00I00000OO]/|]| %y I0
0000000O0O Jiu 00
00007 0O0OO,||xay 00
00000TI0OO]/]|x%y OI[ul’t]
00000000O]|]|fy oo L]
07000000 O,/ |x3 00| w
000000O0GOT||x%y 00
| 000000000] |5 [00O0)]
. 0
fiu=mig with 9:[_9.81}

X
At t:% (right hand hitting the ball), we have
| X [0 T 00000007 [x,] [00]
TS| R 00I0000O0O]|]|%x, I0
S 0000000O0O S 00
%o, 0000IO000O0O]||xy 00
S| %o 0000071000 xg,t+01[:ﬁ”
fou 0000000O0O fou 00 |L 2]
X34 00007T00O0O]| |xs 00 w
X34 0000000O0OTI]|/|xy 00
Fo (000000000 |fs:| [0O]
L " . A; \_.wt_/ ;E}_J

Ty

For L<t<T and t>7 (free motion of the ball), we have

=

=

N———

X1t
X1
S
X ¢
Xt
fou
X3¢
X3¢

Fae |

Ty

X1t
X1t

fu

X9t
X9t

for

C OO OO O OO O0o

C OO OO OOOMN
C OO OO OO MNO
C OO OO0 OO OoOO0o

C OO ONOOCOCO
== B en B en] e B e B an] i e e e}
CONOOOOOCO
ONO OO OO oo

M oooooNoOoO

X3t
X3¢
VEX,

Tt

N————

o NO
o oo

+
o= e an)
o ~NO

s R e B an)
s R e B an)

(
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Linear quadvatic vegulator (LAR) - Example

SR

51



RMP: Costs funchions and associated solutions

Univariate output y:

y— Xa
y— Xa
y— Xa

Y - XA
Y - XA
Y - XA

X

2 _ EXTX)—lx?y

by = (XTWX) ' X Wy

2 4 Tall? = (X'X+TI'TD) 'X'y
X

2 - (XXX Y

= (XWX)'XWY

24HTAZ = (X'X+T'D)'X'Y

52



H'um'l'ivdg veweighted least squaves
(RLS)

Python notebook:
demo LS weighted.ipynb

Matlab code:
demo LS IRLSO1.m



Hevatively veweighted least squaves (RLS)

1/p
N
- lell = (201 leal?)
: L , . - . N P
* IRLS is useful to minimize £, norms with argmin ||e||, = argmin ) ", |e,|

}p—Z 62

e The strategy of IRLS is that |€»|” can be rewritten as |ex n

* |e,|P~? can be interpreted as a weight, which is used to minimize €2 with
weighted least squares.

— we solve a least squares problem at each iteration of the algorithm

* p=1 corresponds to least absolute deviation regression.

54
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For an £, norm cost function defined by transformed as
weight W

Hevatively veweighted least squaves (RLS)

A = arg min HY — XAH
A p

A is estimated by starting from W =1 and iteratively computing

R : o 2
A o (XTWX>_1XTWY A = arg min Y — XA|gw Sample 1
Sample 2
Won — |Y,— X, AP? Vne{l,...,N} _
Sample N

X



Hevatively veweighted least squaves (RLS)

Ordinary least squares (e=14.6)

Iteratively reweighted least squares (e=12.6)

6r 6
® [ )
®
5 5
4+ 4
3r 3
> >
2r 2
1F 1
Color darkness

}/ proportional

0 O¢ to weight
¢ °

-1 : : : : ! -1 : : : : '

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

*

%4

- regression that can sometimes be more robust to outliers
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Logis'l'ic vegvession

Python notebook:
demo LS IRLS logRegr.ipynb

Matlab code:
demo LS IRLS logRegrOl.m



Logis-l'io vegvession

Example: Pass/fail in function of the time spent to study at an exam:

1 ° (] [ (] e o o o o

Regression
/ Classification

Y 0.5%

-> Regression exploited for
classification problem

Logistic function: MW

Ha() = 1+el—a;\ua(x) )

 14e—(agtaga)




Logisﬁo vegvession

Bernoulli distribution (for binary variables):

P(Qn — 1)

" 1—p)ify, =0.
P(Qn — O)
= p" (1 —p)tt=o)

Likelihood of nt" datapoint:

Ly = pa(xn)" (1 - Na(mn))(l_yn)

Logistic function:

Likelihood of N datapoints (independence assumption):

£ =TT, ta(@a)? (1 = pra(a,))
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Logisﬁo vegvession

Likelihood of N datapoints:

yo.s,
1— n
£ =TT, ta() (1 = prala,)) "
Cost function as negative log-likelihood: I

log(a®) log(ab) = ( )
zblog(N log(a) +log(b) u(z) = 1+}g—x
| c=—>_ Ynlog (,ua(wn)) + (1 — yp) log (1 — ,ua(a:n)) o
%mg%%\ 75 = (1 — p)

C _ _ N\ _J

9a — — Zyn Mal,ua, (1 — Na) Ln — (1 — yn><1 — Na> 1:ua (1 — Na> Ln

n

_Zyn(l_,ua)wn_ (1 — yn) ta Ty



Logisﬁo vegvession

It can for example be solved with Newton’s method, by iterating Ha(Zn) = It+e—aTzn
a+—a—H g,

with gradient g = > (ta(®n) — yn)xn = X (e —y) and Hessian H = X ' W X,
with diagonal matrix W = diag (ua x (1 — ua)).

Hadamard (elementwise) product ,LL<CC> — 1+1e—33
_ 0
We then obtain —Qf = pu(l — p)

a+a— H g
—a— (XWX)'X (e —y)



Geneval vefevences

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

The Matrix
Cookbook

Kaare Brandt Petersen
Michael Syskind Pedersen
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