https://moodle.epfl.ch/course/view.php?id=16819

TENSOR FACTORIZATION

Sylvain Calinon
Robot Learning and Interaction Group Idiap Research Institute

Nov 23, 2023

Thu. 21.09.2023	(C) 1. ML introduction
Thu. 28.09.2023	(C) 2. Bayesian 1 (C) 3. Bayesian 2
Thu. 12.10.2023	(C) 4. Hidden Markov Models
Thu. 19.10.2023	(C) 5. Dimensionality reduction
Thu. 26.10.2023	(C) 6. Decision trees
Thu. 02.11.2023	(C) 7. Linear regression
Thu. 09.11.2023	(C) 8. Nonlinear regression
Thu. 16.11.2023	(C) 9. Kernel Methods - SVM
Thu. 23.11.2023	(C) 10. Tensor factorization
Thu. 30.11.2023	(C) 11. Deep learning 1
Thu. 07.12.2023	(C) 12. Deep learning 2
Thu. 14.12.2023	(C) 13. Deep learning 3
Thu. 21.12.2023	(C) 14. Deep learning 4

Outline

Linear algebra:

- Products (Hadamard, Kronecker, Khatri-Rao)
- Separation of variables
- Singular value decomposition (SVD)

3 tensor decomposition models:

- Canonical polyadic (CP)
- Tucker
- Tensor train

Products (Hadamard, Kronecker, Khatri-Rao)
Hadamard
(elementwise)

$$
\boldsymbol{A} * \boldsymbol{B}=\left[\begin{array}{cccc}
a_{1,1} b_{1,1} & a_{1,2} b_{1,2} & \cdots & a_{1, J} b_{1, J} \\
a_{2,1} b_{2,1} & a_{2,2} b_{2,2} & \cdots & a_{2, J} b_{2, J} \\
\vdots & \vdots & \ddots & \vdots \\
a_{I, 1} b_{I, 1} & a_{I, 2} b_{I, 2} & \cdots & a_{I, J} b_{I, J}
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{A} & \in \mathbb{R}^{I \times J} \\
\boldsymbol{B} & \in \mathbb{R}^{I \times J} \\
\boldsymbol{A} * \boldsymbol{B} & \in \mathbb{R}^{I \times J}
\end{aligned}
$$

Kronecker

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{cccc}
a_{1,1} \boldsymbol{B} & a_{1,2} \boldsymbol{B} & \cdots & a_{1, J} \boldsymbol{B} \\
a_{2,1} \boldsymbol{B} & a_{2,2} \boldsymbol{B} & \cdots & a_{2, J} \boldsymbol{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{I, 1} \boldsymbol{B} & a_{I, 2} \boldsymbol{B} & \cdots & a_{I, J} \boldsymbol{B}
\end{array}\right]
$$

$$
\boldsymbol{A} \in \mathbb{R}^{I \times J}
$$

$$
\boldsymbol{B} \in \mathbb{R}^{K \times L}
$$

$$
\boldsymbol{A} \otimes \boldsymbol{B} \in \mathbb{R}^{I K \times J L}
$$

Khatri-Rao

$$
\boldsymbol{A} \odot \boldsymbol{B}=\left[\begin{array}{cccc}
a_{1,1} \boldsymbol{b}_{1} & a_{1,2} \boldsymbol{b}_{2} & \cdots & a_{1, K} \boldsymbol{b}_{K} \\
a_{2,1} \boldsymbol{b}_{1} & a_{2,2} \boldsymbol{b}_{2} & \cdots & a_{2, K} \boldsymbol{b}_{K} \\
\vdots & \vdots & \ddots & \vdots \\
a_{I, 1} \boldsymbol{b}_{1} & a_{I, 2} \boldsymbol{b}_{2} & \cdots & a_{I, K} \boldsymbol{b}_{K}
\end{array}\right]
$$

$$
\boldsymbol{A} \in \mathbb{R}^{I \times K}
$$

$$
\boldsymbol{B} \in \mathbb{R}^{J \times K}
$$

$$
\boldsymbol{A} \odot \boldsymbol{B} \in \mathbb{R}^{I J \times K}
$$

Hadamard (elementwise) product - Example

$$
\begin{aligned}
\boldsymbol{A} & \in \mathbb{R}^{3 \times 2} \\
\boldsymbol{B} & \in \mathbb{R}^{3 \times 2} \\
\boldsymbol{A} * \boldsymbol{B} & \in \mathbb{R}^{3 \times 2}
\end{aligned}
$$

Kronecker product - Example

$\boldsymbol{A} \in \mathbb{R}^{3 \times 2}$

\boldsymbol{A}	$\in \mathbb{R}^{3 \times 2}$
\boldsymbol{B}	$\in \mathbb{R}^{5 \times 4}$
$\boldsymbol{A} \otimes \boldsymbol{B}$	$\in \mathbb{R}^{15 \times 8}$

Khatri-Rao product - Example

$$
\begin{aligned}
\boldsymbol{A} & \in \mathbb{R}^{3 \times 2} \\
\boldsymbol{B} & \in \mathbb{R}^{5 \times 2} \\
\boldsymbol{A} \odot \boldsymbol{B} & \in \mathbb{R}^{15 \times 2}
\end{aligned}
$$

Tensors

3rd-order tensors

Images: 3D tensors
(width, height, color channels)

Videos: 4D tensors
(frame, width, height, color channels)

r

Tensors appear in various forms:

- Raw data (arrays of sensors, multidimensional channels)
- Data evolution over time window
(sets of short sequences)
- Data in multiple coordinate systems
- Basis functions expansion

Tensor methods - Motivation

Tensor factorization
\rightarrow Multiway analysis of the data

Couldn't we simply vectorize/flatten our data before further processing?

Tensor data in robotics: Available processing tools

Figures from: Andrzej CICHOCKI (2014), Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions

Separation of variables: a factorization problem

Matrix factorization with standard linear algebra:

(singular value decomposition)

Rank-1 decomposition:

$$
\boldsymbol{X}_{i, j}=\boldsymbol{U}_{i} \boldsymbol{V}_{j} \rightarrow \text { Representation in a separable form }
$$

Rank-R decomposition:

$$
\boldsymbol{X}_{i, j}=\sum_{r=1}^{R} \boldsymbol{U}_{i, r} \boldsymbol{V}_{j, r} \quad \underset{\text { (in matrix form) }}{\boldsymbol{X}=\boldsymbol{U} \boldsymbol{V}^{\top}}
$$

Extension to data with more indices (tensors):

$$
\boldsymbol{X}_{i, j, k, \ldots}=\sum_{r=1}^{R} \boldsymbol{U}_{i, r} \boldsymbol{V}_{j, r} \boldsymbol{W}_{k, r} \cdots
$$

(CP decomposition)

Data structured as tensors

Tensor indexing - Slices and fibers

Tensor matricization / unfolding

A matrix $\boldsymbol{X}_{(n)} \in \mathbb{R}^{I_{n} \times\left(I_{1} \cdots I_{n-1} I_{n+1} \cdots I_{N}\right)}$ results from the mode- n matricization (unfolding) of a tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$, which consists of turning the mode- n fibers of $\boldsymbol{\mathcal { X }}$ into the columns of a matrix $\boldsymbol{X}_{(n)}$.

$$
\boldsymbol{\mathcal { X }} \in \mathbb{R}^{8 \times 6 \times 4}
$$

$$
\boldsymbol{X}_{(1)} \in \mathbb{R}^{8 \times 24}
$$

(mode-1 unfolding)

Mode-n product

Intuitively, the operation corresponds to multiplying each mode- n fiber of $\boldsymbol{\mathcal { X }}$ by the matrix \boldsymbol{M}.

Modern product - Example

$$
\begin{aligned}
\mathcal{X} & \in \mathbb{R}^{8 \times 6 \times 4} \\
\boldsymbol{M} & \in \mathbb{R}^{6 \times 3} \\
\mathcal{Y} & \in \mathbb{R}^{8 \times 3 \times 4}
\end{aligned}
$$

Outer product and inner product

Singular value decomposition (SVD)

$$
\begin{aligned}
\tilde{\boldsymbol{u}}_{i}=\sigma_{i} \boldsymbol{u}_{i} & =\sigma_{1}^{2} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\top}+\sigma_{2}^{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top} \\
\tilde{\boldsymbol{v}}_{i}=\sigma_{i} \boldsymbol{v}_{i} & =\tilde{\boldsymbol{u}}_{1} \tilde{\boldsymbol{v}}_{1}^{\top}+\tilde{\boldsymbol{u}}_{2} \tilde{\boldsymbol{v}}_{2}^{\top} \\
& =\tilde{\boldsymbol{u}}_{1} \circ \tilde{\boldsymbol{v}}_{1}+\tilde{\boldsymbol{u}}_{2} \circ \tilde{\boldsymbol{v}}_{2} \\
& = \\
&
\end{aligned}
$$

Data structured as tensors

$C P$ decomposition

$C P$ decomposition

The tensor rank r corresponds to the smallest number of components required in the CP decomposition.

CP parameters estimation: Alternating least squares (ALS)

The CP decomposition can be solved by alternating least squares (ALS),
$\boldsymbol{\mathcal { X }} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ by repeating

$$
\begin{aligned}
& \boldsymbol{A} \leftarrow \arg \min _{\boldsymbol{A}}\left\|\boldsymbol{X}_{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right\|_{\mathrm{F}}^{2} \\
& \boldsymbol{B} \leftarrow \arg \min _{\boldsymbol{B}}\left\|\boldsymbol{X}_{(2)}-\boldsymbol{B}(\boldsymbol{C} \odot \boldsymbol{A})^{\top}\right\|_{\mathrm{F}}^{2} \\
& \boldsymbol{C} \leftarrow \arg \min _{\boldsymbol{C}}\left\|\boldsymbol{X}_{(3)}-\boldsymbol{C}(\boldsymbol{B} \odot \boldsymbol{A})^{\top}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

until convergence, yielding the update rules

$$
\begin{aligned}
& \boldsymbol{A} \leftarrow \boldsymbol{X}_{(1)}\left((\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right)^{\dagger} \\
& \boldsymbol{B} \leftarrow \boldsymbol{X}_{(2)}\left((\boldsymbol{C} \odot \boldsymbol{A})^{\top}\right)^{\dagger} \\
& \boldsymbol{C} \leftarrow \boldsymbol{X}_{(3)}\left((\boldsymbol{B} \odot \boldsymbol{A})^{\top}\right)^{\dagger}
\end{aligned}
$$

$$
\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]
$$

Data structured as tensors

Matrix factorization with standard linear algebra:

Tucker decomposition

Tucker parameters estimation: Higher-order SVD (HO-SVD)

The Tucker decomposition can be estimated by computing the truncated singular value decompositions (SVD)

$$
\begin{aligned}
& \boldsymbol{X}_{(1)}=\boldsymbol{A} \boldsymbol{S} \boldsymbol{V}^{\top} \\
& \boldsymbol{X}_{(2)}=\boldsymbol{B} \boldsymbol{S} \boldsymbol{V}^{\top} \\
& \boldsymbol{X}_{(3)}=\boldsymbol{C} \boldsymbol{S} \boldsymbol{V}^{\top}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\boldsymbol{\mathcal { X }} & \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} & & \\
\mathcal{G} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}} & & \\
\boldsymbol{A} \in \mathbb{R}^{n_{1} \times r_{1}} & \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}_{r_{1}} \\
\boldsymbol{B} \in \mathbb{R}^{n_{2} \times r_{2}} & \boldsymbol{B}^{\top} \boldsymbol{B}=\boldsymbol{I}_{r_{2}} \\
\boldsymbol{C} \in \mathbb{R}^{n_{3} \times r_{3}} & \boldsymbol{C}^{\top} \boldsymbol{C}=\boldsymbol{I}_{r_{3}}
\end{array}
$$

with \mathcal{G} finally evaluated as

$$
\mathcal{G} \leftarrow \mathcal{X} \times_{1} \boldsymbol{A}^{\top} \times_{2} \boldsymbol{B}^{\top} \times_{3} \boldsymbol{C}^{\boldsymbol{\top}}
$$

In contrast to CP, the Tucker decomposition is generally not unique $\rightarrow A, B$ and C constrained to be orthogonal matrices

Data structured as tensors

Tensor train parameters estimation: TT-SVD

$$
\begin{aligned}
& \mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3} \times n_{4}} \\
& \boldsymbol{\mathcal { P }}^{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}
\end{aligned}
$$

- \mathcal{X} is reshaped as a $n_{1} \times n_{2} n_{3} n_{4}$ matrix \boldsymbol{X}_{1}
- $\boldsymbol{X}_{1} \approx \boldsymbol{U}_{1} \boldsymbol{S}_{1} \boldsymbol{V}_{1}^{\top}$, where \boldsymbol{U}_{1} is a $n_{1} \times r_{1}$ matrix, reshaped as $1^{\text {st }}$ core \mathcal{P}^{1}
- $\boldsymbol{S}_{1} \boldsymbol{V}_{1}^{\top}$ is a $r_{1} \times n_{2} n_{3} n_{4}$ matrix reshaped into a $r_{1} n_{2} \times n_{3} n_{4}$ matrix \boldsymbol{X}_{2}
- $\boldsymbol{X}_{2} \approx \boldsymbol{U}_{2} \boldsymbol{S}_{2} \boldsymbol{V}_{2}^{\top}$, where \boldsymbol{U}_{2} is a $r_{1} n_{2} \times r_{2}$ matrix, reshaped as $2^{\text {nd }}$ core \mathcal{P}^{2}
- $\boldsymbol{S}_{2} \boldsymbol{V}_{2}^{\top}$ is a $r_{2} \times n_{3} n_{4}$ matrix reshaped into a $r_{2} n_{3} \times n_{4}$ matrix \boldsymbol{X}_{3}
- $\boldsymbol{X}_{3} \approx \boldsymbol{U}_{3} \boldsymbol{S}_{3} \boldsymbol{V}_{3}^{\top}$, where \boldsymbol{U}_{3} is a $r_{2} n_{3} \times r_{3}$ matrix, reshaped as $3^{\text {rd }}$ core \mathcal{P}^{3}
- $\boldsymbol{S}_{3} \boldsymbol{V}_{3}^{\top}$ is a $r_{3} \times n_{4}$ matrix, reshaped as $4^{\text {th }}$ core \mathcal{P}^{4}

Example: Tensor train for global optimization

For 2D decision variable:

decision variable

decision variable

For nD decision variable:

Tensor train (TT)

Example: Tensor train for global optimization

Cross approximation (skeleton decomposition) of a probability distribution:

\rightarrow Can be used to approximate an unknown matrix by querying rows and columns of the matrix in an iterative manner, while estimating the rank of the matrix

Example: Tensor train for global optimization

Cross approximation (skeleton decomposition) of a probability distribution:

\rightarrow Can be used to approximate an unknown matrix by querying rows and columns of the matrix in an iterative manner, while estimating the rank of the matrix

Example: Tensor train for global optimization

Optimization benchmarks with Himmelblau functions

task param. $(3,3)$ task param. $(3,14)$ task param. $(7,11)$ task param. $(13,5)$

Inverse kinematics (success rate)	Number of samples			
	1	10	100	1000
TTGO	94.00%	98.00%	98.00%	99.00%
Uniform	37.75%	45.50%	59.25%	75.00%

Target reaching (success rate)	Number of samples			
	1	10	100	1000
TTGO	62.00%	86.00%	86.00%	88.00%
Uniform	19.25%	28.75%	41.00%	53.50%

Pick-and-place (success rate)	Number of samples			
	1	10	100	1000
TTGO	70.00%	81.00%	79.00%	89.00%
Uniform	23.75%	30.25%	39.5%	44.25%

Ergodic control: Spectral multiscale coverage problem

Aim: Matching Fourier series coefficients

Ergodic control for insertion tasks

Insertion task (Siemens gears benchmark)

Demonstration of insertion pose variations to provide a spatial reference distribution

The Fourier basis functions expansion does not scale well for more than 3 dimensions:
\rightarrow low-rank tensor factorization is required

We evaluate the proposed approach using two different peg grasps:

Grasp \#1

Grasp \#2

References

Tensor methods

Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Review 51(3):455-500
Rabanser S, Shchur O, Günnemann S (2017) Introduction to tensor decompositions and their applications in machine learning. arXiv:171110781 pp 1-13

Shetty, S., Lembono, T., Löw, T. and Calinon, S. (2023). Tensor Train for Global Optimization Problems in Robotics. International Journal of Robotics Research (IJRR).

Shetty, S., Silvério, J. and Calinon, S. (2022). Ergodic Exploration using Tensor Train: Applications in Insertion Tasks. IEEE Trans. on Robotics (T-RO), 38:2, 906-921.

Tensor methods - Softwares

https://tensornetwork.org http://tensorly.org (Python) https://www.tensorlab.net (Matlab)

A MATLAB package for tensor computations

