
Differentiable rasterization of minimum-time
sigma-lognormal trajectories

Daniel Berio
Goldsmiths, Univ. of London

London, United Kingdom
daniel.berio@gold.ac.uk

Sylvain Calinon
Idiap Research Institute

Martigny, Switzerland
sylvain.calinon@idiap.ch
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Abstract— We present an adaptation of the sigma-lognormal model to generate and fit smooth trajectories in conjunction with a
differentiable vector graphics (DiffVG) rendering pipeline and with parameter selection driven by a minimum-time smoothing criterion. This
approach enables the incorporation of the “Kinematic Theory of Rapid Human Movements” into modern image-based deep learning systems.
We demonstrate its utility through various applications, including fitting handwriting trajectories to an image and generating trajectories using
guidance from a large multimodal model.
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I. INTRODUCTION AND BACKGROUND

Recent advances in automatic differentiation [1] and differentiable rendering [2] have enabled the development of numerous
methods that use complex image-based costs to optimize parameters for 2D and 3D parametric shape primitives. In the 2D
computer graphics domain, differentiable vector graphics (DiffVG) rasterization [3] supports most primitives in the Scalable
Vector Graphics (SVG) format, allowing gradients to propagate through the transformation of these primitives into pixels of
an image. This capability has facilitated various methods for image vectorization [4], stylization and abstraction [5, 6], as well
as sketch generation [7, 8, 9].

One limitation of the SVG format for representing drawings, sketches and handwriting is its reliance on cubic Bézier
curves. With this representation, longer curves are constructed by joining multiple polynomial segments at their endpoints, a
representation that struggles to capture both the degree of continuity and intrinsic variability that characterize human movement.
In previous work [10, 11], we demonstrated that the sigma-lognormal (ΣΛ) model provides a valid alternative to Bézier curves
to model handwriting and drawing traces. Additionally, we showed that the model’s formulation can be adapted to enable an
intuitive user interface similar to those typically used in computer-aided curve design.

In this paper, we show that with minimal adaptations, a similar approach can be integrated with a DiffVG engine.
This integration is particularly valuable in combination with various deep-learning techniques, enabling a wide range of
potential applications using modern image generation and processing methods to drive the creation of ΣΛ trajectories. We
demonstrate two practical examples combining DiffVG with a minimum-time smoothing criterion [12]: (i) an approach that
infers ΣΛ parameters based on image similarity, similarly to existing methods [10, 13, 14], and (ii) a method for generating
handwriting-like trajectories using a pre-trained multimodal (text and image) model [9].

II. METHOD

On the basis of the “Kinematic Theory of Rapid Human Movements” [15] we describe a planar trajectory using a weighted-
displacement formulation of the ΣΛ model [16]. The model describes the planar evolution of a handwriting trajectory through
the space-time superposition of a discrete number of stroke primitives, each having a characteristic “bell-shaped” speed profile
modeled with a two-parameter lognormal. The spatial layout of a trajectory is described with a high-level motor plan consisting
of an initial position p0 followed by a sequence of “virtual targets” (p1, . . . ,pm) (Fig. 1a and 1b). Each virtual target describes
a ballistic stroke aimed along the orientation θi of the vector pi − pi−1. Assuming movements are performed with rotations
of the wrist or elbow, each stroke follows a circular arc geometry determined by a turning angle parameter δi (Fig. 1c). The
time parametrized kinematics x(t), ẋ(t) of a trajectory can be computed as linear combinations

x(t) = p0 +

m∑
i=1

xi(t) and ẋ(t) =

m∑
i=1

ẋi(t) (1)

of m submovements with position p0 + xi(t) and velocity ẋi(t).
The speed profile of each stroke follows a lognormal function (Fig. 1d), and the overall trajectory results from the

superposition of multiple strokes over time. The smoothness of the trajectory depends on the activation time and overlap
of consecutive lognormals (Fig. 1a and 1b). If a new lognormal starts before the previous one is zero, the superposition creates
a smooth transition between the two strokes. A greater overlap results in a smoother transition.



p0

p1

p2 t

sp
ee

d

t
sp

ee
d

(a) (b) (c) (d)

Fig. 1. (a) and (b): The effect of different time overlaps for two lognormals, where a greater time overlap results in a smoother trajectory. The degree of
overlap is indicated along the black trajectory with a red shade and the trajectory speed is filled in blue. The motor plan is made up of virtual targets (red dots)
linked by their distance separation (dotted red). (c): Stroke orientation θi and turning angle δi. The latter determines the internal angle of the assumed circular
arc. (d): Controlling lognormal shape and asymmetry using the intermediate parameter Ac and T = 1. The lognormals are shifted by −t0i for visualization,
so that their onset matches at t = 0.

To maintain compatibility with an automatic differentiation pipeline we compute the lognormal with:

Λi(t) =
1

σi

√
2π φ(t− t0i)

exp

(
− 1

2σi
2
(ln(φ(t− t0i))− µi)

2

)
, (2)

where we use a rectifier linear unit φ(x) = ReLU(x − ϵ) + ϵ, using a small ϵ to avoid values ≤ 0 in the logarithm. The
parameters t0i, µi and σi, respectively determine the activation time, delay and response time of the lognormal.

To compute the curvilinear evolution of each stroke we use the following integral:

w(t) =

∫ t

0

Λi(u)du =
1

2

[
1 + erf

(
ln (φ (t− t0i))− µi

σi

√
2

)]
∈ [0, 1] , (3)

which can be computed explicitly using the error function (erf). The velocity of each stroke is then given by:

ẋ(t)i = DiΛi(t)

[
cos(δiw(t)− δi

2 + θi)

sin(δiw(t)− δi
2 + θi)

]
with Di =

∥∥pi − pi−1

∥∥ sinc
(

δi
2π

)−1

, (4)

where Di determines the distance traveled by a submovement along a circular arc while the use of the normalized sine
cardinal (aka sinc) function avoids numerical errors as the turning angle approaches zero. The position along each stroke can
be computed explicitly as a displacement with respect to the initial position p0 and without requiring numerical integration of
Eq. 4 with:

xi(t) = Di

[
cos(θ0i+δiwi(t))−cos(θ0i)

2 sin(δi/2)
sin(θ0i+δiwi(t))−sin(θ0i)

2 sin(δi/2)

]
if |δi| > ϵ, xi(t) = Di

[
cos(θi)wi(t)
sin(θi)wi(t)

]
otherwise, and θ0 = θ − π + δi

2
.

III. REPARAMETERIZATION

While the lognormal function works remarkably well in describing the form of human movement speed profiles [17], its
parameters µi and σi influence its mode and shape while also influencing the time occurrence of the activation parameter t0i.
To facilitate the optimization procedure that follows, we reparameterize each submovement with: (i) a stroke duration Ti, (ii)
a relative time offset ∆ti with respect to the previous stroke time occurrence and duration, and (iii) a shape parameter Aci

∈ (0, 1), which defines the skewness of the lognormal [18]. The ΣΛ parameters {µi, σi, t0i} are then computed with:

σi =
√
− ln(1−Aci), µi = 3σi − ln(

−1 + e6σi

Ti
), t0i = t0i−1 +∆ti sinh(3σi). (5)

With this formulation, the parameter ∆ti explicitly determines the smoothness of a trajectory near a virtual target, with lower
values producing a greater overlap with the previous lognormal and a consequently smoother trajectory near the corresponding
virtual target. Furthermore, a strictly positive ∆ti guarantees an ordering of the lognormals, which allows us to compute the
end time of the trajectory with:

Tend = t0m + eµm+3σm . (6)

This, in turn, allows us to easily compute a minimum-time cost for the optimization procedure that follows.



IV. DIFFERENTIABLE RASTERIZATION

On the basis of DiffVG’s support for cubic Bézier curves, we can render an approximation of the ΣΛ trajectory by leveraging
the equivalent Hermite formulation of curves [19], where a cubic polynomial curve is described by two point and tangent pairs.
Given the planar trajectory positions x(t) and velocities (tangents) ẋ(t) along with two consecutive samples ti and ti + dt,
the four control points for the corresponding Bézier curve segments are simply obtained as:

[x(ti), x(ti) + 3dtẋ(ti), x(ti + dt), x(ti + dt)− 3dtẋ(ti + dt)] ,

where the factors 3dt ensure that the control points are positioned to match the desired endpoint velocities.
We compute a fixed number of samples, n, for each rendered trajectory using dt = Tend/n. We find that, in practice, using

five times as many samples as targets (n = 5m) gives a sufficiently good approximation for our use cases. Note that even
though the number of samples is fixed, the trajectory duration changes depending on the values of ∆ti.

All the trajectory construction procedures described to this stage, including conversion to Bézier, result in a graph of
differentiable operations that are seamlessly handled by standard automatic differentiation engines such as the one provided
by PyTorch [1]. This, combined with the ability to rasterize an approximation of the trajectories in a differentiable manner,
allows us to optimize the motor plan positions p0,p1, . . . ,pm, the time offsets ∆ti, the turning angle parameters δi and, as
an option, the shape parameters Ac. The latter are set with respect to a compound loss that balances trajectory smoothness,
in a geometric sense, with an image-based objective. For all the examples that follow, we consider an optimization objective
determined by the following compound loss:

L = λTend + LI,

where Tend acts as a smoothing term by rewarding overlap between consecutive lognormals, LI is an image-based cost depending
on the application, and λ is a user-defined and application-dependent scalar weight that controls the tradeoff between the two
terms. In the following sections, we demonstrate two examples of variants of LI for different applications. We implement the
optimization procedure in PyTorch and use the Adam optimizer for 300 steps. To aid convergence, we find it beneficial to
apply a cosine annealing schedule to the learning rate and to linearly increase the value of λ from zero to its user-specified
value over the first 30 steps, ensuring that the initial optimization steps are principally focused on the image-space term.

A. Fitting trajectories to an image

As a baseline test for our method, we test fitting ΣΛ trajectories to an image, resulting in a procedure similar to the
geometry-based fitting methods described by Berio et al. [10] and Ferrer et al. [14]. We start by using tag traces from the
Graffiti Analysis database [20], a dataset of graffiti tags recorded with low-cost DIY tracking devices. We render the input
trajectory into a black-and-white image and then create an initial motor plan for generating a ΣΛ trajectory by applying the
discrete curve evolution (DCE) polyline simplification method [21] to the input trace (Fig. 2). DCE simplifies polylines by

(a) (b) (c) (d)

Fig. 2. Image-based trajectory reconstruction using Eq. 7. (a) Reconstructing an input trajectory (grey) for two graffiti tags (“JANKE” and “SUG”). (b) We
start from the motor plan (red) and trajectory (black) computed with initial values of ∆ti = 1 and δi = 0. The motor plan and trajectory initially match.
(c) Trajectory optimization results . For the top row we optimize also the shape parameters Ac while for the bottom row we keep Ac fixed. A significant
reconstruction error (top row, 3rd image, blue circle) occurs on the lower part of the “K”, likely due to the presence of an inflection. (d) The generated speed
profiles with the corresponding lognomals in blue and the original (Gaussian smoothed) speed profiles in grey. The latter are not taken into consideration, but
the minimum time cost produces a similar number and location of peaks.
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Fig. 3. CLIP-guided trajectory generation. (a) and (b), left: We start from a motor plan (red) and a trajectory (black) with ∆ti = 1 , which initially
overlaps almost exactly with the motor plan. Here, the motor plan is created by concatenating multiple copies of a self intersecting polygon; however, different
user-defined polygons can be used. (a) and (b), right: Trajectories resulting from different optimizations using Eq. 8 and the target words “TRACE” and
“lognormal”. (c), top right: Optimizing the control points of cubic Bézier curves instead of the ΣΛ model parameters to generate the word “TRACE” also
does not produce a fully legible output and further results in a trace with multiple discontinuous overlapping segments.

identifying significant curvature extrema, with a result that is similar to that of Berio et al. [10] and De Stefano et al. [22].
We then set LI to a multi-scale mean squared error (MSE) between the rendered image I and the target Î:

LI =
∑
s∈S

MSE(Is, Îs) . (7)

The MSE term consists of multiple downscaled and blurred versions Is and Îs of the input, where s ∈ S represents different
scaling factors applied to the images. We find that this multiscale approach improves convergence while decreasing the risk
of ending in local minima. Note that the optimization infers a plausible motion from the input geometry and that is done
differently from most state-of-the-art ΣΛ fitting methods [13, 23], as our method does not attempt to reproduce the kinematics
of the input.

B. CLIP-driven handwriting generation

In a second application of our method, we test an approach similar to ClipDraw [8] to guide the generation of a trace that
is consistent with a given text caption or “prompt” (Fig. 3). We set

LI = −⟨f(I), f(c)⟩ , (8)

where ⟨·⟩ denotes the cosine similarity measured between the embeddings f(I) of the rendered image and the embeddings f(c)
of the text caption. To construct f(·), we use the finetuned CLIPAG model [9], which has been shown to give significantly
better results than the original CLIP model for image generation tasks. We use a caption “{WORD}, neatly handwritten” where
{WORD} is a word we wish the trace to be similar to. Interestingly, while the generated text is not fully legible, it possesses
a structure that resembles the desired word shape, suggesting that the method partially captures the high-level features of
handwriting style and word formation.

V. CONCLUSION

We have demonstrated how ΣΛ trajectories can be constructed and approximated as piecewise cubic Bézier curves through a
sequence of differentiable operations. When combined with a DiffVG rendering pipeline, this approach enables the optimization
of trajectory parameters using cost functions defined in image space. In this paper, we have presented two example applications:
image-based trajectory fitting and CLIP-driven trajectory generation. Beyond these, numerous image-based objectives and
metrics [e.g. as found in 5, 6, 24] can be used in a similar way, offering good opportunities for future research. For the fitting
procedure, we rely on a correctly ordered starting trajectory. Combining our method with others that infer ordered traces from
bitmap images [25] or shape outlines [26] is also an interesting avenue of future research.

Additionally, we have shown that the ΣΛ parametrization allows for a straightforward computation of trajectory duration,
which can be effectively used as a smoothing cost under the assumption of minimum-time as a performance criterion. The
results suggest potential applications of the ΣΛ model in path planning and robotics, where minimum-time is a widely used
optimization objective [27].

While this paper has focused on differentiable rendering, a similar minimum-time cost function could be integrated with a
geometric similarity measure for trajectory optimization. Although our initial goal was to enable creative applications of the
ΣΛ model, our results suggest that the proposed method is generally a useful way to reconstruct handwriting samples in terms
of ΣΛ parameters. In future developments, we plan to test our method on samples from handwriting signature databases with
a higher sampling rate. This will allow to validate the reconstruction accuracy and efficiency of our method, while comparing
it with state-of-the-art ΣΛ reconstruction methods such as robust XZERO [23] and iDeLog [14].
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