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Tactile Ergodic Coverage on Curved Surfaces
Cem Bilaloglu∗, Tobias Löw∗, and Sylvain Calinon

Abstract—In this article, we present a feedback control method
for tactile coverage tasks, such as cleaning or surface inspection.
These tasks are challenging to plan due to complex continuous
physical interactions. In these tasks, the coverage target and
progress can be easily measured using a camera and encoded
in a point cloud. We propose an ergodic coverage method that
operates directly on point clouds, guiding the robot to spend
more time on regions requiring more coverage. For robot control
and contact behavior, we use geometric algebra to formulate
a task-space impedance controller that tracks a line while
simultaneously exerting a desired force along that line. We
evaluate the performance of our method in kinematic simulations
and demonstrate its applicability in real-world experiments on
kitchenware. Our source codes, experimental data, and videos
are available as open access at https://sites.google.com/view/
tactile-ergodic-control/.

Index Terms—Tactile Robotics, Ergodic Coverage, Geometric
Algebra

I. INTRODUCTION

The longterm vision of robotics is to assist humans with

daily tasks. Especially the success of robot vacuum cleaners

and lawnmowers as consumer products demonstrates the po-

tential of robot assistance with the most common household

chores [1]. These tasks involve the coverage of a region in a

repetitive and exhaustive fashion. Currently, the application of

these robots is limited to relatively large and planar surfaces

and even their use on slopes poses a challenge [2], [3].

Other daily tasks, such as washing the dishes or grocery

items present an even more challenging problem due to

the complex physical interactions with intricate and curved

surfaces. Similarly, there are numerous coverage tasks on

curved surfaces that have industrial or medical applications.

In industrial settings, these problems manifest in two forms:

surface operations that involve the removal of material, such

as sanding [4], polishing [5], [6] or deburring [7] and surface

inspection tasks that leverage contacts [8]. In medical settings,

similar applications range from mechanical palpation [9], [10]

and ultrasound imaging [11], [12] to massaging [13], [14] and

bed bathing [15], [16]. Last but not least, datasets combining

tactile properties of objects with their shape and visual ap-

pearance are extremely scarce and expensive to collect, since

they are based on teleoperation [17]. Hence, tactile coverage is

of paramount importance for automating the collection of the
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Fig. 1: Overview of our feedback control method for tactile

coverage. Left: We measure the surface and the red target using

the camera and encode them in a point cloud. Bottom-right:

We diffuse the target and use its gradient field to guide the

coverage. Then, we close the loop by measuring the actual

coverage with the camera and use it as the next target. Top-

right: We measure the tactile interaction forces using the force

sensor and the tool orientation using the joint positions. We

solve the geometric task-space impedance control problem

using a line target and a force target along the line.

tactile datasets complementing the visual ones. The problem

definitions of this diverse range of settings and applications

can be broken down to two simple requirements: (i) tactile

interactions with a possibly non-planar surface and (ii) a

continuous trajectory of contact points covering a region of

interest on the surface. Accordingly, the overarching problem

that is tackled in this article is posed as tactile coverage on

curved surfaces. Tactile interaction tasks, by definition, involve

multiple contact interactions with the environment, making

these systems notoriously difficult to control [18]. While

these tasks are easily solved by humans, they are extremely

challenging for robots. For instance, when cleaning an object,

coverage depends on recognizing the dirt, the object’s material,

and their interaction to determine the required contact force to

remove it. Consequently, the success of coverage depends on

unknown or difficult-to-measure parameters, making it hard to

model all interactions, and motion planning without a proper

model is prone to fail. By analyzing previous research [19] and

how humans address these challenges, we argue that, instead of

planning humans solve the easier closed-loop control problem

by leveraging visual and tactile feedback for online adaptation.

Similar to humans, robots can also measure progress in tactile

coverage tasks using vision. Determining which regions of the

surface have already been covered and which have not then

becomes an image segmentation problem, that was addressed

by leveraging various model [20], [21] or learning-based
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algorithms [16], [22]. Still, the question remains on how to

control the robot to cover these target regions on the surface.

Existing research on coverage has primarily focused on

coverage path planning, which involves optimizing a path to

ensure that a specified region of interest is covered within

a set time frame. Traditionally, the underlying assumption

is that visiting each point in the region of interest only

once is sufficient for full coverage. An assumption that is

reasonable for robust interactions but not for many tactile

tasks. Because many tactile interactions are too complex to

model deterministically, hence the full coverage cannot be

guaranteed after a single visit. Instead, for a cleaning task,

a relatively dirty region requires more visits compared to a

less dirty region. Similarly, in a surface inspection task, a

region where we require a lower variance requires more visits

to compensate for the uncertainty of the sensor. Furthermore,

the robot is expected to keep in contact with the surface while

moving, which significantly increases the cost of movement,

since it depends on the geodesic distance on the surface

and not on the Euclidean distance. Therefore, naive sampling

strategies that do not consider the cost or constraints of the

movement and/or the surface geometry are not suited for tactile

coverage tasks. In contrast, ergodic coverage [23] controls the

trajectories of dynamical systems for ergodicity, correlating the

average time spent in a region to the target spatial distribution.

Therefore, ergodic coverage can incorporate the motion model

as the system dynamics and control the coverage trajectories

by directly using the spatial distribution measured by the

vision system.

Considering these challenges, we present a closed-loop

tactile ergodic control method that operates on point clouds for

tactile coverage tasks. Using point clouds not only allows us

to acquire the target object and spatial distribution at runtime

using vision, but to also measure the coverage progress and to

compensate for unmodeled dynamics of the tactile coverage

tasks. Our method then constrains the ergodic control problem

to arbitrary surfaces to cover a target spatial distribution

on the surface. We propagate the coverage information by

solving the diffusion equation on point clouds. We solve

the diffusion in real-time by exploiting the surface intrinsic

basis functions called Laplacian eigenfunctions, generalizing

the Fourier series to manifolds (i.e., curved spaces). In order

to exert a desired force on the surface while moving, we

then formulate a geometric task-space impedance controller

using geometric algebra. This controller utilizes the surface

information to track a line target that is orthogonal to the

surface, while simultaneously exerting the desired force in

the direction of that line. Notably, the geometric formulation

ensures that these two objectives do not compete with each

other and can therefore be included in the same control loop,

without the need for complex parameter tuning. In summary,

our proposed closed-loop tactile ergodic control method has

the following contributions:

• formulating the tactile coverage as closed-loop ergodic

control problem on curved surfaces

• closing the coverage loop by solving ergodic control

problem on point clouds using diffusion

• achieving real-time frequencies by computing the diffu-

sion using Laplacian eigenfunctions

• contact line and force tracking without conflicting objec-

tives

The rest of the article is organized as follows. Section II

describes work related to our method. Section III presents the

mathematical background. Section IV presents our method. In

Section V, we demonstrate the effectiveness of our method in

simulated and real-work experiments. Finally, we discuss our

results in Section VI.

II. RELATED WORK

In this article we address the problem of tactile coverage on

curved surfaces. There are various approaches that consider

the coverage problem from the planning perspective and

are generally known as coverage path planning (CPP) [24]–

[26]. Although, these methods can consider different types

of boundaries for planar regions [27]–[29], their extension

to curved surfaces imposes limiting assumptions, such as

projectively planar [30] or pseudo-extruded surfaces [31].

Additionally, CPP methods assume the coverage target is

uniformly distributed in space. Extension of the CPP methods

that consider the spatial correlation of the information are

known as informative path planning [32]. Most IPP and CPP

approaches solve a variant of the NP-hard traveling salesman

problem [33], limiting the scalability with the complexity

of the domain. Therefore existing methods are either open-

loop [34] or pose limiting assumptions on the domain for

online planning updates [32] such as convexity.

In this article we focus on tactile coverage scenarios, in

which visiting a region once does not guarantee it is fully

covered. Thus, it is hard to predict how many times the robot

should pass over a certain spot. Consequently, we cannot

define a time horizon for an optimization, since the quality

of the result would be greatly affected by that hard-to-make

choice. In this work, we address this issue by using an

approach called ergodic control. In this context, the term

ergodic describes a dynamical system for which the time

averages of functions along its trajectories are equal to their

spatial averages [35]. The important consequence of this is

that it allows us to use arbitrary spatial target distributions

without having to define a time horizon, since, by construction,

regions with higher spatial probabilities will be visited more

frequently. Recent findings have demonstrated that ergodicity

is not merely a heuristic [36]; it is the optimal method for

collecting independent and identically distributed data while

accounting for system dynamics. Seminal work on ergodic

control, presented the spectral multiscale coverage (SMC)

algorithm [23] that provides a feedback control law based

on the Fourier decomposition of the target distribution and

robot trajectories. Here, multiscale coverage refers to the

prioritization of the low-frequency components over high-

frequency ones, which intuitively corresponds to first using

large spatial motions in the coverage before getting into the

details. Since this behavior is obtained through a myopic

feedback controller, unlike an offline planner, the ergodic

controller would not fail if the motion is obstructed [37].
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Formulating the SMC objective as trajectory optimization then

allowed the explicit consideration of obstacle avoidance [38]

and other additional objectives such as time-optimality [39]

and energy-awareness [40]. These formulations are limited

to rectangular domains on the Euclidean space, since they

are based on the Fourier decomposition. Later, SMC was

extended to homogeneous Riemannian manifolds using the

Laplacian eigenfunctions [41]. Nevertheless, this work was

limited to highly structured manifolds such as sphere and

torus, due to the requirement of the analytical expressions

for the Laplacian eigenfunctions. More recently, the kernel

ergodic metric was proposed as an alternative to SMC’s

ergodic metric to increase the computational efficiency and

for extension to Lie groups [42]. Another alternative to SMC

is the heat equation-driven area coverage (HEDAC) [43].

HEDAC uses the diffusion equation to propagate information

regarding the uncovered regions to agents across the domain.

Like SMC, the original HEDAC implementation was limited

to rectangular domains and lacked collision avoidance. It has

since been extended to planar meshes with obstacles [44],

maze exploration [45], and CPP on non-planar meshes [46].

However, the implementation on curved surfaces is limited to

offline planning on meshes and demands heavy pre-processing

in terms of time and computation.

Our method is inspired by both HEDAC and SMC. We

use the diffusion equation for the information propagation

over the surface and we use the Laplacian eigenfunctions,

which generalize the Fourier series to manifolds for efficient

computation. The diffusion equation is a canonical second-

order partial differential equation (PDE), which propagates

information on a domain by considering its geometry, while

agnostic to underlying representation and discretization [47].

Therefore, the diffusion equation and its spectrum are used

in various geometry processing tasks on meshes and point

clouds, ranging from geodesic computation [48] to learning on

surfaces [47]. Although various approaches exists for solving

the diffusion, the most common one is to use the Laplace-

Beltrami operator, extending the Laplacian from Euclidean

space to curved spaces. For a given point cloud, there are

various methods for computing the Laplace-Beltrami oper-

ator [49]–[51]. Sharp et al. provide a robust and efficient

implementation [52], even in the case of partial and noisy

point clouds. We use this approach for solving the ergodic

control problem on arbitrary point clouds for tactile coverage.

Closely related to coverage is the problem of exploration,

which involves scenarios where the environment is initially

unknown and robots collect information about the environment

using onboard sensors [53], [54]. Tactile ergodic exploration

was employed for non-parametric shape estimation [55] and

whole-body coverage using all the link surfaces [56]. However,

these works were limited to rectangular domains in the Eu-

clidean space. Tactile exploration is also needed for gathering

the information on surfaces that can only be acquired through

contact [57], unlike surface reconstruction or localization. A

prime example of this is non-invasive probing (palpation) of

tissue stiffness, which can aid in disease diagnosis or surgery

by providing additional information about anatomical features.

For that purpose, Gaussian processes (GP) were employed

for discrete [58] or continuous [59] probing to map tissue

stiffness. While GP-based formulations provide guidance on

where to sample, they are unaware of the robot’s dynamics.

This was addressed by using trajectory optimization to actively

search for tissue abnormalities [60]. However, the critical

aspect of tactile interactions is that they not only depend on

the contact position but also on other contact conditions such

as relative velocity and contact pressure [61]. Therefore, there

are also methods modeling the force [62] and more complex

interactions between robotic tools and surfaces [63].

The complexity of the problem increases further if we

consider scenarios with a robot physically interacting with

the environment. For example, in tasks like surface finishing

(e.g., polishing, sanding, grinding), the surface itself undergoes

changes, as material is removed [64]. Similarly, in cleaning

tasks, the robot’s actions affect the distribution of dirt on the

surface [65]. To avoid complex modeling, there are approaches

either relying on reinforcement learning [66] or deep learn-

ing [67]. Learning from demonstration has also been used

by also leveraging ergodicity for table cleaning [68], where

different motion trajectories can achieve the same task as

long as they result in the same ergodic coverage. In a very

similar setting to ours, a manipulator was used to clean the

stains on a curved surface by performing multiple passes [20].

However, this work used a sampling-based planner, which

required to predefine the maximum number of cleaning passes.

In contrast, we relate the target distribution (e.g., stain) directly

to feedback control through ergodicity without requiring any

task-specific assumptions.

III. BACKGROUND

A. Ergodic Control using Diffusion

The ergodic control objective correlates the time that a

coverage agent spends in a region to the probability density

specified in that region. The HEDAC method [43] encodes the

coverage objective using a virtual source term

s(x, t) = max (p(x)− c(x, t), 0)
2
, (1)

where p(x) is the probability distribution corresponding to the

coverage target and c(x, t) is the normalized coverage of the

N virtual coverage agents over the domain Ω

c(x, t) =
c̃(x, t)∫

Ω
c̃(x, t)dx

. (2)

A single agent’s coverage is the convolution of its footprint

ϕ(r) with its trajectory xi(τ). Then, the total coverage be-

comes the time-averaged sum of these convolutions

c̃(x, t) =
1

Nt

N∑

i=1

∫ t

0

ϕ (x− xi(τ)) dτ. (3)

HEDAC diffuses the source to the whole domain by computing

the resulting potential field u(x, t) using the stationary (u̇ =
(x, t)0) diffusion (heat) equation with the diffusion coefficient

α > 0

α∆u(x, t)− u(x, t) + s(x, t) = 0. (4)
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In order to have a unique solution, we need to prescribe the

initial and boundary conditions

u(x, 0) = p(x) and
∂

∂n
u(x, t) = 0, on ∂Ω. (5)

In the diffusion equation, (4) ∆ denotes the second-order

differential operator. In Euclidean spaces (isotropic) the Lapla-

cian is the sum of the second partial derivatives

∆f =

n∑

i=1

∂2f

∂x2
i

for xi ∈ R
n. (6)

To guide the i-th coverage agent, HEDAC uses the smooth

gradient field of the diffused potential u(x, t) and by simulat-

ing first-order dynamics [69]

ẋi = ∇u(xi, t). (7)

B. Conformal Geometric Algebra

Here, we introduce conformal geometric algebra (CGA)

with a focus on the mathematical background necessary to

understand the methods used in this article. We will use the

following notation throughout the paper: x to denote scalars,

x for vectors, X for matrices, X for multivectors and X for

matrices of multivectors.

The inherent algebraic product of geometric algebra is

called the geometric product

ab = a · b+ a ∧ b, (8)

which (for vectors) is the sum of an inner · and an outer ∧
product. The inner product is the metric product and therefore

depends on the metric of the underlying vector space over

which the geometric algebra is built. The underlying vector

space of CGA is R4,1, which means there are four basis vectors

squaring to 1 and one to -1. The outer product, on the other

hand, is a spanning operation that effectively makes subspaces

of the vector space elements of computation. These subspaces

are called blades. In the case of CGA, there are 32 basis blades

of grades 0 to 5. The term grade refers to the number of basis

vectors in a blade that are factorizable under the outer product.

Vectors, consequently, are of grade 1 and the outer product of

two independent vectors, called bivectors, are of grade 2. A

general element of geometric algebra is called a multivector.

In practice, CGA actually applies a change of basis by

introducing the two null vectors e0 and e∞, which can be

thought of as a point at the origin and at infinity, respectively.

Since the Euclidean space is embedded in CGA, we can embed

Euclidean points x to conformal points P via the conformal

embedding

P = C(x) = e0 + x+
1

2
x2e∞. (9)

In general, geometric primitives in geometric algebra are

defined as nullspaces of either the inner or the outer product,

which are dual to each other. The outer product nullspace

(OPNS) is defined as

NOG(X) =
{
x ∈ R

3 : C(x) ∧X = 0
}
. (10)

A similar expression can be found for the inner product

nullspace. The conformal points are the basic building blocks

to construct other geometric primitives in their OPNS repre-

sentation. The relevant primitives for this work are lines

L = P1 ∧ P2 ∧ e∞, (11)

which can be constructed from two points and a point at

infinity, planes

E = P1 ∧ P2 ∧ P3 ∧ e∞, (12)

which can be constructed from three points and a point at

infinity and spheres

S = P1 ∧ P2 ∧ P3 ∧ P4, (13)

which can be constructed from four points.

Rigid body transformations in CGA are achieved using

motors M , which are exponential mappings of dual lines, i.e.

bivectors (essentially, the screw axis of the motion). Note that

motors can be used to transform any object in the algebra,

i.e. they can directly be used to transform the previously

introduced points, lines, planes and spheres, by a sandwiching

operation

X ′ = MXM̃, (14)

where is M̃ is the reverse of a motor.

The forward kinematics of serial kinematic chains can be

found as the product of motors, i.e.

M(q) =
N∏

i=1

Mi(qi) =
N∏

i=1

exp(qiBi), (15)

where q is the current joint configuration and Bi are screw

axes of the joints. The geometric Jacobian J
G(q) ∈ B

1×N ⊂
G

1×N
4,1 is a bivector valued multivector matrix and can be found

as

J G =
[
B′

1 . . . B′
N

]
, (16)

where the bivector elements can be found as

B′

i =

i∏

j=1

Mj(qj)Bi

i∏

j=1

M̃j(qj). (17)

Twists V and wrenches W are also part of the algebra and

hence both can be transformed in the same manner as the

geometric primitives using Equation (14). Note that, contrary

to classic matrix Lie algebra, no dual adjoint operation is

needed to transform wrenches. There is, however, still a

duality relationship between twists and wrenches, which can

be found via multiplication with the conjugate pseudoscalar

Ic = Ie0 [70]. Both twists and wrenches are bivectors and

the space of wrenches can be found as

W ∈ span{e23, e13, e12, e01, e02, e03}. (18)

The inner product of twists and wrenches V ·W = −p yields

a scalar, where p is the power of the motion. Similarly, the

inner product of a screw axis and a wrench B ·W = −τ yields

a torque τ , which we will use for the task-space impedance

control in this article.
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IV. METHOD

We present our closed-loop tactile ergodic coverage method

in three parts: (i) surface preprocessing; (ii) tactile coverage;

and (iii) robot control. The surface preprocessing computes

the quantities that need to be calculated only once when the

surface is captured. Tactile coverage generates the motion

commands for the virtual coverage agent using the precom-

puted quantities from the surface preprocessing and the robot

controller tracks the generated motion commands with a

manipulator using impedance control.

A. Problem Statement

We formulate a tactile ergodic controller that covers a target

spatial distribution on arbitrary surfaces. Similar to HEDAC,

we propagate the information encoding the coverage objective

by solving the diffusion equation on the manifold M

∂

∂t
u = ∆Mu, (19)

where we refer to u as the potential field. Note that we use here

∆M, which generalizes the Laplacian for Euclidean spaces

∆ to non-Euclidean manifolds M. This operator ∆M is also

known as Laplace-Beltrami operator but for conciseness we

will use the term Laplacian. In general, our coverage domains

are curved surfaces (i.e. 2-manifolds). Here, we capture the

underlying manifold M as a point cloud P composed of nP

points using an RGB-D camera

P :=

{
(xi, ci)

∣∣∣∣∣
xi ∈ R

3, ci ∈ {0, . . . , 255}3

for i = 1, . . . , nP

}
, (20)

where xi is the position of the i-th surface point in Euclidean

space and ci is the vector of RGB color intensities. We assume

there is a processing pipeline (i.e., such as [20], [47], [71])

which maps the point positions and colors to the probability

mass pi of the spatial distribution encoding the coverage

objective. Accordingly, our coverage target becomes a discrete

spatial distribution p(xi) = pi on the point cloud P .

In order to solve (19) on irregular and discrete domains,

such as point clouds, we discretize the problem in space and

time. Hence, we use ui,t to denote the value of the potential

field at the i-th point at the t-th timestep. We omit the subscript

i if we refer to all points.

B. Surface Preprocessing

First, we compute the spatial discretization of the Laplacian

∆M. Note that there are various approaches for discretizing

the Laplacian on point clouds [49]–[52]. In this work, we

follow the approach presented in [52] and show a simplified

version of it here, but refer the readers to the original work

for more details. Using this method, the discrete Laplacian is

represented by the matrix L ∈ R
nP×nP

L = M−1C, (21)

where M is the diagonal mass matrix and C is a sparse

symmetric matrix called the weak Laplacian. The entries of

M correspond to the Voronoi cell areas in the local tangent

plane around the each point of P . Similarly, the entries of C

are determined by the connectivity of the points on the local

tangent space and the distance between the connected points.

Note that the local tangent space structure also identifies the

boundary points. For a given point, the lines between the

original point and its neighbors are constructed. If the angle

between two consecutive lines is greater than π/2, the point is

a boundary and its boundary condition is set as zero-Neumann,

i.e., ∇u · n = 0 where n is the outward normal of the

boundary.

Next, we discretize the diffusion equation (19) in time and

insert the discrete Laplacian L. Using the backward Euler

method, we obtain the implicit equation

1

δt
(ut − u0) = Lut, (22)

which is stable for any timestep δt. Then, combining Equations

(21) and (22) and solving for ut, we obtain the linear system

ut = (M − δt C)−1Mu0. (23)

Note that solving (23) requires inverting a large sparse matrix,

which might be computationally expensive depending on the

size of the point cloud and requires the timestep to be set

before the inversion. Alternatively, we can solve the problem

in the spectral domain by projecting the original problem

and reprojecting the solution back to the point cloud. This

procedure generalizes using the Fourier transform for solv-

ing the diffusion equation on a rectangular domain in R
n

to arbitrary manifolds. Note that the Fourier series are the

eigenfunctions of the Laplacian ∆ in R
n. Therefore we can

use the eigenvectors of the discrete Laplacian L for solving

the diffusion equation on point clouds.

We can write the generalized (i.e., M ̸= I) eigenvalue

problem for the Laplacian as

Cφm = λmMφm, (24)

where {λm,φm} are the eigenvalue/eigenvector pairs. Since

M is diagonal and C is symmetric positive definite, by the

spectral theorem, we know that the eigenvalues are real, non-

negative and in ascending order analogous to the frequency.

Therefore, we can use the first nM eigenvalue/eigenvector

pairs as a low-frequency approximation of the whole spectrum.

Furthermore, the eigenvectors are orthonormal with respect to

the inner product defined by the mass matrix M . Accordingly,

we can stack the first nM eigenvectors φm as column vectors

to construct the matrix Φ ∈ R
nP×nM encoding an orthonor-

mal transformation Φ
⊤MΦ = I . Then, we can transform the

coordinates (shown with superscripts) from the point cloud to

the spectral domain

uφ = Φ
⊤Mux. (25)

Note that this step is equivalent to computing the Fourier

series coefficients of a target distribution in SMC. Due to

the orthonormal transformation, the PDE on the point cloud

becomes a system of decoupled ODEs in the spectral domain.

It is well known that the solution of a first-order linear ODE

ẋ(t) = −cx(t) is given by x(t) = e−ctx(0), where c is a

constant and x(0) is the initial value. Therefore, the solution
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of the system of ODEs in the spectral domain is given in

matrix form as

u
φ
t =

[
e−λ1δt . . . e−λmδt

]
⊤

⊙ u
φ
0
, (26)

where ⊙ denotes the Hadamard product. We observe from (26)

that the exponential terms with larger eigenvalues (i.e., higher

frequencies) will decay faster. Therefore, approximating the

diffusion using the first nM components introduces minimal

error. Secondly, similar to the mixed norm used in SMC,

the low-frequency spatial features are prioritized. Next, we

transform the solution back to the point cloud to get the

diffused potential field

ux = Φuφ. (27)

We can combine (25), (26) and (27) into a unified spectral

scheme

ut = Φ
[
e−λ1δt . . . e−λmδt

]
⊤

⊙ (Φ⊤Mu0) . (28)

We omit the superscripts when working on the point cloud for

brevity. Note that δt is the only free parameter in the diffusion

computation. However, its value should be adapted according

to the mean spacing between the adjacent points h on the

point cloud. For that purpose, we introduce the hyperparameter

α > 0 and embed it into the timestep calculation

δt = αh2. (29)

Accordingly, we can control the diffusion behavior indepen-

dently of the point cloud size. Increasing α results in longer

diffusion times and attenuates the high-frequency spatial fea-

tures (see (26) for details). This corresponds to a more global

coverage [56]. Conversely, decreasing α results in shorter

diffusion times, which leads to preserving the high-frequency

spatial features, hence more local coverage behavior.

Note that the Laplacian is determined completely by the

connectivity on the local tangent space and the distance

between these connected points. Therefore, it is invariant to

distance preserving (i.e., isometric) transformations such as

rigid body motion or deformation without stretching. Accord-

ingly, we compute C, M and derived quantities only once

in the preprocessing step for a given surface. Recomputation

is not necessary if the object stays still, moves rigidly, or the

target distribution pi changes.

C. Tactile Ergodic Coverage

We model the actual coverage tool/sensor as a compliant

virtual coverage agent shaped as a disk with radius ra.

Notably, one can represent arbitrary tool/sensor footprints as

a combination of disks [56]. We position our agent at the end-

effector of our manipulator. Thus, for a given kinematic chain

and joint configuration q, we can use the forward kinematics

to compute the position of our agent as a conformal point Pa

Pa = M(q)e0M̃(q). (30)

Since the point cloud is discrete and the agent should move

continuously on the surface, we project our agent Pa and its

footprint to the closest local tangent space on the point cloud.

1) Local Tangent Space and Coverage Computation: Given

the agent’s position Pa, we first compute the closest tangent

space on the point cloud. For that, we query a K-D tree T (P)
for the points xi ∈ P that are within the radius ra of the

agent. Then, we compute the conformal embeddings Pi of the

neighboring Euclidean points xi using (9). We refer to the set

composed of points Pi as the local neighborhood. Then, we

fit a tangent space to the local neighborhood by minimizing

the classical least squares objective

min

nN∑

i=1

(Pi ·X
∗)2, (31)

where X∗ is the dual representation of either a plane or

a sphere and the inner product · is a distance measure. In

CGA, planes can be seen as limit cases of spheres, i.e. planes

are spheres with infinite radius. This is also easy to observe

by looking at Equations (12) and (13) which construct these

geometric primitives. Note that fitting a local tangent sphere

with the radius determined by the local curvature would always

result in smaller or equal residuals than fitting a plane.

It has been shown in [72] that the solution to the least

squares problem given in (31) is the eigenvector corresponding

to the smallest eigenvalue of the 5× 5 matrix

bj,k =

nN∑

i=1

wi,jwi,k, (32)

where

wi,k =





pi,k if k ∈ {1, 2, 3}

−1 if k = 4

− 1

2
p2
i if k = 5.

(33)

Using the five components vi of this eigenvector we can find

the geometric primitive as

X = (v0e0 + v1e1 + v2e2 + v3e3 + v4e∞)
∗
. (34)

Note that if X is a plane then v0 = 0, otherwise X is a

sphere. Next, we want to project Pa to X by using the general

subspace projection formula of CGA

Ppair =
(
(Pa ∧ e∞) ·X

)
X−1. (35)

Here we first construct the pointpair Pa ∧ e∞, where e∞
corresponds to the point at infinity. Pa ∧ e∞ is also called a

flat point. Note that the projection essentially amounts to first

constructing the dual line (Pa ∧ e∞) ·X that passes through

the point Pa and is orthogonal to X , then intersecting this line

with the primitive X .

If X is a sphere, then the intersection of the line and the

sphere will result in two points on the sphere. If X is a plane,

it will result in another flat point, i.e. one point on the plane

and one at infinity. In any case, we can retrieve the closer one

to the agent position Pa using the split operation

P ′

a = split [Pp] . (36)

Here, P ′
a is the projected agent position on the tangent space

X . Next, we compute our agent’s footprint (i.e., instantaneous

coverage) by projecting its surface to the point cloud. If the

target surface was flat, all the points within the radius ra of
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our agent P ′
a would be covered by the footprint. However,

in the general case, both the tool and the surface can be

curved and deformable. For simplicity, we assume that the

surface is rigid and it deforms the tool with a constant bending

radius. We use the radius of the local tangent sphere that we

computed using CGA as an approximation for the bending

radius. Accordingly, we can quantify the error of the local

tangent space approximation for the i-th neighbor Pi by the

normalized residuals ei of the least squares computation (31).

We encode this approximation error into the footprint by

weighting the i-th neighbor by the Gaussian kernel ϕ(r) using

the normalized residuals ri = ei/max(e)

ϕ(ri) = exp
(
−ε2r2i

)
, (37)

where the hyperparameter ε > 0 controls the coverage

falloff. Next, we plug the Gaussian kernel weighted footprint

in (3) for computing the coverage ct, which then allows us to

calculate the virtual source term st using (1).

The coverage objective at the t-th timestep is embedded

in the source term st. Therefore, we set it as the initial

condition of the diffusion equation (19), i.e., u0 = st and use

either the implicit (23) or spectral (28) formula to diffuse the

resulting potential field. Note that at each iteration of the tactile

coverage loop, we solve an independent diffusion problem

starting from t = 0.

2) Gradient of the Diffused Potential Field: We guide the

coverage agent using the gradient of the diffused potential field

as the acceleration command

P̈ ′

a = ∇uP ′
a,t

, (38)

where ∇uP ′
a,t

denotes the gradient of the diffused potential

field at the projected agent position P ′
a. However, computing

the gradient on the point cloud is more involved than a

regular grid or a mesh. Recall that in Section IV-C1, we

already computed the projected agent position P ′
a, the local

neighborhood and the tangent space X∗. As the first step, we

compute the tangent plane Ea,t at P ′
a, namely

Ea,t = L∗

a,⊥ ∧ P ′

a ∧ e∞, (39)

using the line La,⊥, which is orthogonal to the surface and

passes through P ′
a. It is found by wedging the dual primitive

X with P ′
a to infinity with

La,⊥ = X∗ ∧ P ′

a ∧ e∞. (40)

Then, we project the points Pi in the local neighborhood to

the tangent plane Ea,t using (35) and (36), by setting Ea,t as

the primitive X . Next, we use the values of the potential field

at the neighbor locations as the height hi = ui,t of a second

surface from the tangent plane. Then, we fit a 3-rd degree

polynomial to this surface as shown by using the weighted

least squares objective

Â = argmin
A

tr ((Y −XA)⊤W (Y −XA)) , (41)

with the diagonal weight matrix W

W = diag (ϕ(r1), ϕ(r1), . . . ϕ(rm)) , (42)

whose entries are given by the Gaussian kernel (37). One can

refer to [73] for the details. Lastly, we calculate the gradient at

the projected agent’s position using the analytical gradients of

the polynomial. We depict the approach visually in Figure 2.

Fig. 2: Blue-red points show the value of the potential field ut

on the pointcloud P and the yellow point is the projected agent

position P ′
a. We also project the agent’s neighbors Pi to the

tangent plane Ea,t, shown in green. Next, we use the height

function hi = ui,t which uses the values of the potential

field to lift the projected points in the normal direction of the

tangent plane. We show the lifted points with large blue-red

points. We fit a polynomial to this lifted surface and compute

its analytical gradients at the neighbor locations ∇ui,t, as

shown with arrows in the detail view.

D. Robot Control

There are several aspects that the control of the physical

robot needs to achieve. The first is to track the virtual coverage

agent on the target surface, while keeping the end-effector nor-

mal to the surface. The second is to exert a desired force on the

surface. To do so, we design a task-space impedance controller

while further exploiting geometric algebra for efficiency and

compactness. The control law is of the following form

τ = −J
⊤ · W , (43)

where J ∈ B
1×N ⊂ G

1×N
4,1 is the Jacobian multivector

matrix with elements corresponding to bivectors, W is the

desired task-space wrench and τ are the resulting joint torques.

Before composing the final control law, we will explain its

components individually.

1) Surface Orientation: From Equation (40), we obtained

a line La,⊥ that is orthogonal to the surface that we wish to

track. In [74], it was shown how the motor between conformal

objects can be obtained. We use this formulation to find the

motor between the target orthogonal line and the line that

corresponds to the z-axis of the end-effector of the robot in

its current configuration, which is found as

Lee = M(q)(e0 ∧ e3 ∧ e∞)M̃(q). (44)

Then, the motor MLeeLa,⊥
, which transforms Lee into La,⊥

can be found as

MLeeLa,⊥
=

1

C
(1 + La,⊥Lee) , (45)

where C is a normalization constant. Note that C does not

simply correspond to the norm of 1 + La,⊥Lee, but requires
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a more involved computation. We therefore omit its exact

computation here for brevity and refer readers to [74].

We can now use the motor MLeeLa,⊥
in order to find a

control command for the robot via the logarithmic map of

motors, i.e.

VLa,⊥
= log

(
MLeeLa,⊥

)
. (46)

Of course, if the lines are equal, MLeeLa,⊥
= 1 and conse-

quently VLa,⊥
= 0. Note that VLa,⊥

is still a command in task

space (we will explain how to transform it to a joint torque

command once we have derived all the necessary components).

Another issue is that algebraically, VLa,⊥
corresponds to

a twist, not a wrench. Hence, we need to transform it

accordingly. From physics, we know that twists transform

to wrenches via an inertial map, which we could use here

as well. In the context of control, this inertia tensor is,

however, a tuning parameter and does not actually correspond

to a physical quantity. Thus, in order to simplify the final

expression, we will use a scalar matrix valued inertia, instead

of a geometric algebra inertia tensor and choose to transform

the twist command to wrench command purely algebraically.

As it has been shown before, this can be achieved by the

conjugate pseudoscalar Ic = Ie0 [70]. It follows that

WLa,⊥
= VLa,⊥

Ic, (47)

and WLa,⊥
now algebraically corresponds to a wrench.

2) Target Surface Force: Since this article describes a

method for tactile surface coverage, the goal of the robot

control is to not simply stay in contact with the surface, but

to actively exert a desired force on the surface. First of all, we

denote the current measured wrench as Wm(t) and the desired

wrench as Wd. Both are bivectors as defined by Equation (18).

We use Wd w.r.t. end-effector in order to make it more intuitive

to define. Hence, we need to transform Wm(t) to the same

coordinate frame, i.e.

W ′

m(t) = M̃(q)Wm(t)M(q). (48)

In order to achieve the desired, we simply apply a standard

PID controller in wrench space, i.e.

WC = Kp,WWe +Ki,W

∫
⊤

0

We(τ)dτ +Kd,W

d

dt
We(t),

(49)

where the wrench error is

We(t) = Wd −W ′

m(t), (50)

where Kp,W ,Ki,W and Kd,W are the corresponding gain

matrices, and WC is the resulting control wrench.

3) Task-Space Impedance Control: Recalling the control

law from Equation (43), we now collect the terms from the

previous subsections into a unified task-space impedance con-

trol law. We start by looking in more detail at the Jacobian J .

Previously, we mentioned that we are using the current end-

effector motor as the reference, hence, we require the Jacobian

to be computed w.r.t. that reference. This is therefore not the

geometric Jacobian that was presented in Equation (16), but

a variation of it. The end-effector frame geometric Jacobian

J
ee
G can be found as

J
ee
G =

[
Bee

1 . . . Bee
N

]
, (51)

where the bivector elements can be found as

Bee
i = M̃ee

i (q)BiM
ee
i , (52)

with

Mee
i =

i∏

j=N

Mi(qi). (53)

Hence, the relationship between J G and J
ee
G can be found

as

J
ee
G = M̃(q)J GM(q). (54)

The wrench in the control law is composed of the three

wrenches that we defined in the previous subsections. As

commonly done, we add a damping term that corresponds to

the current end-effector twist and as before, we transform it

to an algebraic wrench, i.e.

WV = J
ee
G q̇e0∞. (55)

With this, we now have everything in place to compose our

final control law as

τ = −J
ee,⊤
G ·

(
KLa,⊥

WLa,⊥
−DVWV +WC

)
, (56)

where KLa,⊥
is a stiffness and DV a damping gain.

V. EXPERIMENTS

Our experimental setup comprises a BotaSys SensOne 6-

axis force torque (F/T) sensor attached to the wrist of a 7-axis

Franka Emika robot manipulator and a custom 3-D printed

part attached to the F/T sensor. The custom part interfaces

an Intel Realsense D415 depth camera and a sponge at its

tip. We consider the sponge’s center point to be the coverage

agent’s position Pa. Before the operation, we perform extrinsic

calibration of the camera to combine the depth and RGB feeds

from the camera and to obtain its transformation with respect

to the robot joints. Additionally, we calibrate the F/T sensor

to compensate for the weight of the 3-D printed part and

the camera. We show the experimental setup on the left of

Figure 1.

A. Implementation Details

The pipeline of our tactile ergodic coverage method consists

of three modules: (i) surface acquisition, (ii) surface coverage

and (iii) robot control. Figure 3 summarizes the information

flow between the components.

1) Surface Acquisition: The surface acquisition node is

responsible for collecting the point cloud and performing

preprocessing operations described in Section IV-B. We use

scipy1 for the nearest neighbor queries and for solving the

eigenproblem in (24). The matrices C and M composing

the discrete Laplacian in (21) are computed with the ro-

bust_laplacian package2 [52].

2) Surface Coverage: The surface coverage node per-

forms the computations based on the procedure given in

Section IV-C. It uses the information provided by the surface

acquisition node and produces the target line for the robot

control node.

1https://scipy.org
2https://github.com/nmwsharp/robust-laplacians-py

https://scipy.org
https://github.com/nmwsharp/robust-laplacians-py
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Surface Acquisition Surface Coverage Robot Control

Inner loop
Outer loop

Target, K-D Tree, Laplacian eigenbasis

Actual coverage

Line object

Actual agent position

Force target 

Fig. 3: Information flow between the three components. The pipeline is composed of an outer loop responsible for controlling

the coverage progress with the feedback from the camera, whereas the inner loop compensates for the mismatch due to the

robot dynamics.

3) Robot control: On a high level, the robot control can

be seen as a state machine with three discrete states. The

first two states are essentially two pre-recorded joint positions

in which the robot is waiting for other parts of the pipeline

to be completed. One of these positions corresponds to the

picture-taking position, i.e., a joint position where the camera

has the full object in its frame and the point cloud can be

obtained. The robot is waiting in this position until the point

cloud has been obtained, afterwards it changes its position

to hover shortly over the object. In this second position, it is

waiting for the computation of the Laplacian eigenfunctions to

be completed, such that the coverage can start. The switching

between those two positions is achieved using a simple joint

impedance controller.

The third, and most important, state is when robot is

actually controlled to be in contact with the surface and

to follow the target corresponding to the coverage agent.

This behaviour is achieved using the controller that we

described in Section IV-D. The relevant parameters, that

were chosen empirically for the real-world experiments, are

the stiffness and damping of the line tracking controller,

i.e. KLa,⊥
= diag(30, 30, 30, 750, 750, 300) and DV =

diag(10, 10, 10, 150, 150, 50), as well as the gains of the

wrench PID controller, i.e. Kp,W = 0.5, Ki,W = 5 and

Kd,W = 0.5. The controller has been implemented using our

open-source geometric algebra for robotics library gafro3 that

we first presented in [75]. Note that in some cases, matrix-

vector products of geometric algebra quantities have been used

for the implementation, where the mathematical structure of

the geometric product actually simplifies to this, which can be

exploited for more efficient computation.

B. Simulated Experiments

1) Computation Performance: In order to assess the com-

putational performance, we investigated the two main opera-

tions of our method: (i) preprocessing by solving either the

eigenproblem (24) or matrix inversion in (23) (ii) integrating

the diffusion at runtime using either the spectral (28) or

implicit (23) formulations. In this experiment, we used the

Stanford Bunny as the reference point cloud and performed

voxel filtering to set the point cloud resolution. We present the

3https://gitlab.com/gafro

results for the preprocessing in Figure 4 and for the runtime

in Figure 5.
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Fig. 4: Computational complexity of the preprocessing step

for different nP and nM . Legend shows nM values. The time

axis is logarithmic and the legend shows nM values.
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Fig. 5: Computational complexity of integrating the diffusion

equation at runtime for different nP and nM . The time axis

is logarithmic and the legend shows nM values.

2) Coverage Performance: We tested the coverage perfor-

mance in a series of kinematic simulations. As the coverage

metric, we used the normalized ergodicity over the target

distribution, which compares the time-averaged statistics of

agent trajectories to the target distribution

εt =
∥max (p− ct, 0) ∥2∑nP

i=1
pi

. (57)

https://gitlab.com/gafro
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We ran the experiments for three different objects: a partial

point cloud of the Stanford Bunny and two point clouds

of a cup and a plate and their target distributions that we

collected using the RGB-D camera. For the Stanford bunny,

we projected an ‘X’ shape as the target distribution. For

each object, we sampled ten different initial positions for the

coverage agent and kinematically simulated the coverage using

different numbers of eigencomponents nM = 25, 50, 100, 200
and diffusion timestep scalar α = 1, 5, 10, 50, 100. Since the

plate is larger compared to the Bunny and the cup, we used a

larger agent radius ra = 15 [mm] for the plate and a smaller

value ra = 7.5 [mm] for the cup and the Bunny. The other

parameters that we kept constant in all of the experiments are

ẍmax = 3 [mm/s2], ẋmax = 3 [mm/s]. We selected six repre-

sentative experiment runs to show the coverage performance

qualitatively, and present them in Figure 6.

We show the quantitative results with respect to nM and α in

Figures 7 and 8, respectively. Note that, in order to better show

performance trend in these plots, we have excluded parameter

combinations leading to failure cases. We will discuss those

in Section VI.

As the last experiment, we chose the best-performing pair

(nM , α) and show the time evolution of the coverage perfor-

mance for different objects in Figure 9.

C. Real-world Experiment

In the real-world experiments, we tested the whole pipeline

presented in Section V-A. We used three different kitchen uten-

sils (plate, bowl, and cup) with different target distributions

(shapes, RLI, X). For these experiments, we fixed the objects

to the table so that they could not move when the robot was in

contact. At the beginning of the experiments, we moved the

robot to a predefined joint configuration that fully captured

the target distribution. Since we collected the point cloud data

from a single image frame, our method only had access to a

partial and noisy point cloud. We summarize the results of the

real-world experiments in Figure 10 and share all the recorded

experiment data and the videos on the accompanying website.

D. Comparisons

We present the first tactile ergodic coverage method in the

literature that works on curved surfaces. Therefore, there are

no methods that we can directly compare to quantitatively.

For this reason, we selected three related state-of-the-art

methods and compared them to our method qualitatively. As

the first method, we selected the finite element based HEDAC

planner [46], since it is the only other ergodic control approach

working on curved surfaces. For the tactile interaction aspect,

we selected two methods, the unified force-impedance con-

trol [76] and the sampling-based informative path planner [20].

We specified six criteria for comparison and summarized the

results in Table I.

VI. DISCUSSION

A. Computational Performance

We investigated the computational performance of our

method for the preprocessing and for the runtime.

The preprocessing step is only required, when the robot sees

an object for the first time or when the object undergoes a non-

isometric transformation. First thing to note from Figure 4

is that computing the eigenbasis is significantly faster than

inverting the large sparse matrix. Secondly, the advantage

of the spectral approach becomes more significant as the

number of points increases. This is because the computational

complexity of the spectral approach is linear O(nPnM ) with

the number of points, whereas the matrix inversion of the

implicit solution has quadratic complexity O(n2

P
).

If we compare our method with the state-of-the-art in

ergodic coverage on curved surfaces [46], our preprocessing

step is significantly faster. They reported a computation time of

19.7 s for a mesh with 2315 points using a finite-element-based

method. In contrast, our method takes 278ms for a point cloud

with ≈ 3000 points with nM = 100. Therefore, in comparison,

our method promises an increase in computation speed of more

than 90 times. Note that, as the number of points increases,

our gains in computation time become even more significant

due to the difference in the computational complexity of the

spectral and implicit formulations as mentioned above.

As Figure 5 shows the spectral approach also results in

a significant performance increase at runtime. The implicit

solution is also efficient in runtime, since it reduces to matrix-

vector multiplication after inverting the sparse matrix at the

preprocessing step. Nevertheless, the spectral formulation is

still significantly faster than the implicit formulation, espe-

cially for large point clouds.

Obviously, an unnecessarily large eigenbasis for small point

clouds, i.e. nM → nP , would cause the spectral approach to

be slower than the implicit one.

B. Coverage Performance

A close investigation of the failure scenarios in Figure 6

revealed that they stem from the bad coupling of the parame-

ters and from an initialization of the agent far away from the

source. If the agent is not far away from the source, setting low

values for α might actually lead to desirable properties such as

prioritizing local coverage which would in turn minimize the

distance traveled during coverage. Hence, for getting the best

behavior, α can be set adaptively or sequentially. For instance,

it is better to use high α values at the start for robustness to

bad initializations and to decrease it as the coverage advances

to prioritize local coverage and to increase the performance.

We measured the effect of our method parameters on the

coverage performance in Figures 7 and 8. Interestingly, the

parameters influencing the agent’s speed, i.e. ẋmax, nM and

α, have a coupled effect on the coverage performance in some

of the scenarios. The first thing to note here is that the value

of the α is lower-bounded by the speed of the coverage agent

ẋmax. Otherwise the method cannot guide the agent since it

moves faster than the diffusion. For instance, we observe from

Figure 6 a) and f) that with a diffusion coefficient α = 1, the

source information does not propagate fast enough to the agent

if it is too far from the source. Even for a small eigenbasis

nM ≤ 50 and moderate diffusion coefficient values 1 < α ≤
10, it still results in a low coverage performance εt > 0.5.
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(b)(a) (c) (d) (e) (f)

Fig. 6: Qualitative results of the coverage experiments showcasing the effect of different parameters. The red points designate

the spatial target distribution pi > 0. The agent starts at the green point, the trajectory is shown in black, and the final position

after 1000 timesteps is shown with the purple point. The tuples given on top of the figures show the parameters nK, α, and

ra of the experiments. We provide the interactive point clouds and the experiment data on our website.

TABLE I: Comparison of the proposed method with state-of-the-art methods.

Method Domain Approach Online Purpose Multiscale Multisetup a

Finite element-based HEDAC [46] Mesh Planning No Visual Inspection Yes No
Sampling-based Planner [20] Mesh Planning Yes Tactile Coverage No Yes
Unified Force-Impedance Control [76] None Control Yes Surface Exploration No No

Tactile Ergodic Control (Ours) Point Cloud b Control Yes Tactile Coverage Yes No

aMultisetup used by [20] refers to planning the configuration of the target object to reach otherwise unreachable regions.
bSince point clouds are the most general representation, our methoud can seamlessly be used on grids/meshes with only minor

changes to the computation of the discrete Laplacian.
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Fig. 7: Coverage performance measured by the ergodic metric

εt (57) with respect to nM used in the spectral formulation

(26).

On the contrary, if the eigenbasis is chosen to be sufficiently

large nM ≥ 100, we have more freedom in choosing α.

With this in mind, we removed the infeasible parameter

combinations (nM = 50, α = {5, 10}) from the experiment

results in Figures 7 and 8 to better observe the performance

trend for nM and α. It is easy to see that increasing nM results

in increased performance and higher freedom in choosing α.

However, this benefit becomes marginal after nM ≥ 100.

Therefore, choosing nM = 100 becomes a good trade-off

between coverage performance and computational complexity.

This observation is in line with the value of nM = 128
reported in [47].

In Figure 8, however, we observed minor differences in

performance for different α. Considering the spread and the

mean, choosing α = 10 would be a good fit for most
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Fig. 8: Coverage performance measured by the normalized

ergodic metric εt (57) with respect to the parameter α.

scenarios. Nevertheless, we must admit that the ergodic metric

falls short in distinguishing the most significant differences

between α values. Hence, the qualitative performance shown

in Figure 6 becomes much more explanatory. The first thing

to note here is that the lower values of α result in more local

coverage, whereas higher values lead to prioritizing global

coverage. Accordingly, the tuning of this parameter depends

on the task itself. For example, suppose the goal is to collect

measurements from different modes of a target distribution as

quickly as possible, in which case we would recommend using

α > 50. On the other hand, if the surface motion is costly,

because for example, the surface is prone to damage, moving

less frequently between the modes can be achieved by setting

5 < α < 50.

In scenarios where the physical interactions are complex,

stopping the coverage prematurely and observing the actual
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Fig. 9: Time evolution of the ergodic metric (57) for three

different objects with nM = 200 and α = 10. The semi-

transparent lines show ten different experiment runs, the center

line shows the mean, and the shaded regions correspond to the

standard deviation.

Fig. 10: Real-world experiment of the robot cleaning a plate, a

bowl, and a cup. For the first three columns we give snapshots

from the initial, intermediate, and final states from top to the

bottom. In the last column, we show the target distribution p,

the simulated potential field ut and the coverage ct from top

to the bottom.

coverage might be preferable instead of continuing the cov-

erage. To decide when to actually pause and measure the

current coverage, we investigated the time evolution of the

coverage performance in Figure 9. For the cup and the bunny,

we see that the coverage reaches a steady state around the

200-th timestep, while for the plate, this occurs around the

500-th timestep. Still, we can identify the steepest increase in

the coverage occurring until the 150-th timestep. Accordingly,

we recommend the strategy to pause the coverage at roughly

200 timesteps, measure the actual coverage, and continue the

coverage. This would potentially help in the cases where we

have unconnected regions (various modes), because discontin-

uous jumps between the disjoint regions might be quicker and

easier than following the surface. All that said, these claims

require further testing and experimentation, which are left to

be investigated in future work.

C. Force Control

We demonstrated that the proposed method can perform

closed-loop tactile ergodic control in the real world with

unknown objects and target distributions, as depicted in Fig-

ure 10. The primary challenge, however, is to be keeping

in contact with the surface without applying excessive force.

This is mainly due to the insufficient depth accuracy of the

camera, and uncertain dimensions of the mechanical system. A

suboptimal solution is to use a compliant controller and adjust

the penetration depth of the impedance target. A too compliant

controller would, however, reduce the tracking precision and

the uncertainty in the penetration depth could lead to unneces-

sarily high contact forces that might damage the object. More

importantly, high contact forces result in high friction that

further reduces the reference tracking performance.

Our solution to this problem was to introduce tactile feed-

back from the wrist-mounted force and torque sensor and

closed-loop tracking of a reference contact force. In general,

the commands generated by the force controllers conflict with

the position controllers and result in competing objectives. We

overcome this problem by posing the objective as line tracking

instead of position tracking. This forces the agent to be on the

line but free to move along the line. Accordingly, the force

and the line controller can simultaneously be active without

conflicting objectives or rigorous parameter tuning.

D. Comparisons

We compared our method with state-of-the-art approaches

in Table I. Since the methods are not comparable in all aspects,

we discuss the advantages and disadvantages of our method in

three parts: (i) ergodic coverage; (ii) tactile interactions; and

(iii) tactile coverage.

1) Ergodic Coverage: In the literature, the only other

ergodic coverage method on curved surfaces is the finite

element-based HEDAC [46]. This work presents an offline

planning method on meshes for visual inspection using multi-

ple aerial vehicles. Accordingly, our method extends the state

of the art in ergodic coverage on curved surfaces by being the

first formulation (i) working on point clouds, (ii) providing

closed-loop coverage using vision, and (iii) performing tactile

coverage. Furthermore, as we showed in the experiments

in Section V-B1, our approach vastly outscales the finite

element-based HEDAC in terms of computation time for the

preprocessing step. It is also important to note that, due to the

generality of the underlying ergodic control formulation that

we are using, our method could be applied to their use-case

as well.

2) Tactile Interactions: To ensure contact during tactile

exploration, the usage of a unified force-impedance control

scheme was proposed [76]. The general idea is similar to ours,

in the sense that the controller is required to track a given refer-

ence while exerting a force on the surface. The main difference

stems from the formulation of the reference for the impedance

behavior. While their method tracks a full Cartesian pose, our

impedance controller tracks a line. The main difference here

is that our method imposes less constraints on the reference

tracking, which leaves more degrees of freedom for secondary
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tasks, such as tracking the force objective. Hence, we require

no additional tuning to integrate these objectives, whereas their

method uses a passivity-based design to ensure the stability of

the combined controller.

3) Tactile Coverage: Concerning the problem of using

a manipulator for tactile coverage on curved surfaces, we

compare our method to the online sampling-based planner

presented in [20]. Unlike the more general point cloud repre-

sentation that we are using, this method operates on meshes.

However, it includes the planning of the configuration of the

target object. This is currently a limitation of our approach,

since we assume the object to be fixed and consider only

a single viewpoint. Although this configuration planner is

considered to be independent of the coverage at a given

configuration, it could be easily combined with our method. In

contrast to our myopic feedback controller, they use trajectory

planning, which requires a predefined planning horizon using

a number of passes for covering discrete patches. For tactile

coverage tasks, this can be extremely challenging to estimate

beforehand. Our method does not suffer from this limitation,

since ergodicity guarantees revisiting continuous areas accord-

ing to the target distribution over an infinite time horizon. In

addition, their approach is based on generating splines that

connect the waypoints. This has two issues: if the points are

not densely sampled, there is no guarantee that the resulting

spline would be on the surface; and conversely, if the points

are densely sampled, then the spline would be very complex

and not smooth. Accordingly, this approach would not scale to

complex surfaces and target distributions. Our approach, on the

other hand, uses a feedback controller to stay in contact with

the surface, where the local references are coming from the

surface-constrained ergodic controller. Hence, our approach is

mainly limited by the robot’s geometry with respect to the

complexity of the object, which could also be mitigated by

changing its configuration online.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the first closed-loop ergodic

coverage method on point clouds to address the tactile cov-

erage tasks on curved surfaces. Tactile coverage tasks are

challenging to model due to complex physical interactions.

We use vision to jointly capture the surface geometry and

the target distribution as a point cloud and directly use this

representation as input. Then, we propagate the information

regarding the coverage target to our robot using a diffusion

process on the point cloud. Here, we use ergodicity to relate

the spatial distribution to the number of visits required for

coverage in an infinite-horizon formulation. We leverage a

spectral formulation to trade-off the accuracy of the diffusion

computation with its computational complexity. To find a

favorable compromise between the two, we tested the depen-

dency of the coverage performance to the hyperparameters in

kinematic simulation experiments. Next, we demonstrated the

method in a real-world setting by cleaning previously unknown

curved surfaces with arbitrary human-drawn distributions. We

observed that our method can indeed adapt and generalize to

different objects and distributions on the fly.

In some scenarios, such as surface inspection, sanding, or

mechanical palpation, measuring the actual coverage is not

straightforward using an RGB-D camera. Still, we can use

cleaning as a proxy task such that a human expert can mark

the regions that need to be inspected with an easy-to-remove

marker. Then, the robot’s progress would be detectable by

a camera. Accordingly, our method provides an interesting

human-robot interaction modality using annotations and mark-

ings of an expert for tactile robotics tasks.

As discussed in Section VI-D3, the primary limitation of our

work is fixing the object pose during the operation. Therefore,

we plan to extend our method to scenarios where the object is

grasped by a second manipulator and can be reconfigured for

covering regions that otherwise would be unreachable due to

either collisions or joint limits. Although this problem is easy

to address by sampling discrete configurations, as previously

done in [20], our goal is to extend our method to handle this

problem in a continuous manner using a control approach.

Another promising extension of our method is automating

the collection of visuotactile datasets. In this setting, one

can combine our method with a vision-based active learning

module such as [61], which estimate high tactile-information

regions on the surface. Then, our controller could be used

to collect data from these regions with a multi-modal tactile

sensor.
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godic area surveying control based on finite element approximation of
the potential field,” Engineering Applications of Artificial Intelligence,
vol. 116, p. 105 441, Nov. 2022. DOI: 10 . 1016 / j . engappai . 2022 .
105441.
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