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Abstract— Trajectory optimization for motion planning and
optimal control is a popular approach in robotics. Algorithms
typically require good initialization in order to find the optimal
trajectories. To provide such initialization, many approaches
rely on the concept of memory of motion, where a function
approximator is trained on a database of robot trajectories to
predict good initial trajectories for novel situations, and hence
speeding up the subsequent trajectory optimization process. To
be able to generalize well to a new environment, an expressive
environment descriptor is necessary. We propose to encode
the environment by discretized signed distance functions (SDF)
which are then compressed using a tensor train (TT) decom-
position approach. In order to show the expressiveness of this
low-rank TT-SDF representation, three function approximators
are compared: k-nearest neighbors, a neural network, and a
mixture density network. We demonstrate the proposed method
with motion planning examples on two different systems (point
mass and quadcopter). Our experiments demonstrate that the
TT-SDF encoding can provide compact environment descriptors
in order to predict good initial trajectories for warm-starting
an optimal control solver.

I. INTRODUCTION

Motion planning is one of the core problems in robotics,
which often includes a myriad of constraints (e.g. joint limit,
stability, and obstacle avoidance) besides the task of finding
the optimal path between the start and goal configurations.
Moreover, when applied to robots with many degrees of
freedom (DoFs), motion planning approaches also need to
handle high-dimensional problems. Sampling-based motion
planning algorithms such as probabilistic roadmap (PRM)
and rapidly-exploring random tree (RRT) [1], [2] are very
successful in robotics due to their applicability in highly
complex and high-dimensional environments. They typically
employ a two-stage process of first finding a feasible path
and then optimizing it. More recently, instead of first find-
ing solely feasible paths, newer approaches, referenced as
trajectory optimization (TO) methods, directly construct tra-
jectories by formulating the problem as a single optimization
problem which formalizes the physical constraints, the goal
specification, as well as notions of quality and efficiency
[3], [4]. Trajectory optimization methods have been shown
to generate optimal motions for high-dimensional robots in
complex environments. They are also used to solve optimal
control problems that involve nonlinear dynamics. However,
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Fig. 1. Left: Example task scenario in an environment with five sphere
obstacles of different radii and center positions. Right: Corresponding
discretized SDF representation (uncompressed on the top, compressed on
the bottom) at the selected z-slice plane. The colormap corresponds to the
SDF-values at each voxel.

unlike sampling-based approaches, trajectory optimization
approaches are highly sensitive to the initialization. They
can get stuck in bad local optima when initialized far away
from the optimal solution, especially for highly nonlinear
problems. To address this issue, several approaches relying
on the concept of memory of motion have been proposed [5],
[6], [7]. A memory of motion is a dataset of precomputed
motions that correspond to various tasks. By learning from
such memory of motion, we can predict the initial guess
of the optimal trajectories for the new task. Therefore,
a function approximator is trained to learn the mapping
f : x → y that maps each task x to the optimal robot
trajectory y. This problem has also been coined as trajectory
prediction [8]. The prediction can then be used to initialize,
or warm start, the trajectory optimizer. Lembono et al.
propose an ensemble of function approximation methods to
learn f(x) [7], which is typically characterized by nonlinear
and multi-modal mappings (i.e., there might be multiple
robot paths to avoid the obstacle(s) and to reach the desired
position in a scene). This paper extends the above work
by focusing on finding an efficient representation of the
environment (comprising the set of obstacles), such that the
learning algorithm can generalize to a new environment. We
propose to use tensor train (TT) decomposition to find the
compact representation of the given 3D environment encoded
into a discretized signed distance function representation.

In the context of environment representation, signed dis-
tance functions (SDFs), also referred to as signed distance
fields, have increasingly gained attention in robotics and
computer graphics to represent 2D and 3D volumes [9], [10],
3D surface reconstruction from sensor data [11] and more



recently, also in optimization-based motion planners along
with collision detection [3]. In [12], Oleynikova et al. discuss
the advantages of using SDFs for online motion planning and
online mapping. We propose to extend this approach by using
the SDF representation as the environment descriptor for the
memory of motion.

An SDF, as well as its truncated version (TSDF), are
defined in 3D space and must therefore be stored in an
appropriate 3D basis. An example for this discretized repre-
sentation is shown in Fig. I. Most commonly, a 3D piecewise-
constant (voxel) basis is used. However, voxelized SDFs as
non-parametric volumetric representations of a continuous
3D mesh incorporate a high amount of redundancy that re-
quires large memory storage, constraining their applicability
in large-scale environments.1 Previous work addressed this
issue by means of different compression strategies [13], [14],
[15] in various applications including real-time mapping
and surface reconstruction. However, these compressed SDF
representations have been barely explored in the context of
motion planning and collision avoidance.

In [15], Boyko et al. applies low-rank tensor train (TT)
decomposition for compression and operations on 3D objects
and scenes represented by volumetric 3D SDFs. While their
approach provides very efficient compression of the high-
resolution SDF maps, the authors show that this representa-
tion is still powerful enough in terms of reconstruction, mak-
ing it also useful for domains other than surface reconstruc-
tion, such as motion planning. The compression approach
is also learning-less and mathematically simple, depending
on only one single hyperparameter (decomposition rank).
Building on this work, our work evaluates the use of such
compressed representation as environment descriptor for a
memory of motion.

A. Contributions

This paper extends the TT-SDF representation proposed in
[15] to derive a compressed and expressive feature represen-
tation of the environment. This is used to predict initial tra-
jectories for warm-starting trajectory optimization algorithms
in a given environment. By additionally orthogonalizing the
factors derived in the TT, a technique mathematically defined
in the work of [16], the compressed features are more unique
and expressive. The approach is demonstrated and tested
on the motion planning of two increasingly complex sys-
tems (double-integrator point-mass system and quadcopter).
Moreover, three different function approximators are applied
to learn the task of trajectory prediction, taking the task
descriptor as well as the TT-SDF environment descriptor
as an input. We show that the proposed TT-SDF allows us
to generalize the trajectory prediction to new environments
involving multiple obstacles.

B. Overview

The paper is organized as follows. Section II covers
the necessary mathematical and conceptual background on

1For instance, a space of 20 × 20 × 4 m3 discretized into voxels of 2
cm size takes up to 800 MB at 32 bits per voxel [13].

tensor decomposition methods and optimal control for a
better understanding of the remainder of this work. Section
III then explains how to use TT-decomposition to obtain a
good representation of the environment, which is then used
to predict an initial guess for warm starting the trajectory
optimizer. Section IV evaluates the approach on two different
systems surrounded by multiple obstacles, followed by the
final conclusion in Section V.

II. BACKGROUND

A. Tensor decomposition

A tensor is a multidimensional array. It is a generalization
of vectors and matrices to higher dimensions. The order of
a tensor is the number of modes in the array. For instance, a
vector is a first order tensor and a matrix is a second order
tensor. We denote the k-th elements of a d-th order tensor
G ∈ RK1×···×Kd , with indices k = (k1, . . . , kd) and ki ∈
{1, . . . ,Ki}, by Gk. Here, Ki ∈ Z+ represents the size of
i-th mode, with i ∈ {1, . . . , d}.

Tensor factorization (or decomposition) techniques gener-
alize matrix decomposition techniques (e.g. matrix singular
value decomposition) to multidimensional arrays in order to
compactly represent a multidimensional array. These tech-
niques use a set of lower-order tensors (called factors) to
represent the given tensor. The original tensor is recon-
structed by applying algebraic operations on these factors.
The type of factors and the algebraic operations that are used
vary depending on which tensor decomposition technique
is used. The accuracy of the representation is controlled
by the rank of the tensor decomposition. If the tensor has
some low-rank structure (e.g., arising from smoothness or
parallel-proportionality), the corresponding representation of
the tensor will typically be low-dimensional.

Some of the popular tensor decomposition techniques are
canonical polyadic (CP), Tucker, and tensor train (TT) (cf.
[17] for a survey). The CP decomposition scales well to
high-order tensors. However, the problem of finding the
best CP decomposition for a given tensor is not always
a well-posed optimization problem as the space of all CP
tensors with a fixed rank does not need to be a closed
space. The Tucker decomposition overcomes this issue but
suffers from the curse of dimensionality [18]. Tensor Train
(TT) decomposition [19] is a recent popular decomposition
technique that also scales to high-order tensors with fast
and robust algorithms for finding the TT decomposition.
Moreover, for any given tensor, we can always find a TT
decomposition (1) [19]. In the remaining sections, based on
our previous work exploiting TT for ergodic control [20], we
will use TT as the tensor decomposition technique.

Let G ∈ RK1×···×Kd be a d-th order tensor in TT format.
Its TT format is defined by a tuple of d third-order tensors
(G1, . . . ,Gd). Here, Gi ∈ Rri−1×ri×Ki , i ∈ {2, . . . , d−1},
G1 ∈ R1×r1×K1 and Gd ∈ Rrd−1×1×Kd . As shown in
Fig. 2, the k-th elements, with k ∈ K = {(k1, . . . , kd) : ki ∈
{1, . . . ,Ki}, i ∈ {1, . . . , d}}, is given by

Gk = G1
:,:,k1

G2
:,:,k2

· · · Gd
:,:,kd

, (1)



Fig. 2. The figure shows an example for a 4th order tensor G ∈
R5×6×7×8 of rank r = (2, 3, 4). We can evaluate an element of a tensor
in TT format by multiplying the slices (matrices represented in red color)
of the factors (3D arrays)).

where Gi
:,:,ki

∈ Rri−1×ri represents the ki-th frontal slice
(a matrix) of the third order tensor Gi. The TT-rank of the
tensor in TT representation is then defined as the tuple r =
(r1, r2, . . . , rd−1) and the maximal TT rank is defined as
r = max (r1, . . . , rd−1). Let K = max (K1, . . . ,Kd), then
the TT representation uses O(Kdr2) parameters to represent
the tensor G which has O(Kd) elements. Hence, the TT
representation is very efficient if the maximal rank r is low,
which is often the case in engineering applications.

In this work we use the TT decomposition to compress
the SDF tensor. However, it should be noted that the tensor
decomposition factors of a fixed rank for a given tensor
is not unique and that the factors possess several degrees
of freedom to represent the same tensor. While it does not
pose a problem for reconstruction [15], a unique envionment
representation is crucial if we want to use it as envi-
ronment descriptor for trajectory prediction. We therefore
use a canonical representation, namely right-orthogonalized
representation [16], and denote the resulting representation
as TT-SDF.

B. Optimal control

In the broader context of this paper, we want to tackle
the problem of finding the solution of an optimal control
problem (OCP), i.e. finding the optimal control inputs and
state trajectories (x∗,u∗) that minimize a given cost function
with regard to the system dynamics. A general discrete OCP
consists of a cost function of the form

C(x,u) =

T∑
t=1

ct(xt,ut) s.t. xt+1 = f(xt,ut). (2)

This basic formulation may also include additional equality
and inequality constraints, depending on the problem set-
ting. Despite the term control in its name, optimal control
formulation is also often used to plan the motion of a
robotics system while considering its dynamics. In robotics,
given the typically high complexity of the system including
many DOFs, the problem is most commonly solved using
numerical optimization methods such as the iterative lin-
ear quadratic regulator (iLQR) algorithm [21]. It is often
chosen due to its computational efficiency. It iteratively
approximates the cost function and dynamics to be quadratic
and linear, respectively, and consequently solves an LQR
subproblem at each step. It demonstrated good performance
even for high-dimensional systems such as quadruped or

humanoid robots. However, it often requires good initial
guesses in order to obtain satisfactory performance [6].

C. Signed Distance Function

An SDF is an implicit representation of a surface, embed-
ding geometry into a scalar field whose value represents the
distance to the nearest surface of the embedded geometry.
The sign of the SDF values provides information about the
field location with respect to the nearest surface, assuming
positive values outside the geometry, i.e. in free space, and
negative values inside. The object surfaces themselves are
given by the level-set or iso-surface S = {p : f(p) = 0}
where f(p) denotes the SDF evaluated at a point p.

III. METHOD

A. Setup

Fig. 3 provides an overview of the entire motion planning
pipeline developed in this work for learning, optimization
and execution. Our main objective is, given a new task
and an environment (comprising the obstacles), we want to
provide good initial trajectories for warm starting the OCP
solver. To do that, we first build a database of optimal tra-
jectories offline by solving many motion planning problems
with various tasks in different environments using the OCP
solver. We use the proposed TT-SDF representation as the
environment descriptor, and train a function approximator
on the dataset. Given a new task and environment, the
function approximator then predicts the initial guess of the
trajectories, which is used to warm start the OCP solver.
The following sections describe how the dataset is created,
the formulation of the learning problem, and the function
approximators considered in this work.

Trajectory database for
varying tasks & environments 

Task 
[q0 qT] 

function approximator 
f(x)= ξ =[q0 q1... qT]

ξ init OCP
solver

Optimal 
 Trajectories

Environment 
SDF TT-SDF

TT-decomp.

x = [q0 , qT , TT-SDF]

Fig. 3. Overview of the motion planning system used for learning,
optimization and execution.

B. Creation of trajectory database

To learn the mapping f(x) = y where x is the task and
y is the corresponding trajectory, we first build a dataset
D = {xi,y(xi)} = (X,Y ). Here, xi consists of the
motion planning task (the desired initial and goal location)
as well as the compressed environmental representation, i.e.
our TT-SDF encoding, and y(xi) denotes the corresponding
trajectory. We sample N tasks, and compute the output y(xi)
using the iLQR solver offline.

C. Construction and decomposition of input and output

A typical scenario in motion planning is a workspace filled
with obstacles. A given input for the function approximator
should therefore not only include the task setting itself, i.e.



start and goal robot posture, but also some notion of the robot
surrounding, i.e. obstacles in the scene. The generalization
ability of a learnt approximator crucially depends on the
environment representation. Therefore, this work constructs
the input vector x by including the TT-SDF representation
in the form of parameters θ, i.e. x = [q0, qT ,θ]

>, where
(q0, qT ) are the initial and goal locations.

To represent the environment, we first construct a voxel
grid with a fixed boundary, comprising of n3

v voxels. At each
voxel location q = (q1, q2, q3) ∈ R3, we compute the SDF
function f : R3 → R that maps q to the signed distance
between q and the closest point on the surface of the obstacle.
This gives us a 3-rd order SDF tensor with n3

v elements. We
then use TT decomposition to compress the SDF tensor to
low rank TT factors in the canonical representation, which
are then flattened to a single vector that we denote as
TT-SDF. Parameters influencing the dimensionality of the
resulting TT-SDF are most importantly the decomposition
rank of the TT, as well as the voxel resolution which will be
elaborated in Section IV.

To compute the SDF at each point, we are using the SDF
library2 for standard object primitives such as spheres, boxes,
or capsules. For more general objects, we can compute the
SDF from the mesh data3.

The output vector y ∈ RDT (the path trajectories) contains
T data points of dimensionality D. In a dataset of N samples,
DT might be much larger than N , which will lead to a poor
performance of the learning algorithm due to the curse of
dimensionality. Therefore, y is compressed using standard
principal component analysis (PCA).

D. Function Approximators
We consider three function approximators for the trajec-

tory prediction, i.e. to learn the mapping f : x→ y.
1) k-Nearest neighbor (k-NN): Given a task x∗, the algo-

rithm finds the nearest sample in the database according
to a chosen distance metric (Euclidean in this paper).
It is simple to implement and typically performs very
well in datasets with high variability. However, it suffers
from the curse of dimensionality, since the required
number of data grow exponentially with the increas-
ing input dimension. Therefore, this approximator only
serves as a baseline comparison.

2) Artificial neural network (NN): Neural networks are
very popular, given their flexibility and ease of use for
learning from the dataset. All networks are implemented
with two hidden densely connected layers of 256 units
per layer and a ReLu activation function. The learning
rate, as well as the number of neurons has been manu-
ally tuned. Moreover, some of the experiments included
a dropout layer before the output layer. Finally, the
networks are trained using the mean squared error as
regression loss function.

3) Mixture density network (MDN): As discussed in [7],
multi-modality poses a big challenge to a standard

2https://github.com/fogleman/sdf
3https://pypi.org/project/mesh-to-sdf/

function approximator such as NN. Mixture Density
Networks (MDN) [22] solve this issues by predicting
a mixture of Gaussian distributions, instead of a single
prediction. Each Gaussian can correspond to a different
mode, if trained properly. The resulting conditional
probability distribution helps to model multi-modal
functions more precisely. The network is trained using
the negative log-likelihood.

IV. EXPERIMENTAL EVALUATION

In this section, the results and insights obtained from
the experiments with a point-mass system and a quadcopter
are reported4. The point mass state space is 6-dimensional,
including position and velocity, whereas the control input
is 3-dimensional, i.e. acceleration command for each di-
mension. The quadcopter has a 12-dimensional state space
(position, orientation, and the corresponding velocity) and a
4-dimensional control input, i.e. the torque at each propeller.
The workspace boundary for both systems is set to be
[−1, 1] m for each of the xyz axes. The expressiveness
and the usability of the proposed environment descriptor
for trajectory prediction were evaluated using eight differ-
ent trajectory datasets, as well as three different function
approximators f .

A. Trajectory databases

When creating the trajectory datasets, different scenarios
were considered. The major dimensions along which the
datasets differ are the following:

1) Fixed or varying init/goal determines whether the start
and goal position of each sample are fixed or vary in
a given range. In the fixed case, q0 = [−1,−1,−1]
and qT = [1, 1, 1]. In the varying case, q0 and qT are
sampled around the two opposing workspace corners.

2) Include bias: The presence of multi modality in the data
poses a challenge in learning the trajectory prediction.
To separate this effect from the TT-SDF evaluation, in
some datasets we initialize iLQR by a trajectory that
goes from q0 to qT through an additional way point
(qT/2 = [0, 0,−1]), to bias the trajectories to pass
through the lower area of the environment so that the
multi modality is reduced. We denote datasets which do
not include way points by the symbol 7.

3) Number of obstacles: determines whether an environ-
ment includes one or multiple obstacles. The obstacle
positions and sizes are varied in a given range.

4) Type of obstacles: determines whether the obstacles
are spheres only, or various shapes (in this paper we
consider spheres, boxes, and capsules).

5) Dynamical system: we consider two systems, a point
mass and a quadcopter. The point mass dynamics are
formulated as a double integrator system, i.e. linear dy-
namics controlled with acceleration command, while the
quadcopter has nonlinear and underactuated dynamics,
resulting in a more complex system.

4The implementation codes are available at https://github.com/
teguhSL/tt_sdf

https://github.com/fogleman/sdf
https://pypi.org/project/mesh-to-sdf/
https://github.com/teguhSL/tt_sdf
https://github.com/teguhSL/tt_sdf


TABLE I
OVERVIEW OF DATASETS AND CORRESPONDING RESULTS FOR TT-RANK 3 WITH VOXEL RESOLUTION 0.05

Dataset Point Mass Quadcopter
i ii iii iv v vi vii viii

Start/goal fixed var. var. fixed var var. var var.
Way-point [0, 0,−1] [0, 0,−1] 7 7 [0, 0,−1] 7 7 7

Num. obstacles {1} {1} {1} {3, 4, 5} {3, 4, 5} {3, 4, 5} {1} {3}
Type of obstacles Sphere Sphere Sphere Sphere Sphere Sphere Various Various

Model Metric

k-NN
MSEtotal(m2) 0.0290 0.1037 0.1127 0.0358 0.1005 0.0931 0.0304 0.0446
MSEgoal(m2) 0.0000 0.0753 0.0793 0.0000 0.0658 0.0644 0.0166 0.0208
Collision free (%) 70.00 84.67 75.86 36.67 46.39 36.39 62.62 36.25

NN
MSEtotal(m2) 0.0079 0.0151 0.0209 0.0194 0.0420 0.0367 0.0104 0.0172
MSEgoal(m2) 0.0000 0.0017 0.0029 0.0000 0.0139 0.0112 0.0005 0.0020
Collision free (%) 87.33 77.0 58.62 35.33 33.68 34.69 52.10 24.47

MDN
MSEtotal(m2) 0.0133 0.0289 0.0459 0.0271 0.0741 0.0701 0.0353 0.0413
MSEgoal(m2) 0.0000 0.0055 0.0176 0.0000 0.0328 0.0292 0.0159 0.0188
Collision free (%) 92.00 90.58 92.34 65.67 82.82 80.61 75.70 67.37

TABLE II
EVALUATING THE EFFECT OF TT-RANK r ON THE TRAJECTORY

PREDICTION FOR DATASET II

TT rank 2 3 5 10 raw
dim (flat) 320 600 1400 4800 64000

MSEtotal(m2) 0.0133 0.0151 0.0158 0.0195 0.0546
MSEgoal(m2) 0.0011 0.0017 0.0029 0.0028 0.0417

collision free (%) 75.9 77.0 77.0 75.1 31.0

Fig. 4. An extract of the trajectories derived for environments containing
3 to 5 randomly sampled sphere obstacles of different radii ` at different
positions p, as shown in the legend (this corresponds to dataset 6).

For each scenario, a set of 1000 samples were sampled
in the task space as well as the obstacle space and the
corresponding trajectories were computed using iLQR. 70%
of the dataset is used for training the function approximator
while the remaning part is used for the evaluation/testing. An
example of a test environment is shown in Fig. I, picturing
a trajectory sample for the multiple-obstacle case with a
way-point, shown in green. Moreover, Fig. 4 shows an
excerpt of the trajectories generated for the case of three
to five obstacles in a scene with varying task settings and no
predefined way-point, corresponding to dataset number vi in
Table I. Note that the obstacles are not shown in this figure.

B. Analysis

The performance of the learnt function approximators is
evaluated in terms of standard regression metrics, such as the

mean squared error (MSE), but also with regard to collision
avoidance and their warm-starting performance. We consider
two MSE: MSEtotal and MSEgoal. The first refers to the MSE
of the whole predicted trajectory as compared to the ground
truth, while the later refers to the MSE with respect to only
the last time step. The obstacle avoidance performance is
evaluated by running collision tests for each point in the
generated trajectory. As soon as one point in the trajectory
collides with the obstacle, the entire trajectory is considered
to be in collision. On a test set, we evaluate how many tasks
that the algorithm is able to predict collision-free trajectories,
and calculate the percentage. Lastly, the method is evaluated
in terms of its effectiveness in warm-starting the OCP solver,
by looking at the corresponding OCP cost values at different
iLQR iterations.

For the MDN, the evaluation is done a bit differently from
the methods. The output of MDN is not a single prediction
but a mixture of Gaussians, each of which corresponds
to a different mode. To evaluate its performance, we first
sample K trajectories from the mixture of Gaussians. We
then compute the iLQR cost of each trajectory, and select
the one with the lowest cost to be the final prediction of
MDN. Since iLQR cost computation is usually much faster
than one iLQR iteration, this sampling step does not affect
the computation time significantly. By doing this, the MDN
performance is boosted significantly (as compared to only
sampling one trajectory). We choose K = 10.

a) Decomposition rank: The expressiveness of the en-
vironment descriptor, i.e. the TT-SDF depends on the degree
of compression and how much information is lost versus how
much redundancy is removed by it. In the TT decomposition
this depends on the decomposition rank r. The smaller the
rank, the higher the compression. Therefore, we first eval-
uate the TT-SDF representation on a range of compression
ranks, i.e. r ∈ {2, 3, 5, 10}. Analyzing the representations
themselves outside the regression context, Fig. I shows an
example scenario (left) and the corresponding SDF repre-
sentation, compared to the TT-SDF using r = 5 (right). The
discretized SDFs are shown for two different layers of the
3D grid structure sliced along the z-axis. Comparing the two,
we can see that a low-rank compression (r = 5) is still able



TABLE III
WARM-STARTING PERFORMANCE FOR ILQR SOLVER WITH NN AND MDN AS COMPARED TO STANDARD INITIALIZATION.

Dataset Point Mass Quadcopter
iii (single obst.) vi (mult. obst.) vii (single obst.) viii (mult. obst.)

iLQR iteration 5 10 50 5 10 50 5 10 50 5 10 50
Cold start 215.679 19.559 1.299 101.874 25.918 1.421 6.297 3.148 1.964 5.296 2.510 2.078
NN 6.332 1.342 1.297 11.512 1.422 1.148 2.105 1.951 1.936 2.134 2.028 2.007
MDN 1.514 1.376 1.311 3.455 1.644 1.152 2.039 1.951 1.956 2.107 2.086 2.005

to maintain the obstacle information to a sufficient degree.
A more thorough comparison of how the TT-SDF performs
within the neural network across different ranks is shown in
Table II. The number of parameters associated with the TT-
SDF representations at each rank is given in the first row.
The evaluation shown here has been performed for NN on
dataset ii with a voxel resolution of 0.05, i.e., each voxel is a
cube with side of 5cm which results in 40 voxels across each
dimension for an environment of [2×2×2]m3. Note, that the
choice of voxel resolution also impacts the dimensionality of
the feature space. In general, it needs careful consideration to
which extent the resolution is increased, since smaller voxel
cubes do not necessarily capture more information, but rather
increase dimensionality along with redundancy.

In our experiments, a 0.05 resolution show the best results
in combination with the TT decomposition. It can be seen
in Table II that TT-SDF representation clearly outperforms
its uncompressed counterpart, especially when r = 3. This
shows that a low rank can capture sufficient information of
the environment while filtering out redundancies, enabling
efficient learning. Note that by using r = 3, we reduce the
environment parameters by a factor of 64000/320 = 200
times, while improving the performance. Moreover, we have
also compared the canonicalized TT-representation against
the CP decomposition. Besides the significantly longer com-
putation time of the feature representation, CP decomposition
also seem to be less expressive for the trajectory prediction
as compared to TT. Due to constraints in terms of paper
length, we do not present these results.

b) Predictive performance of approximators: We then
use TT-SDF as part of the input for the trajectory prediction.
The TT rank r has been set to 3 with a voxel resolution of
0.05. Table I concatenates all results in terms of MSE and
collision avoidance on eight different datasets using k-nearest
neighbors (k-NN) with k = 1, a neural network (NN), and
a mixture density network (MDN).

When looking at k-NN baseline results, it can be seen
that it performs very well in terms of collision avoidance
across most datasets with single obstacle. This is due to
the formulation of the problem itself: the distance metric
naturally puts more importance on TT-SDF features which
outnumber the start and goal position. Therefore, the latter
are almost ignored in the prediction process, which is also
highlighted by the fact that the MSE in the goal position
is usually worse as compared to the other predictors. For
the fixed start and goal position and one obstacle scenario,
i.e., dataset 1, NN even outperforms the nearest neighbor
algorithm. In the NN setting, the introduction of a way-point

in the dataset generation seems to alleviate the problems with
the multi-modal property of the task-setting. This is also
emphasized by the fact that the MDN clearly outperforms
the other two approximators in terms of collision avoidance.
Especially, for the more complex environments with multiple
obstacles and without way-point, predicting at the highest
92% of the trajectories without any collisions for dataset iii.
Its performance for both MSE metrics is lower than NN.
In a practical consideration, however, predicting a trajectory
which is feasible and collision-free would be more important
than minimizing the MSE. Additionally, MSEtotal is not a
good metric when the data is multi-modal, because the
method may predict a good trajectory that has a low cost, but
corresponds to the different mode from the current ground
truth. In that case, the MSE would be very bad, although the
predicted trajectory is actually close to optimal.

c) Warm-start performance: Finally, we compare the
warm starting performance on the test set of dataset iii and
vi for the point-mass system, and dataset vii and viii for
the quadcopter. The corresponding OCP costs are evaluated
after the iLQR iterations 5, 10 and 50, to observe the
evolution of the costs. The costs after initializing with the
predictions of the NN and MDN are compared against a
standard initialization (straight line trajectory for the point
mass system, and stationary trajectory for the quadcopter).

There is one additional detail about using the prediction
output to perform the warm start that needs to be explained
here. Despite the good performance of NN and MDN, the
predicted trajectories generally do not start exactly from
the desired initial state. When using this prediction output
directly to warm start the OCP solver, it often results
in a high cost due to this discrepancy. To overcome this
issue, we perform an additional processing stage on the
prediction. Specifically, we use Linear Quadratic Tracking
(LQT) to generate trajectories that start from the desired
initial state and end at the desired final state, while tracking
the predicted trajectories from the function approximators.
We can consider this as an additional smoothing step to
ensure that the warm start begins at the correct desired initial
state. In practice, this additional step is very important for the
warm start to be successful, while the additional computation
time is significantly less than one iLQR iteration. Finally, we
note that we only predict the state trajectories, but the OCP
solver requires also the control input as the initialization.
For the point mass system, the control input can be easily
calculated from the state trajectories, but for the quadcopter,
we compute the control sequence from the state trajectories
using the quasi-static assumption. As the resulting initializa-



tion is not dynamically consistent, we use the iLQR solver
Crocoddyl [23] that accepts infeasible initialization.

The result overview is shown in Table III. As expected,
the costs in the MDN and NN settings already start at a
lower level as opposed to the standard initialization. As the
number of iteration increases, the difference between the
methods reduces, as most of them converge to the same
local optima. In practice, using NN and MDN to warm start
the OCP solver enable us to stop the iteration at around
5-10 iterations, since the cost is already sufficiently low
(it corresponds to a feasible solution that is collision free).
Comparing the results on the quadcopter and the point mass
gives us interesting insights. In the quadcopter case, we
observe that NN performs similarly to MDN. Interestingly,
while quadcopter is a more complex system in terms of
the dynamics, the corresponding trajectories have less multi-
modality than the point mass. This indeed makes sense,
because the complex dynamics provide more constraints
to the motion planning, resulting in less variability, while
simpler dynamics enable the solution to be more diverse.

V. CONCLUSION

This work presented an approach to guide an optimal
control solver by initializing the search (i.e., warm starting)
via trajectories that are predicted by function approximators
that take the task and environment descriptors as inputs.
The major contribution of this work was to demonstrate the
expressiveness of describing the environment by means of a
discretized SDF representation which is further compressed
by a canonicalized version of the tensor train decomposition
(TT-SDF). This compressed representation of the environ-
ment is able to provide meaningful and expressive features
to the learning algorithms mapping from a given task and
variable environment to a set of optimal trajectories. The
method has been evaluated on two systems, a point mass
and a quadcopter. In both cases, the predicted warm start
significantly decreased the initial costs of an OCP solver,
enabling faster convergence. The latter plays a specifically
important role in the case of dynamic obstacles requiring
fast re-planning of the trajectory throughout the task execu-
tion. This work opens up a meaningful direction for future
research in using SDF functions in combination with tensor
decomposition in the field of motion planning. For instance,
further experiments could apply this method to a robot
manipulator, a task setting which adds more constraints to the
OCP formulation, impeding the search for an optimal trajec-
tory. Moreover, the rank parameter of the TT-decomposition,
while still being a hyperparameter, could be estimated in
a separate learning algorithm. Additionally, different ranks
along different dimensions could be considered.
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