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Abstract. Continuous soft robots are becoming more and more widespread
in applications, due to their increased safety and flexibility in critical ap-
plications. The possibility of having soft robots that are able to change
their stiffness in selected parts can help in situations where higher forces
need to be applied. This paper describes a theoretical framework for
learning the desired stiffness characteristics of the robot from multiple
demonstrations. The framework is based on a statistical mathematical
model for encoding the motion of a continuous manipulator, coupled with
an optimal control strategy for learning the best impedance parameters
of the manipulator.

1 INTRODUCTION

The use of soft robots is becoming crucial to perform tasks where the contact
with a delicate environment is needed. This is happening for surgical robots as
well as manipulators that need to be put in contact with humans [1–4].

The possibility of changing the stiffness of soft robots can become a desired
feature where the softness of the robot prevents it from performing some task,
such as moving objects or carrying weights. In this case, the robot should be
aware of the stiffness that is needed to perform the task and apply the correct
values where needed.

Moreover, the choice of using soft materials usually comes together with a
different kind of embodiment, that departs from rigid kinematic chains. Usually
soft robots are described as continuous robots and their kinematic/dynamic
description needs to take this characteristics into account.

In this paper we will present a mathematical framework that can be employed
to learn the impedance characteristics of a soft continuous manipulator from
demonstrations. The paper is based on the main idea that the robot needs to
increase its stiffness whenever the task needs a higher precision. This is true, for
instance, in transportation tasks, where the relative position between the carried
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object and the end-effector of the robot is invariant during the crucial part of
the task [5].

Within the learning from demonstrations scenario, the user providing demon-
strations shows the task to perform several times: the consistency of the demon-
strations is encoded into a statistical model and the information extracted back
at reproduction time allows us to select the appropriate stiffness behaviour [6,
7].

In this paper, this feature is further enhanced by the use of a mathematical
model handling the movement of a continuous robot. In this way, the model
can be used to learn the correct stiffness behaviour of different parts along the
continuous robot at different times.

The selection of the correct values of stiffness is performed by using optimal
control techniques, that allow us to learn a positional controller along the ma-
nipulator that makes a trade off between minimizing the forces applied on the
manipulator and tracking the demonstrations within the demonstrated variabil-
ity [8].

The current paper is aimed at showing the general theoretical framework
for learning the stiffness behaviour of a continuous robot and is organized as
follows. In section 2 we present a generative model to learn motion skills from
demonstrations. In particular, we show how a tracking controller can be learnt
from demonstrations by using optimal control technique. Section 3 extends the
model developed for Section 2 for encoding the motion of a continuum robot.
Section 4 shows how those results can be effectively employed to learn the desired
stiffness of the manipulator from demonstrations.

2 LEARNING MOTION SKILLS FROM
DEMONSTRATIONS

2.1 GAUSSIAN MIXTURE MODELS

The setup for learning motion skills from demonstrations presented in this sec-
tion is based on the construction of a statistical model of observed movements
(demonstrations) given by a user.

The observations {ξn}Nn=1 representing the points of the demonstrations are
assumed to be independent realizations of a random vector and is assumed to
be distributed as a linear combination of Normal distributions as:

P(ξn) =

K∑
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The parameters of a Gaussian mixture model (GMM) with K components
are thus defined by {πk,µk,Σk}Kk=1, where πk is the prior (mixing coefficient),
µk is the center, andΣk is the covariance matrix of the k-th mixture component.

The estimation of mixture parameters can be performed by maximizing the
log-likelihood of the above distribution of the given dataset. This leads to an
expectation-maximization (EM) process iteratively refining the model parame-
ters to converge to a local optimum of the likelihood. These two steps are itera-
tively applied until a stopping criterion is satisfied. The two steps are described
below.

E-step:

hn,i =
πi N (ξn|µi,Σi)∑K

k=1 πk N (ξn|µk,Σk)
.

M-step:

πi =

∑N
n=1 hn,i
N

,
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,
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.

The reproduction of an average movement or skill behavior can be formalized
as a statistical regression problem. We demonstrated in previous work that Gaus-
sian Mixture Models in combination with Gaussian mixture regression (GMR)
offers a simple and elegant solution to handle encoding, recognition, prediction
and reproduction in robot learning [5, 9]. It provides a probabilistic representa-
tion of the movement, where the model can retrieve actions in real-time, within
a computation time that is independent of the number of datapoints in the
training set.

By defining which variables span for input and output parts (noted respec-
tively by I and O superscripts), a block decomposition of the datapoint ξn,
vectors µi and matrices Σi can be written as
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n
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The GMM thus encodes the joint distribution P(ξI , ξO) ∼
∑K

i=1 πiN (µi,Σi)
of the data ξ. At each reproduction step n, P(ξO

n |ξ
I

n) is computed as the condi-



tional distribution
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In the general case, eq. (1) represents a multimodal distribution. In problems
where a single output is expected (single peaked distribution), eq. (1) can be

approximated by a single normal distribution N (µ̂O
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Eq. (4) is computed in real-time from the model parameters. The retrieved
signal encapsulates variation and correlation information in the form of a prob-
abilistic flow tube, see e.g., [10].

2.2 LQR REPRESENTATION FOR MOTION SKILLS

One typical scenario consists in collecting time and position values of the demon-
strations and then extract the resulting movement by choosing time as input.
This allows us to reproduce the average behaviour extracted from the demon-
strations. This approach implements an open-loop controller which is not robust
to perturbations.

In order to cope with this drawback, the above approach can be comple-
mented by coupling the reproduction step with a second order linear dynamical
system, which improves robustness and smoothness of the reproductions [7].
Moreover the stiffness and damping parameters characterizing the second or-
der system can also be estimated from the observation by following a reasoning
similar to the development of linear quadratic regulators [11].

The approach exploits Gaussian conditioning to retrieve a reference trajec-
tory in the form of a full distribution N (ξ̂O

t , Σ̂
O
t ) varying at each time step t,

see [8] for an experiment with a 7 DOFs manipulator.
Similarly as the solution proposed by Medina et al. in the context of risk-

sensitive control for haptic assistance [12], the predicted variability can be ex-
ploited to form a minimal intervention controller [13]. An acceleration command

ut = K̂P

t (x̂t − xt)− K̂V

t ẋt (5)
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Fig. 1. Minimal intervention controller based on a linear quadratic regulator (LQR).
(a) Multiple demonstrations. (b) Reproduction of the reference path defined as the
centers of the Gaussians retrieved by GMR, with the corresponding acceleration profile.
(c) Reproduction with a linear quadratic regulator, reducing the accelerations and jerks
while keeping the movement within a boundary defined by the demonstrations.

is used to control the robot, with x̂t estimated by GMR. K̂P
t and K̂V

t are
full stiffness and damping matrices estimated by a linear quadratic regulator
(LQR) with time-varying weights. For a finite horizon LQR, this is achieved by
minimizing the cost function

c(1) =

T∑
t=1

(x̂t−xt)
>Qt(x̂t−xt) + u>

tRt ut, (6)

subject to the constraints of a double integrator system. This cost function aims
at finding an optimal feedback controller minimizing simultaneously the tracking
errors and the control commands in proportion defined by weighting matrices
Qt and Rt.

The solution can be computed by backward integration of a Riccati ordinary

differential equation with varying full weighting matrix Qt =(Σ̂x
t )
−1

estimated
by GMR and by setting Rt as a constant diagonal matrix. It provides a time-
varying feedback control law in the form of Eq. (5) with full stiffness and damping
matrices K̂P

t and K̂V
t .

To solve the above minimization problem, a boundary condition needs to be
set on the final feedback term, which can for example be set to zero. It is in this
case assumed that the robot comes back to a compliant state after the task is
fulfilled.

In some situations, it might be computationally expensive to recompute at
each iteration t a prediction on the remaining movement. An approximation
that we exploited in [8] can in this case be locally computed by considering an
infinite horizon LQR formulation to estimate a feedback term at iteration t by
considering only the current estimate Σ̂x

t . This corresponds to the estimation



of a feedback controller that does not know in advance whether the precision
at which it should track a target will vary. The corresponding cost function at
iteration t corresponds to

c
(2)
t =

∞∑
n=t

(x̂t − xn)>Qt(x̂t − xn) + u>
nRt un, ∀t ∈ {1, . . . , T} (7)

which can be solved iteratively through the algebraic Riccati equation, providing
an optimal feedback controller in the form of Eq. (5) with full stiffness and
damping matrices K̂P

t and K̂V
t .

3 REPRESENTATION OF MOTION IN A
CONTINUUM ROBOT

In order to extend the above strategy to a continuous robot, a mathematical
model of the latter needs to be developed. The model that we exploit in this
paper was inspired by the biological studies carried out on the motion of the
octopus. In fact, biologists use a similar formulation to describe the evolution of
the curvature and elongation of the Octopus arm during the movement [14, 15].

Following the aforementioned studies, a generalization of the previous ap-
proach that is more suitable for robotics applications was proposed in [16]. The
setup exploits the biologically inspired representation within a statistical frame-
work scenario and allows us to exploit the instruments of Machine Learning
to build a statistical model that can be effectively used to reproduce skills on
continuous robotics arms.

For this purpose, the continuum robotic arm is approximated as a robot
with a high number of links: it can be described as a kinematic chain with a
high number of revolute joints alternated with prismatic joints describing the
local elongation. The joint space of the robot is described by a collection of 3
Euler angles and a scalar offset for each link, where the forward kinematics can
be evaluated by using standard robotics techniques.

The motion of the system can be represented by assigning the set of 4 joint
variables for each discrete position along the arm. This is performed by defining
a continuous arm-index s ∈ [0, 1], representing the position of any point along
an arm, with s = 0 and s = 1 representing respectively the base and the tip.
We will rescale the duration of a movement so that it can be represented by a
continuous time index t ∈ [0, 1]. We thus have 3 Euler angles θx, θy, θz and an
offset ∆L for each t and s, that can be represented as a set of surfaces as shown
in Fig. 2.

The original raw data consist of noisy Cartesian positions of selected points
along the arm. A preprocessing step is performed by resampling and smoothing
through a two-dimensional polynomial fitting (surface fitting) with a 7-degree
polynomial. The degree for the polynomial is set experimentally by testing dif-
ferent orders.



Fig. 2. Spatiotemporal representation. Left: The black lines represent slices in the
Euler angles surfaces θ and offset surface ∆L, corresponding to a static pose described
by all the links (0 ≤ s ≤ 1) at t = 0.7. Right: For the same time frame, some of the
corresponding Frenet frames along the arm are depicted in a 3D Cartesian space.

In order to represent the motion in the form of a statistical model, the pre-
processed data are encoded into a Gaussian Mixture Model, representing the
distribution of the joint variables for each value of s and t as shown in Fig.3.

Now, we can extend the dynamical system scenario to the continuous robot,
by extending the concept of trajectory attractor to a surface attractor (gener-
alization of the generic spring-damper system to a spatiotemporal dynamical
system). We use both arm-index s and time t (rather than only time) as input
variables, which enables the approach to encode the movement of the whole arm
with a compact model (namely, by encoding the movement of all points along
the arm).

A dynamical system can then be derived for the current situation in two
different ways, either by integrating along the t index or along the s index. In
the current scenario, the evolution is only semi bi-dimensional, in the sense that
the surface is constructed by integrating either in the t direction from a given
curve at t = 0, representing the initial shape or, alternatively, by integrating in
the s direction from a given curve at s = 0, representing the evolution of a single
point (e.g. the base of the continuous robot).

The difference is illustrated in Fig.4. The surface attractor allows us to eval-
uate at each time step the desired pose of the continuum robot. The dynamical
system in time describes the motion of each single link along with the impedance
parameters of the positional controller. On the other hand, the dynamical sys-
tem in s allows us to evaluate at each time step the static pose of the robot.



Fig. 3. The Gaussian Mixture Model encoding a movement for the joint variables
representing the continuum robot. The number of components is chosen heuristically.

The picture shows the learnt stiffness values with colors from white to black
depicting increasing levels of stiffness

4 LEARNING IMPEDANCE PARAMETERS

In the following section we will concentrate on the use of the above described
scenario for learning impedance parameters from demonstrations. First of all a
distinction should be made between the t-directed and the s-directed dynamical
system. In the first case, the dynamical system implemented by eq.(5) represents
the acceleration applied to the points of the continuous robot and can be inter-
preted as the impedance parameters of a positional controller implemented on
the system.



(a)

(b)

(c)

Fig. 4. A dynamical system with surface attractor (evolution over time and arm-index).
(a) The grey surface on the left represents the attractor surface corresponding to the
observed motion of the continuum arm, while the white surface is the reproduced
motion of the arm. The right figure shows the arm configurations in 2D Cartesian space
at different time steps. (b) The left figure shows the evolution in time of a link with a
given arm-index s along the kinematic chain and the corresponding configurations (on
the right). (c) The figures show the pose of the continuum arm for a given time step
t. The evaluated stiffness values are represented by different colors (black means high
stiffness).



On the other hand, the s-directed dynamical system has a different meaning.
In this case, eq.(5) represents the second derivative with respect to a spatial
variable and can be related to the bending and elongation properties of the
system. In particular the stiffness matrix represents the resistance to bending
and elongation of the continuum robot. For this reason, the described scenario
can be effectively employed to learn from demonstrations what is the optimal
stiffness of the different parts of the manipulator along the task.

As an example of scenario, we show how this mechanism works for a simple
motion. The demonstration phase consists of moving the end effector of the ma-
nipulator to reach a target in front of it. The end-effector of the manipulator is
moved around in the first part of the movement with a high variability (explo-
ration phase). In the second part of the task, the robot is instead moved directly
towards the target. As a result, the robot learns a different controller for the
different parts of the task, as shown in Fig.5.
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Fig. 5. Desired stiffness of the robot during the task. The desired stiffness for the prox-
imal and distal parts of the manipulator are shown on the left and right respectively.
As time increases, the manipulator moves towards a target placed in front of it.

In the first part of the task, where the demonstrated variability is higher, the
robot learns that a lower stiffness is needed to complete the task. The value of
the stiffness is instead increasing when the distal part of the manipulator enters
in the area of low variability, towards the end of the movement.

5 CONCLUSION AND FURTHER WORK

In this paper we presented a theoretical framework for learning stiffness proper-
ties of continuous soft robots. The presented framework is based on a compact
statistical representation of the continuous arm movement encoding the full mo-
tion of all the points of the arm. An optimal control strategy is employed to
exploit the statistical model to learn a dynamical system representation of the
motion of the system, whose impedance parameters are exploited to single out
the stiffness of selected parts of the continuous manipulator.

One drawback of the current encoding and regression process is that it re-
quires the multiple demonstrations samples to be rescaled and aligned along the



temporal index and along the arm index. Further work will investigate the com-
bination of model predictive control with mixture of Gaussians as an approach
that could generate a controller for the continuum robot while by-passing this
data pre-processing phase.
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