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Abstract— A new challenge for surgical robotics is placed in
the use of flexible manipulators, to perform procedures that
are impossible for currently available rigid robots. Since the
surgeon only controls the end-effector of the manipulator, new
control strategies need to be developed to correctly move its
flexible body without damaging the surrounding environment.
This paper shows how a positional controller for a new surgical
robot (STIFF-FLOP) can be learnt from the demonstrations
given by an expert user. The proposed algorithm exploits the
variability of the task to comply with the constraints only
when needed, by implementing a minimal intervention principle
control strategy. The results are applied to scenarios involving
movements inside a constrained environment and disturbance
rejection.

I. INTRODUCTION

In minimally invasive surgery, tools go through narrow
openings and manipulate soft organs to perform surgical
tasks. There are limitations to current robot-assisted surgical
systems due to the rigidity of robot tools. The aim of the
STIFF-FLOP European project is to develop a soft robotic
arm to perform surgical tasks by actively controlling the
selected body parts of the robot [1], [2], [3]. The flexibility of
the robot allows the surgeon to move within organs to reach
remote areas of the body and perform challenging procedures
in laparoscopy.

The surgeon controls the end-effector during the surgical
task, leaving the motion of the whole arm to the control and
learning modules. The latter should drive the body of the
robot along the trajectory followed by the surgeon, without
applying pressure to or damaging the internal organs of the
patients. The learning algorithm will have to work in the null
space of the surgical manipulator, to avoid interfering with
the surgeon and exploiting redundancy in an optimal way
[4], [5].

Indeed, the shape of the robot cannot always be the same
as the trajectory. Because of the limitations of its geometry,
the robot cannot fit the trajectory with the whole body all
the time. One way to do this is to create an algorithm that
keeps the robot close to the tracked trajectory where the
constraints need to be satisfied more strictly and exploits the
places where more freedom is available to fulfill the task
precisely.

We explore the use of learning from demonstrations
techniques to program the correct behaviour of the surgical
robot, having as input the expert demonstrations provided
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by the surgeons. These demonstrations will have to show
the possible trajectories that are needed to perform the task,
thus allowing the algorithm to extract information on the task
variability and constraints. Surgeons often require to set some
constraint along the motion, where critical situation might
occur. Within the current framework, the constraints define
viapoints as low variability points in the demonstrations,
where the robot will be forced to pass.

The variability of the demonstrations is encoded in a
compact statistical model by using Gaussian Mixture Models
(GMM) whence the information can be efficiently extracted
at reproduction time by means of Gaussian Mixture Re-
gression (GMR) [6]. Alternative approaches to encode the
variability of the data can be used without affecting the
overall procedure, such as Gaussian Processes [7] or Hidden
Markov Models (HMM).

Since the timing of the task during the reproduction phase
is given by the surgeon, a new application of GMR is
proposed. The inputs are based on curvilinear distances and
a time-invariant mechanism to control the robot in a surgical
scenario is obtained. This results into a novel application
of GMR, which has been used in the literature for motion
generation of autonomouse systems [8], [9], for coupling dy-
namical systems of dynamic movement primitives [10], [11]
or to extract trajectories from time-indexed demonstrations
[12].

This approach also differs from usual algorithms using
Operational Space Control from demonstrations [13]: in our
case no hierarchical priority is defined inside the null space,
but the importance of each null space operation depends on
the variability of the task and changes online. This approach
can be eventually coupled with standard techniques: if a prior
hierarchy is defined in null-space, the proposed approach can
be used to control the remaining available DOFs.

These ideas also find a correspondence within the frame-
work of the minimal intervention principle [14], stating that
the actions on the system should be limited to those really
affecting the completion of the task. In our case, forcing the
robot to always stay near the given trajectory could limit the
possible configurations and constrain the task execution too
much.

The technique described in this paper can be used both
to control the motion of the robot and to determine the
directions or the areas that are more relevant for distur-
bance rejection. We performed experiments showing both
situations. Since the robot is still under development, an



Fig. 1. The MatLab Inverse Kinematics simulator of the STIFF-FLOP
robot. Left: a single module modelled as a constant curvature module. Right:
the full robot, obtained putting 3 sections together.

inverse kinematics simulator in Matlab is used to run the
experiments, see also [15].

II. THE STIFF-FLOP ROBOT

The first prototype of the robot, currently under develop-
ment, is composed of 3 cylindrical sections (links). Each link
of the robot consists of a soft cylinder with three chambers
disposed concentrically around the axis, where air is inflated
to bend the link in the desired orientation. A central chamber
filled with hard grain-shaped particles is used to stiffen the
link at a desired orientation by air suction [1], [2].

Different models were developed in the literature to de-
scribe the kinematics of such flexible modules [16], In most
cases, our robot can be modeled as a constant curvature
section of a circle. In its local frame, the rest position
(no chamber is inflated) corresponds to the module aligned
along the vertical axis ẑ, with a rest length L0. The present
prototype of the single module is 0.05m long in the rest
position and has a diameter of 0.04m. When totally inflated,
it can elongate by 80%. Moreover, each link can bend at
approximatively 1800.

The position qi of the tip of the i-th module can be written
as a function of the angle αi, arc length βi and curvature
radius ρi as follows:

qi=ρi[(1−cos(βi)) cos(αi), (1−cos(βi)) sin(αi), sin(βi)]
(1)

Both variables qi and ρi, αi, βi can be used to describe the
kinematics of the module. The Cartesian coordinates of any
point along the single module can be written as a function
of its fractional position ξ

fρi,αi,βi
(ξ) =

 ρi(1− cos(βiξ)) cos(αi)

ρi(1− cos(βiξ)) sin(αi)

ρi sin(βiξ)

 . (2)

Here ξ ∈ [0, 1] corresponds to all possible points from the
base of the module to the tip (ξ = 0 is the base).

From now on, we will use the Cartesian positions qi of the
tips of the modules in the rest frame of the base as internal
variables. They will play the role of joint variables inside the
following kinematical model.

The orientation of the tip frame only depends on its
position, evaluated by rotating the tip frame to make ẑ
tangent to the module at the tip, keeping the other axes
rigidly displaced along the manipulator. The tip orientation
of the i-th module in the (i−1)-th tip frame is respectively
defined by a matrix R(i−1)i = R(i−1)i(qi).

There are limitations on the possible configuration, since
the inflation mechanism only allows a limited range of
elongations of each chamber, depending on the bending of
the module and on its orientation in space [15].

This setup allows an easy integration of multiple robot
links, since any additional module can be thought as a con-
stant curvature model applied on the previous. The position
and orientation of the tip of the robot can be recursively
evaluated for any possible number of links N . For 3 links
this results into:

t = q1 +R01q2 +R01R12q3, R03 = R01R12R23. (3)

The whole orientation of the tip is not actually needed,
since the rotation of the tip around the vertical axis will be
performed during surgery by using the tool mounted on it.
So, only the direction ẑ of the tip axis will be controlled,
resulting into a 2-dimensional quaternion based orientation
vector θ. The task parameters for the manipulator are the
position t of the tip and its orientation θ, collected into a
5-dimensional task vector w=[t,θ]>.

The kinematics of the module is finally complemented by
adding motion capabilities to the base of the manipulator (6
additional DOF, i.e. 3 Cartesian positions q0 corresponding
to the translation of the base and 3 Euler angles η0 cor-
responding to all the possible rotations of the base). The
rotation matrix corresponding to η0 will be denoted by R0.

So, the whole manipulator is endowed with a total number
of 3N+6 degrees of freedom, N being the number of links.
The total joint coordinates will be denoted by

q̂ = [η0, q0, q1, . . . , qN ]. (4)

The position and orientation of the end effector are:

t = q0 +R0

(
N∑
i=1

R0,i−1qi

)
, R0N = R0

N∏
i=1

Ri−1,i

(5)
The direct kinematics is represented by the function w =

w(q̂); the inverse differential kinematics is considered, by
evaluating the Jacobian J of the direct kinematics and
using standard robotics techniques, with the internal variables
replacing the role of joints, namely

dw

dt
=
∂w

∂q̂

dq̂

dt
= J

dq̂

dt
, (6)

where J is the Jacobian matrix. Given a starting position
for the robot, corresponding to a choice of the internal
parameters corresponding to q̂(0) and task parameters w(0),
the final configuration can be represented using the minimum
norm solution as:

q̂(t) =

∫ t

0

J†
dw

dt
dt+ q̂(0), (7)



where dw
dt is the velocity of the movement in the task space

and J† is the pseudoinverse of the Jacobian matrix. Since
the above coordinates do not introduce singularities in the
calculation of the Jacobian, this approach is already precise
enough for motion generation. The knowledge of q̂(t) allows
us to know the configuration of each link of the manipulator
with time and to actuate them using a low level positional
control.

A 3 links manipulator will be endowed with 15 DOF:
given the 5-dimensional task space, it has 10 DOF of
redundancy that can be used to control the body, while the
surgeon moves the tip to perform the surgical task. Learning
will be performed in the null space, so that the body can be
controlled without affecting the task kinematics.

The motion of any intermediate point is obtained by
calculating its Jacobian and projecting the inverse differential
kinematics on the null space. An internal coordinate s ∈
[0, N ] is assigned to the robot, specifying the rest position
of all the points of the back bone of the manipulator (s = 0
corresponds to the base and s = N to the end-effector). The
Cartesian position can be then obtained by using eq.(2) in
conjunction with eq.(5) as:

P (s)=q0+R0

 bsc∑
i=0

R0,iqi+1+fρbsc+1,αbsc+1,βbsc+1
(s−bsc)


(8)

Here bsc is the floor function applied to s. The intermediate
Jacobian can be evaluated as

Ĵ(s) =
∂P (s)

∂q̂
, (9)

while the joint trajectory corresponding to a (null space)
movement of the intermediate point P (s) is

q̂0(t) =

∫ t

0

[(
I − J†J

)
Ĵ
†
(s)

dP

dt

]
dt+ q̂0(0), (10)

where J is the Jacobian of the task space evaluated in eq.(6).
In the following we will denote by P i = P (i), i = 1 . . . N
the intermediate points corresponding to the conjunction
between two modules.

III. PROBLEM SETTING

During the demonstration phase, the user provides the
variability information of the task by demonstration. In this
first phase, the variability is collected by demonstrating
several possible paths that the constraints allow and are
provided with different durations and timing distortions to be
close to a real-world application. We will discuss in Section
V how this approach can be generalized to be applied within
a surgical context.

The demonstrations are encoded using a Gaussian Mixture
Model (GMM), that is able to keep the variability informa-
tion through covariance matrices. The GMM will encode the
extended dataset

d = [l,x]> ∼
K∑
k=1

πkN (d|µk,Σk), (11)

where l denotes the curvilinear distance of the current point
from the start of the trajectory and x is the Cartesian position
along the trajectory. Moreover, πk,µk,Σk respectively rep-
resent the mixing coefficients, mean vectors and covariance
matrices of K components GMM. As we shall see, the length
information can be used to learn a desired elongation for each
module.

In this paper, the needed information will be extracted
from demonstrations by using Gaussian Mixture Regression
(GMR). Each of the K Gaussians of the GMM encoding the
trajectories are described by center and covariance

µk =

[
µlk

µx
k

]
, Σk =

[
Σlk Σlx

k

Σxl
k Σx

k

]
(12)

and the conditional probabilities P(x|l) and P(l|x) are
modelled as Normal distributions i.e.

x|l ∼ N (x|µ̂x, Σ̂
x

) l|x ∼ N (l|µ̂l, Σ̂
l
) (13)

In order to evaluate the mean and the covariance, let us
denote by O the actual output variable index (x and l respec-
tively), by I the conditioning index (l and x respectively) and
by uI the conditioning variable. We have that:

µ̂O =

K∑
i=1

hi(u
I)
[
µO

i + ΣOI

i ΣI

i
−1

(uI − µI

i )
]
, (14)

Σ̂
O

=

K∑
i=1

h2i (u
I)
[
ΣO

i −ΣOI

i ΣI

i
−1

ΣIO

i

]
, (15)

where hi(u
I) =

πiN (uI | µI
i ,Σ

I

i )∑K
k=1 πkN (uI | µI

k,Σ
I

k)
. (16)

First, the average trajectory µ̂O is extracted from demon-
strations by GMR; while the tip moves along this trajectory,
the learning algorithm will infer the behaviour for the rest
of the body of the STIFF-FLOP manipulator. This is done
by determining the desired position of each junction point
and the variability of demonstrations around this point, by
using GMR with l as an input parameter, where l is evaluated
assigning a desired distance from the other junction points.
For instance, it can be chosen to correspond to the middle
of the elongation range of the given module.

The output of the resulting algorithm is a positional
controller for the intermediate points of the manipulator
aimed at keeping them close to the mean trajectory within
the error provided by the covariance information Σ̂

O

. This
Robot Body Behaviour Control (RBBC) is summarized in
Algorithm 1 (See also the accompanying video1) .

The covariance information is taken into account by ap-
propriately weighting the displacement vector moving the
point P i towards the desired position, that will be inversely
proportional to the corresponding covariance.

The null space controller is implemented in terms of
soft constraints: after each displacement is projected in the
null space, the final command in joint space is evaluated

1http://programming-by-demonstration.org/icra14/



Input : GMM encoding the demonstrations
(µk,Σk, πk) as in eq.(11)

Output: Displacement vector in the null space of
STIFF-FLOP robot for all time steps

Initialize the desired length L of the modules
for every time step do

for each point P i inside the body do
Evaluate the Jacobian of P i by using eq.(8)
with s = i
Calculate the length of the trajectory inside the
body by using GMR: Lin = µ̂P tip

Evaluate the desired position of the points P i

by using GMR: Ai = µ̂Lin−iL

Evaluate the covariance Σ̃i = Σ̂
Lin−iL

Calculate the importance factor

α =
N (P i|Ai, Σ̃i)

N (Ai|Ai, Σ̃i)
∈ [0, 1] (17)

Calculate the importance weighted
displacement vector V i = (1− α)(Ai − P i)
Calculate the null space velocity corresponding
to the displacement vector as
δqi = (I − J†iJ i)J

†
iV i

Move the robot by making the average over the
Ninside points inside the body at current time step

δq =
1

Ninside

∑
i

δqi

Algorithm 1: Robot body behaviour control (RBBC).

by making the average of the joint space displacements
corresponding to each P i inside the body. In this way,
none of the constraints is fulfilled exactly but the more
relevant ones are weighted as having a higher importance
and correspond to a bigger displacement. This behaviour
is what differentiates the current approach from Operation
Space Control [17] and is aimed at dynamically keeping a
higher priority on displacements corresponding to a lower
covariance. Obviously, if the task is structured in such a way
that a null space command is known to have a higher priority,
an Operational Space Control projection layer can be used
before the RBBC algorithm is used.

Finally, we can observe that even though a desired elon-
gation is set for each module as an input to the algorithm,
the robot will use a slight range of elongations around the
given one, because of the soft constraints policy.

The proposed approach affects the behaviour of the robot
in two different ways. First of all, the macroscopic move-
ments of the manipulator are always kept inside a safe area
around the desired trajectory, that depends on the variability
of the demonstrations at each point.

A second important aspect regards disturbance rejection.
During the task, the presence of noise can move the ma-
nipulator away from the desired trajectory: in this sense,

L

Fig. 2. Graphic explanation of Algorithm 1. The blue trajectory is the
desired path for the body of the robot, while the demonstrated variability is
represented by the red GMM. The red dots on the trajectory represent the
learnt position of the attractors, based on the desired length of each module.
The black arrows represent the displacements that are calculated in the null
space of the robot.

Fig. 3. Left: the demonstrations provided to the system on a plane; the
variability depends on the possible movements inside the simulated scenario.
Organs are represented by the red shape. The green ellipsoids represent the
Gaussians of the GMM encoding the task. Right: the GMM resulting from
the demonstrations inside the 3D environment; the blue line represents the
tracking error for the trocar port.

the RBBC algorithm will apply a variability dependence
disturbance rejection policy.

IV. SIMULATION RESULTS

A virtual environment is defined in Matlab, with a repre-
sentations of human organs. The organs are defined as level
surfaces of a 3-dimensional GMM, i.e.

A =

{
o

∣∣∣∣K
organs∑
k=1

πorgansk N (o|µorgans
k ,Σorgans

k ) = const

}
The task is demonstrated in 2 dimensions, even though the

environment and the robot are defined in the 3D environment:
this is used to simplify the recordings of demonstrations and
the visualization of the results. A series of paths is collected
by controlling the tool with the mouse, representing some of
the possible trajectories that can be used to perform the task.
The collected demonstrations are shown in fig.3.

A certain amount of noise is added to the joints during
the motion, to simulate the inaccuracy in the control of the
robot. A null space controller is used to keep the robot inside
the trocar port within a given tracking error during the task.
The soft control policy is applied to the trocar port exactly
as it is applied to other points along the manipulator: at each
time step, the arm index of the point at the level of the trocatr
port is calculated and a full displacement is applied to keep
it in the center of the trocar port; this displacement is then
averaged with other contributions from other points. Another



possible choice could be to define the trocar port with task
space variables or to use Operational Space Control to put
hard constraints on that point: yet, in current applications,
surgeons report that they can apply some force on the trocar
port to move the tools inside the body, resulting into a soft
constraint request for the learning algorithm. For this reason,
a desired tracking error is set for the trocar port and checked
during the procedure.

As a first experiment, a trajectory passing between two
organs and reaching a target behind one of them is pro-
posed. This movement exemplifies one of the typical surgical
movements that the robot is aimed to carry out, which
is impossible for currently available rigid surgical robots.
During the approach phase, the orientation of the tip of the
robot is always kept tangent to the trajectory.

While the tip is precisely controlled by the surgeon, if the
motion of the body of the robot is not corrected, it touches
one of the organs with its body (Fig. 4d). When the RBBC
algorithm is applied, the robot moves in-between the organs
while performing the task (Fig. 4e-h).

At the beginning of the trajectory (Fig 4a,e), where there is
high variability in the demonstrations, the free motion and the
controlled one are identical, since no intervention is needed,
even though the body of the robot is not exactly following
the trajectory. As the lower variability part of the trajectory is
reached, the body of the robot is kept nearer the desired path
(Fig 4f,g), while the behaviour without corrections would be
different (Fig 4b,c). Finally, the higher variability in the lower
part of the trajectory allows the controller to steer the robot
even more to follow the trajectory as precisely as possible
in the final part by displacing the robot body in the region
of high variability (Fig. 4h).

The RBBC algorithm thus allows the system to move the
robot very precisely where this is needed and exploiting the
variability of the motion where it is possible.

As an example of the usefulness of this minimal inter-
vention approach, we show in Fig. 5 what happens if we

Without correction

(a) (b) (c) (d)

With RBBC Algorithm

(e) (f) (g) (h)

Fig. 4. Comparison between the motion of the robot without correction
in the null space (top row) and the same motion when corrections are
learnt from demonstrations (bottom row). The figures in the same column
correspond to the same time step.

try to always keep the robot as near as possible to the
desired trajectory. As we can see on the right, the inverse
kinematics without correction does not provide an appro-
priate compromise between the tracking error for the trocar
port, the orientation of the end-effector and the position of
the middle point along the trajectory. As a result the robot
is going outside the tracking error for the trocar port and
an unnecessarily high force is put onto the abdominal wall.
Instead, once the variability is taken into account, the least
important constaint is treated with lower priority and the
robot fulfills the task successfully (Fig. 5-Right).

In a second experiment, the disturbance rejection effects
are studied. The robot is moved along a trajectory with a
different level of variability along it. The variability is low
at the beginning and at the end of the movement. A Gaussian
noise with σ = 0.2cm is injected into the system and the
trajectories of the intermediate points are recorded as soon
as they enter the trocar port. Figure 6 reports the results of
the experiment showing the demonstrations and the distance
of the intermediate points from the desired trajectory. The
points are kept on the trajectory only where the variability
is lower, while noise is not counteracted in the central part
of the trajectory, where more variability is allowed.

V. DISCUSSION
A critical challenge in the the current approach is to

provide multiple demonstrations to obtain the variability
information. The experiments of this paper were performed
using multiple demonstrations inside a virtual environment,
with the focus of the exploitation of the variability informa-
tion to implement a variability-priority null space algorithm.
The proposed algorithm relies on a generic GMM encoding
of the task. In future work, more realistic ways of providing
this model within a surgical scenario will be explored.

Discussions with surgeons singled out that it is impossible
to use pre-operational images, since the geometry of the
organs changes during the surgical procedure: organs are
actually displaced from the original position to make space
for the surgical tools.

The current plan to overcome this difficulty is to build
the GMM incrementally in an online manner as the tip of

Fig. 5. Demonstration of the usefulness of the proposed minimal inter-
vention approach by comparing the behaviour of two different controllers
at the same time step. Left: the robot is fully controlled to have its body
tracking the trajectory. Since it is not possible to satisfy all the constraints,
a bad compromise is used and the robot moves away from the trocar port
tracking error (red circle). Right: the robot is minimally controlled with the
RBBC algorithm.
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Fig. 6. Disturbance rejection experiment. Left: demonstrations with
encoded GMM. Right: distance of the intermediate points of the STIFF-
FLOP manipulator from the desired trajectory as a function of the length
of the trajectory. The plot represents the average over 10 runs.

the STIFF-FLOP robot enters the body. In this sense, the
exploration of all the available space inside the body with
the tip could be exploited as it gradually enters into new
areas and move the organs aside. The surgeon could even
specify high priority viapoints where hard constraints need to
be fulfilled, or soft viapoints, where a low covariance should
be used. The incrementally built model will be then applied
to the body of the robot, as it enters through the trocar port.

Another important issue concerns the importance rating
of the constraint during the task. In our experiment, the tip
of the robot was considered as freely controllable by the
surgeon, and only the null space of the robot was subject
to actions. On the other hand, competing constraints could
appear during the task and the free motion of the tip could
prevent the robot to be kept near the envisaged trajectory
where needed.

All the learning was performed at the path level. Since
the trajectory is defined once and for all during the task,
this is not a big limitation and no generalization to nearby
trajectories is needed. More robust solutions based on statis-
tical dynamical systems [11] will be alternatively explored
in future work.

The experiment regarding disturbance rejection is only
a first prototype of possible uses of the RBBC algorithm
for controlling the STIFF-FLOP manipulator. The active
rejection used in this paper simply consisted in an additional
displacement given to the intermediate points to compensate
for the noise. A more accurate study involving the low-level
controllers (that are being presently implemented) will be
carried out to make the procedure fully operational.

VI. CONCLUSION
This paper shows how Gaussian Mixture Regression can

be used to obtain a positional null-space controller for
a surgical flexible robot. The resulting variability-priority
controller exploits the variability information of the task,
demonstrated by an expert user, to learn the desired policy.

In order to comply with the needs of the surgical applica-
tions, where the velocity of the task is given by the motion
of the human operator, a time-invariant Gaussian mixture
regression mechanism, with inputs based on curvilinear
distance, was proposed.

The controller represents an implementation of the mini-
mal intervention principle, that corrects the position of the

robot only when needed, keeping it within the intrinsic
variability of the task. This behaviour proved to be useful
when an excessive tight controller would impose a set of
commands on the manipulator that its geometry cannot fit.

The controller was succesfully used in simulation to move
the body of the robot within the given constraints and to
implement a first disturbance rejection scenario for the low
level controllers.
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