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Abstract

We present a probabilistic architecture for solving generically the problem of extracting the task

constraints through a Programming by Demonstration (PbD) framework and for generalizing the

acquired knowledge to various situations. In previous work, we proposed an approach based on

Gaussian Mixture Regression (GMR) to find a controller for the robot reproducing the statistical

characteristics of a movement in joint space and in task space through Lagrange optimization. In

this paper, we develop an alternative procedure to handle simultaneously constraints in joint space

and in task space by combining directly the probabilistic representation of the task constraints with

a solution to Jacobian-based inverse kinematics. The method is validated in manipulation tasks

with two 5 DOFs Katana robotic arms displacing a set of objects.

Keywords: Robot programming by demonstration, learning by imitation, kinesthetic teaching, Gaussian

mixture regression, inverse kinematics

1 INTRODUCTION

Robot Programming by Demonstration (PbD) covers methods by which a robot learns new skills through

human guidance. In previous work, we presented an approach to teach gestures to a HOAP-3 humanoid

robot by providing a set of demonstrations performed in various situations. Through the use of Gaussian

Mixture Model (GMM), the robot could extract autonomously the statistical characteristics of the set

of trajectories captured through the demonstrations [1, 2]. Then, Gaussian Mixture Regression (GMR)

was used to retrieve a generalized version of the trajectories either in joint space (characterized by a

set of postures changing through time), or in task space (characterized by the 3D Cartesian position

of the hand relative to the objects in the scene). To find a controller for the robot that takes into

account constraints both in joint space and in task space (as well as the kinematic redundancy of the

humanoid arm), we previously proposed two approaches: (1) a method based on Lagrange optimization

[1]; and (2) a geometric inverse kinematics approach for a 4 DOFs humanoid arm by representing the
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motion of the arm as the 3D Cartesian path of the hand with an additional parameter representing the

elevation of the elbow with respect to a vertical plane [2]. Even if these approaches provided solutions

for the reproduction of a set of constraints in different data spaces, they still lacked generality when the

skill required to handle simultaneously task space and joint space variables. Indeed, in [1], a metric of

imitation performance had to be analytically derived to find an optimal controller for the reproduction.

In [2], the geometric approach could not be directly applied to more complex robot architectures such

as the 5 DOFs Katana robots that we consider here. Here, we propose a robot programming by

demonstration approach that combines the statistical representation of the motion (encoded in GMM)

with the local properties of a Jacobian-based solution to inverse kinematics. The approach allows us to

simultaneously handle constraints on multiple objects in task space and in joint space, and can be used

generically for different robot architectures.

1.1 Related work

Generic approaches to transfer new skills to a robot are those that allow the robot to extract auto-

matically what are the important features characterizing the skill and to search for a controller that

optimizes the reproduction of these characteristic features [3]. A key concept at the bottom of these

approaches is that of determining a metric of imitation performance. One must first determine the

metric, i.e. determine the weights one must attach to reproducing each of the components of the skill.

It is then possible to find an optimal controller for imitation by trying to minimize this metric (e.g., by

evaluating several reproduction attempts or by deriving the metric to find an optimum). The metric

acts as a cost function for the reproduction of the skill [4]. In other terms, a metric of imitation provides

a way of expressing quantitatively the user’s intentions during the demonstrations and to evaluate the

robot’s faithfulness at reproducing those. To learn the metric (i.e. infer the task constraints), one

common approach consists of creating a model of the skill based on several demonstrations performed

in slightly different conditions. This generalization process consists of exploiting the variability inherent

to the various demonstrations to extract which are the essential components of the task. These essential

components should be those that remain invariant across the various demonstrations.

A large body of work explored the use of a symbolic representation to both the learning and the

encoding of skills and tasks, see e.g. [5, 6]. The main advantage of a symbolic approach is that high-

level skills (consisting of sequences or hierarchies of symbolic cues) can be learned efficiently through an

interactive process. However, because of the symbolic nature of their encoding, these methods rely on

a large amount of prior knowledge to predefine the important cues and to segment those efficiently.

Another body of work focusses on representing the task constraints at a trajectory level to avoid

putting too much prior knowledge in the controllers required to reproduce a skill. Following this ap-

proach, Ude et al [7] use spline smoothing techniques to deal with the uncertainty contained in several

demonstrations of motion performed in joint space or in task space. The Mimesis Model [8] follows an

approach in which a Hidden Markov Model (HMM) is used to encode a set of trajectories, and where
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multiple HMMs can be used to retrieve new generalized motions based on a stochastic process. In

[9], the variability across demonstrations performed by several demonstrators is used to quantify the

accuracy required to achieve a Pick & Place task. The different trajectories form a boundary region

that is then used to define a range of acceptable trajectories.

1.2 Proposed approach

Several regression techniques based on a probabilistic representation of the dataset such as Locally

Weighted Regression (LWR) [10, 11] or Gaussian Process Regression (GPR) [12] were proposed in

robotics to generalize over a set of demonstrations. Our approach follows a similar strategy by using

Gaussian Mixture Model (GMM) and Gaussian Mixture Regression (GMR) [13] to respectively encode

a set of trajectories and retrieve a smooth generalized version of these trajectories with associated

variances, where the dataset is encoded in a compact form learned through Expectation-Maximization

(EM) algorithm.1

To control redundant manipulators in task space, several inverse kinematics solutions based on local

resolution methods capable of handling multiple constraints simultaneously were proposed [14]. Grochow

et al [15] proposed an alternative strategy for computer graphics animation of avatars by resolving the

redundancy of the inverse kinematics problem through the observation of a set of human motions which

guided the search of a solution that looks similar to natural human gestures. Our approach follows in

essence a similar strategy by combining several constraints expressed both in task space and in joint

space. In the proposed approach, the search for an inverse kinematics solution is facilitated by the

user who implicitly provides in his/her demonstrations possible solutions for the resolution of the task,

thus restricting the search space of the robot for inverse kinematics solutions. To do so, the robot first

computes several inverse kinematics solutions solving the different constraints in task space, and then

combines these constraints with the ones represented initially in joint space.

2 GAUSSIAN MIXTURE REGRESSION

We describe in this section the Gaussian Mixture Regression (GMR) process used to reproduce a learned

skill, which is based on the theorem of Gaussian conditioning and on the linear combination properties

of Gaussian distributions.

We define a trajectory as a set of position data (in joint space or task space) indexed with time.

Time t is considered here as an input variable ξI = t used to retrieve an expected position at that

time. The output variable is then either ξO = θ in joint space or ξO = x in task space. The joint

probability distribution P(ξI, ξO) is first modeled by a Gaussian Mixture Model (GMM). The retrieval

process then consists of estimating E [P(ξO|ξI)], with associated constraints estimated by cov (P(ξO|ξI)).
We use here the notations E[·] and cov(·) to express respectively expectation and covariance. The

1The advantages of GMR for the proposed application will be discussed in Section 6.
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Table 1: Gaussian Mixture Regression process.

A dataset of N datapoints of D dimensions is encoded in a Gaussian Mixture Model (GMM) of K

Gaussians. The probability that a datapoint ξ = [ξI, ξO] belongs to the GMM is defined by

P(ξ) =

K∑
k=1

πk N (ξ;µk,Σk) =

K∑
k=1

πk
1√

(2π)D|Σk|
e−

1
2 ((ξ−µk)>Σ−1

k (ξ−µk)),

where πk are prior probabilities and N (µk,Σk) are Gaussian distributions defined by centers µk

and covariance matrices Σk. Input and outputs components are represented separately as

µk =

 µIk

µOk

 , Σk =

 ΣIk ΣIOk

ΣOIk ΣOk

 .
For a given input variable ξI and a given Gaussian distribution k, the expected distribution of ξO

is defined by

P(ξO|ξI, k) ∼ N (ξ̂k, Σ̂k) , where ξ̂k = µOk + ΣOIk (ΣIk)−1(ξI − µIk),

Σ̂k = ΣOk − ΣOIk (ΣIk)−1ΣIOk .

By considering the complete GMM, the expected distribution of ξO, when ξI is known, can be

estimated as

P(ξO|ξI) ∼
K∑
k=1

hk N (ξ̂k, Σ̂k),

where hk = P(k|ξI) is the probability that the Gaussian distribution k is responsible for ξI

hk =
P(k)P(ξI|k)∑K
i=1 P(i)P(ξI|i)

=
πk N (ξI;µIk,Σ

I
k)∑K

i=1 πi N (ξI;µIi ,Σ
I
i )
.

By using the linear transformation property of Gaussian distributions [16], the conditional ex-

pectation of ξO, given ξI, can be approximated by a single Gaussian distribution N (ξ̂, Σ̂) with

parameters

ξ̂ =

K∑
k=1

hk ξ̂k , Σ̂ =

K∑
k=1

h2
k Σ̂k. (1)
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generic Gaussian Mixture Regression (GMR) process is presented in Table 1. Equation (1) defines the

conditional expectation of a multivariate normal distribution by estimating it as a least squares estimate,

i.e., the probability function P(ξO|ξI) is represented by a single Gaussian distribution.

Gaussian Mixture Regression (GMR) can be used to retrieve smooth generalized trajectories with

associated covariance matrices describing the variations and correlations across the different variables.

In a generic regression problem, one is given a set of predictor variables ξI ∈ Rp and response variables

ξO ∈ Rq. The aim of regression is to estimate the conditional expectation of ξO given ξI, on the basis

of a set of observations {ξI, ξO}. For the particular example of trajectory learning, on the basis of

a set of observations {ξI, ξO}, where ξO represents position vectors at time steps ξI = t, the aim of

the regression process is to estimate the conditional expectation of ξO at each time step to retrieve

a generalized trajectory. Thus, GMR offers a way of extracting a single generalized trajectory made

up from a set of trajectories used to train the model, where the generalized trajectory is not part of

the dataset but instead encapsulates all of its essential features. As the different demonstrations are

performed at different speed or have temporal variations, Dynamic Time Warping (DTW) is used as a

pre-processing step to re-align temporally the trajectories, see [1].

Compared to traditional regression approaches, the regression function is not approximated directly.

Instead, the joint density of the set of trajectories is first estimated by a model from which the regression

function is derived. The regression process generates both a mean response estimate ξ̂ and a covariance

response estimate Σ̂, conditioned on the predictor variables ξI. To learn trajectories, ξ̂ is used as a

generalized trajectory, while Σ̂ is used to extract the constraints on this trajectory. It thus permits to

evaluate the covariance information not only at specific positions but continuously along the movement.

Thus, the modeling phase becomes the important part of the algorithm in terms of processing,

while the regression phase is processed very quickly, which is advantageous because the reproduction of

smooth trajectories is fast enough to be used at any appropriate time by the robot, while the joint density

modeling is computed in a phase of interaction that does not particularly need fast computation. Indeed,

the estimation of E [P(ξO|ξI)] is simply computed by a weighted sum of linear models. For regression,

the main advantage of a model-based approach over a data-driven approach is that the computation

time required for reproduction does not increase with the number of demonstrations provided to the

robot, which is a particularly important property for lifelong learning robots.

Although the theoretical considerations of GMR have been studied in the machine learning literature

several years ago [13], the theory has come out with only few applications, which is surprising since GMM

and associated Expectation-Maximization (EM) learning algorithms are very well established in various

practical fields of research. The approach is generic in the sense that it can be used both for recognition

and reproduction, and allows to change on-the-fly the input and output variables to consider during

reproduction (e.g., to deal with missing variables). It is easy to implement, and satisfies robustness and

smoothness criterions that are common to different fields of research including robotics.2

2Matlab and C++ sourcecodes for the encoding and reproduction processes are available from

http://programming-by-demonstration.org.
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The number of Gaussians in the GMM determines the compromise for GMR between having an

accurate estimation of the response and having a smooth response, known as the bias-variance tradeoff.

An appropriate model complexity must thus be determined in order to: (1) have a low bias between

the estimate and the real values (accuracy of the estimation with respect to the observed data); and

(2) have a low variance on the estimate (smoothness of the estimation). It is estimated here through

Bayesian Information Criterion (BIC), see [1].

3 HANDLING MULTIPLE CONSTRAINTS DURING RE-

PRODUCTION

We described in previous section a probabilistic method to extract task constraints from a set of tra-

jectories and to reproduce a generalized version of these trajectories. We now consider the problem of

finding an optimal controller for the robot when multiple independent constraints are considered and

represented separately in different GMMs (e.g., by considering actions on two different objects). In this

situation, the joint probability (i.e., the probability of two events in conjunction) can be computed by

estimating E
[
P(ξ̂(1)) · P(ξ̂(2))

]
(independence assumption). By using the standard statistical proper-

ties of Gaussian distributions, namely linear transformation, product and conditional distribution, this

estimation can be handled easily.

We show here that this estimation can also be interpreted as the minimization of a cost function

measuring the similarity between the demonstrated and reproduced trajectories (optimization of a metric

of imitation). We take the perspective that a task can be represented as a set of “loose” constraints,

namely, constraints represented as a set of optimal values (the centers of the Gaussians) that need to

be satisfied as best as possible within a range given by the covariance matrices. We define a metric of

imitation as a fixed and generic cost function whose parameters are learned through observation (i.e.

the form of the cost function is discovered by imitation).3 A controller for the robot is then determined

by optimizing this cost function under strict constraints defined by inverse kinematics.

We consider the generic case where one looks for an optimal controller that combines constraints

in joint space and task space. To treat simultaneously end-effector paths x and joint angles θ in a

probabilistic framework, we use the fact that θ̇ and ẋ are kinematically constrained. Velocities are first

estimated through Euler numerical integration4

ẋt =
1

∆t
(xt − xt−∆t), θ̇t =

1

∆t
(θt − θt−∆t),

where t refers to the time elapsed from the beginning of the demonstration. The generalized joint angle

velocities
ˆ̇
θ and generalized end-effector velocities ˆ̇x (both retrieved through the GMM/GMR approach

presented in Section 2) can be mutually exclusive in the imitator workspace, due to the varying situations

3As a metric involves the notion of distance and a cost function implicitly refers to optimization, we will use both terms

interchangeably in the remaining of the paper.
4Note however that other numerical methods for ordinary differential equations can similarly be used here [17].
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between demonstrations and the reproduction attempt, or simply because the generalization processes

are performed separately. To simultaneously fulfill constraints in joint space and task space, the product

properties of normal distributions can be used together with local inverse kinematics properties to find

a controller satisfying the two constraints.

3.1 Method based on the optimization of a metric of imitation

Let
ˆ̇
θ and ˆ̇x be respectively the generalized joint angle velocities and the generalized end-effector velocities

in Cartesian space. Let θ̇ and ẋ be the candidate velocities for reproducing the motion. An optimal

controller can be determined by solving the constrained optimization problem

min
θ̇,ẋ

(θ̇ − ˆ̇
θ)> W θ (θ̇ − ˆ̇

θ) + (ẋ− ˆ̇x)> W x (ẋ− ˆ̇x) u.c. ẋ = Jθ̇, (2)

where J is the Jacobian matrix at posture θt. W
θ ∈ Rn×n and W x ∈ Rm×m are semi-definite positive

diagonal matrices serving as coefficient indicating the respective influence that one should give to the

desired joint angles and end-effector location. Coherence is then enforced by finding the velocities (ẋ, θ̇)

that will bring the system closest to (ˆ̇x,
ˆ̇
θ).

A solution can be obtained using Lagrange multipliers. The quantity to minimize can be expressed

as

L(θ̇, ẋ) = (θ̇ − ˆ̇
θ)> W θ (θ̇ − ˆ̇

θ) + (ẋ− ˆ̇x)> W x (ẋ− ˆ̇x) − λ>(ẋ− Jθ̇),

where λ is the vector of Lagrange multipliers. After differentiating with respect to θ̇ and ẋ, and setting

the equation to zero, one gets

θ̇ = (W θ + J>W xJ)−1(J>W x ˆ̇x+W θ ˆ̇
θ). (3)

An alternate representation of (3) developed in [18] can be formulated as

θ̇ =
ˆ̇
θ + (W θ)−1J>

(
(W x)−1 + J(W θ)−1J>

)−1
(ˆ̇x− J ˆ̇

θ). (4)

Although simpler than (4), (3) may be disadvantageous from an implementation perspective, see [18].

Indeed, using (W θ)−1 and (W x)−1 instead of W θ and W x renders it possible to avoid infinity measures

when dealing with purely angular controllers. It is indeed easier to handle (W θ)−1 (or (W x)−1) as equal

to zero during computation. Moreover, this formulation is faster as it requires a matrix inversion of

degree m, whereas (3) requires the inversion of a matrix of degree n > m (for redundant manipulators).

The parameters W θ and W x control the influence of each of the sub-controllers. By setting W x to zero,

one obtains a pure joint angle controller and by setting W θ to zero, the result becomes a pure end-effector

location controller. The results given by (4) or (3) are in fact generalizations of the Weighted Least Norm

solution and of the Weighted Damped Least Square solution of the inverse kinematics problem, see [18].

Indeed, by setting
ˆ̇
θ = 0 (least-norm controller) and (W x)−1 = 0 in (4), one obtains the Weighted Least

Norm method which makes use of the Moore-Penrose pseudoinverse of the Jacobian to compute the

adequate joint angle velocities [19]. Furthermore, by setting
ˆ̇
θ = 0 in (3), one obtains the Weighted

Damped Least Square solution to avoid singularities, see [18].
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3.2 Direct computation method

Instead of analytically deriving a metric of imitation, the same result can be retrieved through the

product property of normal distributions. Let us assume that the constraints in task space are defined

by x ∼ N (ˆ̇x, Σ̂ẋ), and that the constraints in joint space are defined by θ̇ ∼ N (
ˆ̇
θ, Σ̂θ̇). When using

the linear transformation property of normal distributions and the inverse kinematics relation θ̇ = J†ẋ

where J† denotes the pseudoinverse of the Jacobian, the constraints in task space can be represented in

joint space as

θ̇′ ∼ N
(
J† ˆ̇x, J†Σ̂ẋ(J†)>

)
. (5)

Based on the product property of normal distributions [16], the product of the two Gaussian distri-

butions describing θ̇ and θ̇′ is equivalent (up to a scaling factor) to a Gaussian distribution N (θ̇,Σθ̇)

with parameters5

θ̇ =
(

(Σ̂θ̇)−1 + J>(Σ̂ẋ)−1J
)−1 (

(Σ̂θ̇)−1 ˆ̇
θ + J>(Σ̂ẋ)−1 ˆ̇x

)
,

Σθ̇ =
(

(Σ̂θ̇)−1 + J>(Σ̂ẋ)−1J
)−1

. (6)

By considering W θ = (Σ̂θ)−1 and W x = (Σ̂x)−1, we then see that (3) and (6) provide the same result.

Compared to the derivation of a cost function through Lagrange multipliers, the direct computation

method has the advantage of not only determining an optimal controller satisfying several constraints

but also to compute the resulting constraints for this controller, represented as Σθ̇ in (6). It should be

noted that, instead of considering ẋ = Jθ̇ as the coherence constraint, it is possible to define a coherence

constraint that takes advantages of the robot kinematic redundancy. One can, for instance, consider an

optimization term that does not modify the coherence constraint through projection in the null space

of the Jacobian.

4 EXPERIMENTAL SETUP

The setup of the experiment is presented in Figure 1. Two 5-DOFs Katana robots from Neuronics,

characterized by a repeatability of ±0.1 mm and a maximum speed of 68◦/sec, are used for the ex-

periment. A sixth motor controls the opening and closing status of the gripper, which is generated

through a binary signal generalized over multiple demonstrations through Bernoulli Mixture Regression

as described in [20]. Each motor is equipped with encoders permitting the user to move the robot

manually while registering joint angle information (see Figure 1). During this process, the position of

the end-effector is also computed through direct kinematics. A stereoscopic vision system based on two

webcams of 320× 240 pixels is used to track a set of objects in 3D Cartesian space based on tracking in

YCbCr color space of colored patches attached to the objects (only Cb and Cr are used to be robust to

changes in luminosity), where each object to track is pre-defined in a calibration phase.

5Note that, for redundant robot kinematics, JJ† = I and J†Σ̂ẋ(J†)> is not full rank. In this situation, a pseudoinverse

needs to be used instead of an inverse, yielding
(
J†Σ̂ẋ(J†)>

)†
= ((J†)>)†(Σ̂ẋ)†(J†)† = J>(Σ̂ẋ)−1J .
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Table 2: Reproduction of a skill when N objects with initial positions {o(n)}Nn=1 are detected in the

robot’s workspace.

Offline processing and initialization

• Initialization with starting posture θ0 = θ̂0 and end-effector location x0 = K(θ̂0), where K is

the direct kinematics function.

Loop for t = ∆t→ T

Loop for n = 1→ N

• Compute the expected velocities (approximated through Euler numerical differentiation) and

associated covariance matrices for the constraints relative to object n

θ̇
(n)
t = J†(θt−∆t)ẋ

(n)
t , where ẋ

(n)
t =

1

∆t

[
(o(n) + x̂

(n)
t )− xt−∆t

]
,

Σ
(n)
t = J†(θt−∆t) Σ̂

x(n)
t

(
J†(θt−∆t)

)>
.

End loop n

• Compute the expected velocity and associated covariance matrix in joint space

θ̇
(N+1)
t =

1

∆t

[
θ̂t − θt−∆t

]
, Σ

(N+1)
t = Σ̂θt .

• Compute the new posture (and associated covariance matrix) by evaluating the product∏N+1
n=1 N (θ̇

(n)
t ,Σ

(n)
t ), which represents the joint probability of the considered constraints

θt = θt−∆t + ∆t

(N+1∑
n=1

(Σ
(n)
t )−1

)−1(N+1∑
n=1

(Σ
(n)
t )−1θ̇

(n)
t

) ,
Σt =

(
N+1∑
n=1

(Σ
(n)
t )−1

)−1

. (7)

• The new position of the end-effector is thus defined by xt = K(θt).

End loop t
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Two skills are considered in the experiment, namely setting the table by grasping a glass on a shelf

and placing it on a coaster, and clearing the table by grasping the glass from the table and emptying the

glass in a basin (see Figure 1). For the first task, two objects are tracked by the robot (the glass and the

coaster), where the positions of the two objects can vary. For the second task, only one object is tracked

by the robot, i.e., the glass is assumed to cover the coaster and the basin is assumed to be at a fixed

position in the robot’s workspace. The collected dataset is composed of the joint angle trajectories of the

robot θ and the position of the end-effector x in the Cartesian space with respect to the initial positions

of the objects in the scene. For the first task, five demonstrations of 11-dimensional trajectories are

collected (5 variables describing the joint angles and 2 × 3 variables portraying the relative position of

the end-effector with respect to the two objects), where each trajectory consists of 1000 points. For the

second task, only 8-dimensional trajectories are considered due to only a single object being used.

By employing the GMM/GMR method presented in Section 2, the constraints in task space are com-

puted with respect to the objects detected by the robot in its environment. The constraints associated

with the position of the end-effector with respect to the initial position of object n are thus represented

by the trajectories x̂(n) and associated covariance matrices Σ̂x(n). Similarly, the constraints in joint

space correspond to θ̂ and Σ̂θ. As discussed previously, the generalization in joint space does not neces-

sarily coincide with the generalization in task space. To find a controller for the robot satisfying several

constraints simultaneously, the direct computation method presented in Section 3.2 is used to compute

an appropriate trade-off during the inverse kinematics process (product of Gaussian distributions).

The reproduction procedure is described in Table 2 and illustrated in Figure 2. By projecting the

Gaussian distribution from task space to joint space through the Jacobian, it is here implicitly assumed

that the nonlinear projection function can be approximated by the locally linear transformation J†, i.e.,

the local transformation is assumed to remain valid for the span of data represented by the covariance

matrix of the Gaussian distribution [21]. A trade-off is thus computed in (7) based on the variability

observed during the demonstrations to determine the respective relevance of the constraints in joint

space and in task space. If one wishes to use a controller satisfying the constraints only in joint space,

(7) can be replaced by θt = θt−∆t + ∆t θ̇
(N+1)
t . Similarly, if one desires to employ a controller satisfying

the constraints in task space for a specific object n, (7) can be replaced by θt = θt−∆t + ∆t θ̇
(n)
t . For

reproduction, we assume that the robot can track efficiently the desired trajectory in joint space (we do

not consider the dynamics of the motion here). Note that the tracking problem is facilitated thanks to

the kinesthetic teaching process (i.e., demonstrations of feasible motions provided to the robot).

5 EXPERIMENTAL RESULTS

The first and third graphs of Figure 3 show the five demonstrations for the two tasks. Figures 4 and 5

present the extracted constraints for the two tasks. The second and fourth graphs of Figure 3 provide a

reproduction attempt for a new situation (with other initial positions of the objects), during which the

essential features of the skill are reproduced. Figure 6 demonstrates how the constraints in joint space

10



and task space influence the reproduction of the skill, where the final controller smoothly reproduces

the essential features by adapting the extracted constraints to the new situation. At the beginning of

the first task (left), the actions directed toward the glass are of utmost importance. Subsequently, the

ones directed toward the coaster predominate. It can be seen that the controller determined by the

system smoothly switches from the generalized movement directed toward the glass (see e.g., x1 at time

steps 200-500) to that directed toward the coaster (see e.g., x1 at time steps 700-1000). For the second

task (right), the trajectories relative to the glass are at first highly important (reaching for the glass in

Cartesian space), and then give way to a controller satisfying constraints in joint space (emptying the

glass by tilting it). We can observe that the controller smoothly switches from one for which constraints

in task space are important (see e.g., θ5 at time steps 200-400) to a controller where constraints in joint

space are of importance (see e.g., θ5 at time steps 600-1000).

The location of the end-effector with respect to the initial positions of the objects as well as the

kinematics of the robot are hard-coded instead of being autonomously extracted by the system. This

creates additional redundant information in the dataset (the joint angles can be used to reconstruct

the position of the end-effector). Since manipulation tasks are considered, this information is included

explicitly in the system by reason of its importance (i.e., position of the end-effector in task space)

being meaningful for the skill considered and remaining general for a broad range of tasks. This way,

the number of examples required to extract the important aspects of the task can be reduced, thereby

alleviating the need for learning the direct kinematics of the robot.6

6 DISCUSSION

Section 2 presented the regression method that we used to retrieve smooth generalized versions of the

demonstrated trajectories based on mixtures of Gaussians. We discuss here the similarities shared by

Gaussian Mixture Regression (GMR) with other regression frameworks proposed in robotics.7

Locally Weighted Regression (LWR) was first proposed as an approach combining the simplicity of

linear least squares regression with the flexibility of nonlinear regression [23], which was then applied

to robot control [24, 25]. Work following this LWR approach mainly concentrated on moving on from

a memory-based approach to a model-based approach, and moving on from a batch learning process to

an incremental learning strategy. Schaal et al introduced Receptive Field Weighted Regression (RFWR)

as a non-parametric approach to learn incrementally the fitting function without the need of storing the

whole training data (i.e., without using historical data) [10]. The method is based on a receptive field

approach where each receptive field has the form of a Gaussian kernel which is updated independently.

The process allows to add and prune receptive fields and to deal with irrelevant inputs. In receptive fields,

the parameters of the linear model are learned either incrementally or in batch mode. We have shown

6Note that the initial choice of the adequate task-dependent variables may not be trivial for more complex paradigms.
7For a review and comparisons of our approach with the different methods proposed above, the interested reader can

also refer to [22, 20].
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in [26] that when considering GMM, an incremental version of the Expectation-Maximization (EM)

algorithm can be used to update the GMM parameters when new data are available. The iterative

estimation process can also be regulated by bounding the covariance matrices, which is very similar to

the use of a penalty factor to regulate the smoothness in the RFWR gradient descent method.

To resolve the curse of dimensionality [27] in RFWR, Vijayakumar et al suggested to improve the

approach so that it can operate efficiently in high dimensional space through Locally Weighted Projection

Regression (LWPR) [11]. Indeed, for high-dimensional data, considering the distance between a set of

points in a receptive field approach is not optimal because the distance among points does not separate

them well in high dimensions. By detecting locally redundant or irrelevant input dimensions, the

approach suggests to locally reduce the dimensionality of the input data. The curse of dimensionality

can for example be avoided by finding local projections of the input data through Partial Least Squares

(PLS) regression [28].

The framework proposed here follows a similar strategy by considering that a set of trajectories can

be represented locally by Gaussian distributions. In the experiments presented here, the trajectories were

encoded in a Gaussian Mixture Model with up to 5 dimensions, which can be very efficiently handled by

the Expectation-Maximization (EM) learning process. However, when using more complicated robots

or a higher number of variables to describe the skill, it might be important to consider dimensionality

reduction as a preprocessing step that can be combined with the proposed probabilistic encoding and

reproduction procedures. We demonstrated in [1, 29] that the dataset can first be projected in a latent

space of motion through Principal Component Analysis (PCA) or Independent Component Analysis

(ICA), which acts as a global projection method to decorrelate and reduce, if possible, the dimensionality

of the dataset. Then, by using GMM, the non-linearities of the trajectories are modeled by piecewise

local information in the form of Gaussian distributions representing locally the variability and the

correlation of the data. GMM can be viewed as an in-between local and global model, in the sense that

it fits locally the input and output data using a global learning algorithm. GMR is used as a generic

retrieval process to estimate multivariate output signals, given multivariate input signals.

Gaussian Process Regression (GPR) [30] shares in essence similarities with the GMM/GMR ap-

proach. It has been successfully applied to robotics to generalize over a set of demonstrations, see e.g.

[12]. Similarly to Support Vector Regression (SVR) [31], GPR however suffers from high computational

complexity which prevents its usage for large numbers of samples or online learning to date. Local variant

of Gaussian processes has recently been proposed in robotics to deal with this issue [32]. Most regression

models including GPR, SVR and LWPR are discriminative in that they learn P(Y |X) without model-

ing the joint distribution P(X,Y ). We suggest in our work an alternative generative approach by first

solving the most general problem of estimating P(X,Y ). By using Gaussian Mixture Regression, the

assumption is that P(X,Y ) can be modeled by a finite set of Gaussian distributions. Regression on this

model results in a mixture of linear models and naturally extends to regression with multiple outputs.

Retrieving multiple outputs and their associated correlations is on the contrary not straightforward for

GPR or SVR, which requires to develop other strategies to deal with multiple outputs [33].
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Even if these approaches share similarities, GMR has two advantages for the applications considered

here: (1) it allows to deal very flexibly with recognition and reproduction issues in a common probabilistic

framework; and (2) the learning process is fast and distinct from the retrieval process. Thus, a simple

learning process can be used to model the demonstrated skill during the phases of the interaction that

do not require real-time computation (i.e. after the demonstrations), and a faster regression process

can be used afterwards for controlling the robot in an online manner during the reproduction phase.

Moreover, the multivariate input and output variables can be specified on-the-fly during reproduction,

as the joint distribution has been learned previously by the model, which makes the approach robust

to various types of missing variables. Further work will investigate the experimental comparisons of

existing locally-weighted learning approaches for a set of representative scenarios relevant to robotics.

7 CONCLUSION AND FURTHER WORK

We presented a probabilistic framework to extract automatically the essential features characterizing a

skill, by handling constraints both in joint space and in task space, and proposed an inverse kinematics

method to re-use the learned skill in new situations. We demonstrated through experiments performed

on two Katana robots that the approach could be applied successfully to learn new manipulation skills

at a trajectory level, by generalizing over several demonstrations and by extending the learned tasks to

new positions of objects. We finally discussed the advantages of Gaussian Mixture Model and Gaussian

Mixture Regression for encoding, recognition, reproduction and evaluation issues.

The proposed approach presents advantages over our previous attempts at combining several con-

straints encoded in different data spaces. Compared to the geometric inverse kinematics approach used

in [2], the approach proposed here can be extended to different robot architectures. Compared to the use

of Lagrange optimization to find a metric of imitation performance [1], the proposed direct computation

method does not require to analytically derive the cost function, and thus remains generic and statis-

tically correct. Moreover, this direct computation method allows to compute the resulting constraints

for the final controller in the form of a covariance matrix.

Further work goes toward learning the intrinsic dynamics of the motion. In the experiments presented

here, time was considered as an explicit variable to encode the motion. We investigate methods to

depart from the explicit representation of time by encapsulating the intrinsic dynamics of the motion in

the GMM (e.g., by encapsulating position and velocity in GMM and by retrieving recursively through

GMR a velocity command, given the current position) [34, 35]. This ongoing work aims at extending the

proposed framework to motion with more complex dynamics (including sequential and cyclic behaviors),

and to controllers that can adapt robustly to various external perturbations. Such encoding would also

allow the user to provide partial demonstrations to the robot, which would increase the flexibility of the

teaching process.
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Figure 1: Kinesthetic demonstrations of the two tasks considered in this experiment, namely grasping

and placing a glass on a coaster (left), and grasping and emptying a glass (middle). Right: Reproduction

of the skill by the two robots, during which the initial positions of the objects are tracked by a stereoscopic

vision system.
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Figure 2: Illustration of the process used to retrieve a skill by considering constraints on various objects

in task space (first two rows) as well as constraints in joint space (last row). The pseudoinverse Jacobian

matrix J† is employed to locally project the GMM representation of the constraints in task space to

a corresponding representation in joint space. With the GMMs projected in joint space, an optimal

solution can then be estimated through GMR by using the product properties of Gaussian distributions.
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Figure 3: Demonstrations and reproduction in 3D Cartesian space for the two tasks. For each task, five

demonstrations starting from different initial positions are considered (first and third graphs), where

the trajectories are represented in the robot’s frame of reference (see Figure 1), and the dots indicate

the beginning of the motions. For the first task, the initial positions of the glass placed on the shelf

are represented with ‘+’ signs. The initial positions of the coaster on the table are represented with ‘x’

signs. For the second task, the initial positions of the glass (covering the coaster) are represented with

’+’ signs. The second and fourth graph show reproduction attempts for new situations (bold ‘+’ and

‘x’ signs), by combining constraints in joint space and task space.
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Figure 4: Automatic extraction of the constraints in task space for TASK 1 (the corresponding frames

of reference are depicted in Figure 1), where the two sets of graphs represent the constraints relative to

the initial positions of the objects. GMMs with 4 Gaussians are used to encode the trajectories (selected

by Bayesian Information Criterion (BIC) for each representation). The trajectories relative to the glass

appear to be highly constrained between time steps 200 and 500 when reaching for the glass (left). The

trajectories relative to the coaster are highly constrained at the end of the motion when placing the

glass on the it (right).
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Figure 5: Automatic extraction of the task constraints for TASK 2, where GMMs with 5 Gaussians

are selected by BIC to efficiently encode the skill. We see that the trajectories relative to the glass

are highly constrained between time steps 200 and 400 (when reaching for the glass). Subsequently,

the trajectories in joint space become more constrained. This occurs at the end of the motion, when

emptying the glass in the basin by using a specific gesture. The snapshots illustrate a reproduction

attempt by automatically selecting a controller that smoothly reproduces the extracted constraints.
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Figure 6: Reproduction attempts for TASK 1 (left) and TASK 2 (right) by using the extracted con-

straints either independently or simultaneously. The trajectories represented by solid line show the final

reproduction attempt by considering the constraints in task space and in joint space simultaneously.

The trajectories represented by dash-dotted line consider only constraints for the first object in task

space. The ones in dotted line consider only constraints for the second object in task space. Finally, the

ones represented by dashed line take into account only constraints in joint space. For TASK 1, 1© and

2© correspond respectively to the time at which the robot grasps the glass and that at which it discards

it on the coaster. For TASK 2, 1© and 2© correspond respectively to the time at which the robot grasps

the glass and that when it empties the glass by an appropriate tilting.
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