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Abstract— Bringing robots as collaborative partners into
homes and offices presents various challenges to human-robot
interaction. Robots will need to interact with untrained users
in environments that are originally designed for humans. Com-
pared to their industrial homologous form, humanoid robots
can not be preprogrammed with an initial set of behaviours.
They should adapt their skills to a huge range of possible tasks
without needing to change the environments and tools to fit
their needs. The rise of these humanoids implies an inherent
social dimension to this technology, where the end-users should
be able to teach new skills to these robots in an intuitive manner,
relying only on their experience in teaching new skills to other
human partners. In previous work, we developed a generic
Robot Programming by Demonstration (RPD) framework to
extract the task constraints from cross-situational observations.
In this paper, we present our ongoing research towards integrat-
ing information from various social cues such as joint attention
or vocal intonation to this probabilistic framework.

I. INTRODUCTION

For an efficient collaboration with human users, indoor
robots such as humanoids should be provided with adaptive
controllers that can behave robustly in changing situations.
These robots should be provided with natural interfaces to
interact easily and naturally with end-users [1], and it should
be possible to reprogram them in an intuitive manner [2].
Indeed, as these robots are supposed to use a very wide range
of infrastructures and tools designed originally for humans,
it is not possible to pre-encode all the gestures that will
be required to perform skills such as manipulation tasks.
It is therefore crucial to facilitate the skill transfer process
by providing end-users with natural teaching methods to
reprogram these robots in an intuitive manner.

Robot Programming by Demonstration (RPD) covers such
methods by which a robot learns new skills through human
guidance. This paper presents our ongoing research towards
bringing user-friendly human-robot teaching systems that
would speed up the skill transfer process. To do so, we
suggest to use a generic probabilistic framework gathering
information from cross-situational observations of a skill
with information extracted from different social cues ob-
served during the interaction. Fig. 1 presents the architecture
of the proposed framework.
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Fig. 1. Information flow across the complete system, where the constraints
of a task are extracted through multiple demonstrations performed in slightly
different situations and by using various social cues to scaffold the teaching
interaction.

A. Robot programming by demonstration

Generic approaches to transfer new skills to a robot are
those that allow the robot to extract automatically what
are the important features characterizing each task and to
search for a controller that optimizes the reproduction of
these characteristic features. A key concept at the bottom
of these approaches is that of determining a metric of
imitation performance. One must first determine the metric,
i.e. determine the weights one must attach to reproducing
each of the components of the skill. It is then possible to
find an optimal controller for imitation by trying to minimize
this metric (e.g., by evaluating several reproduction attempts
or by deriving the metric to find an optimum). The metric
acts as a cost function for the reproduction of the skill
[3]. In other terms, a metric of imitation provides a way
of expressing quantitatively the user’s intentions during the
demonstrations and to evaluate the robot’s faithfulness at
reproducing those. To learn the metric (i.e. infer the task
constraints), one common approach consists of creating a
model of the skill based on several demonstrations performed
in slightly different conditions (cross-situational statistical



learning). This generalization process consists of exploiting
the variability inherent to the various demonstrations to
extract which are the essential components of the task. These
essential components should be those that remain invariant
across the various demonstrations.

A large body of work explored the use of a symbolic
representation to both the learning and the encoding of skills
and tasks, see e.g. [4], [5]. The main advantage of a symbolic
approach is that high-level skills (consisting of sequences
or hierarchies of symbolic cues) can be learned efficiently
through an interactive process. However, because of the
symbolic nature of their encoding, these methods rely on a
large amount of prior knowledge to predefine the important
cues and to segment those efficiently.

Another body of work focusses on representing the task
constraints at a trajectory level to avoid putting too much
prior knowledge in the controllers required to reproduce a
skill, see e.g. [6], [7].1 We follow this approach in our work
by using Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR) to respectively encode a set of
trajectories and retrieve a smooth generalized version of these
trajectories and associated variabilities.

The remainder of this paper is organized as follows.
Section II presents the statistical learning framework used to
encode the skill (II-A), showing how to generalize a learned
task to various situations by considering several constraints
(II-B), and showing how different modalities can be used to
demonstrate a skill (II-C). Section III then illustrates how the
statistical learning approach can be enhanced by social cues
such as the orientation of the head while demonstrating a
manipulation skill involving objects (III-A) or the variations
of intonation in the vocal trace to bring the attention of
the robot to particular events while demonstrating the skill
(III-B). Section IV discusses the results and presents further
work.

II. EXTRACTING TASK CONSTRAINTS THROUGH
STATISTICAL LEARNING

A. Encoding and generalization

Through the use of Gaussian Mixture Model (GMM),
we showed in previous work that a robot could extract
autonomously the essential characteristics of a set of trajecto-
ries captured through the demonstrations [10], and that Gaus-
sian Mixture Regression (GMR) could be used to retrieve a
generalized version of the trajectories either in joint space
[11], or in task space [12]. Table I presents the procedure
for the encoding and generalization of the skill. The optimal
number of components is estimated here through Bayesian
Information Criterion (BIC) [13].

B. Reproduction by considering multiple constraints

To find a controller for the robot that takes into account
constraints both in joint space and in task space, as well as
the kinematic redundancy of the humanoid arm, we proposed

1For an exhaustive review and comparisons of the different methods
proposed in RPD, the interested reader can refer to [2], [8].

TABLE I
PROBABILISTIC ENCODING OF THE TASK CONSTRAINTS AND

GENERALIZATION THROUGH GAUSSIAN MIXTURE REGRESSION (GMR).

• The dataset x = {xj}N
j=1 is defined by N observations xj ∈ R

D

of sensory data changing through time, where each demonstration
is rescaled to a fixed duration T . Each datapoint xj = {tj , xS

j }

consists of a temporal value tj ∈ R and a spatial vector xS
j ∈

R
(D−1).

• The dataset x is first modelled by a Gaussian Mixture Model
(GMM) of K components. Each datapoint xj is then defined by
its probability density function

p(xj) =

K
∑

k=1

πk N (xj ; µk, Σk),

where πk are prior probabilities and N (µk, Σk) are Gaussian dis-
tributions defined by centers µk and covariance matrices Σk , whose
temporal and spatial components can be represented separately as

µk = {µT
k , µS

k } , Σk =

(

ΣTT
k ΣTS

k
ΣST

k ΣSS
k

)

.

• For each component k, the expected distribution of xS
j given the

temporal value tj is defined by

p(xS
j |tj , k) = N (xS

j ; x̂S
k , Σ̂SS

k ),

x̂S
k = µS

k + ΣST
k (ΣTT

k )−1(tj − µT
k ),

Σ̂SS
k = ΣSS

k − ΣST
k (ΣTT

k )−1ΣTS
k .

• By considering the complete GMM, the expected distribution is
defined by

p(xS
j |tj) =

K
∑

k=1

βk,j N (xS
j ; x̂S

k , Σ̂SS
k ),

where βk,j = p(k|tj) is the probability of the component k to be
responsible for tj , i.e.,

βk,j =
p(k)p(tj |k)

∑K
i=1 p(i)p(tj |i)

=
πkN (tj ; µ

T
k , ΣTT

k )
∑K

i=1 πiN (tj ; µT
i , ΣTT

i )
.

• By using the linear transformation property of Gaussian distribu-
tions, an estimation of the conditional expectation of xS

j given tj

is thus defined by p(xS
j |tj) ∼ N (x̂S

j , Σ̂SS
j ), where the parameters

of the Gaussian distribution are defined by

x̂S
j =

K
∑

k=1

βk,j x̂S
k , Σ̂SS

j =
K

∑

k=1

β2
k,j Σ̂SS

k .

• By evaluating {x̂S
j , Σ̂SS

j } at different time steps tj ∈ [0, T ], a
generalized form of the trajectories x̂ = {tj , x̂S

j } and associated
covariance matrices Σ̂ = {Σ̂SS

j } representing the constraints along
the task can then be computed (see also [9]).

two inverse kinematics (IK) approaches: (1) a method based
on Jacobian computation using Lagrange optimization which
allows to handle constraints on multiple objects in task space
and in joint space simultaneously [10]; and (2) a geometric
inverse kinematics approach for a 4 DOFs humanoid arm, by
representing the motion of the arm by the 3D Cartesian path
of the hand and by an additional parameter representing the
elevation of the elbow with respect to a vertical plane [12].
Here, the geometric inverse kinematics method is used as it
is much simpler for the 4 DOFs arm considered.

We illustrate the generalization and reproduction methods
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Fig. 2. Incremental refinement of the task depicted in Fig. 3, coded in
a frame of reference located on the objects that are manipulated (only a
subset of the variables are shown, see Fig. 3 for the frame of reference).
The three columns correspond respectively to a representation of the task
constraints after 1, 3 and 6 demonstrations. The first two rows show the
refinement of the Gaussian Mixture Regression (GMR) model representing
the constraints for the cylinder (first row) and for the cube (second row)
along the movement. After a few demonstrations, we see that the trajectories
relative to the two objects are highly constrained for particular subparts of
the task, namely when reaching for the cylinder (thin envelope around time
step 30) and when placing it on top of the cube (thin envelope around time
step 100). The last row shows the robot’s reproduction attempts (after 1, 3
and 6 demonstrations) for a new situation that has not been demonstrated.
We see that after 6 demonstrations, the robot correctly reproduces the
essential characteristics of the skill, namely reaching for the cylinder and
dropping it on the cube (see [12] for a complete description of the results).

with an experiment involving manipulation and displacement
of objects. In this experiment, the skill is represented as
constraints in task space by considering the right hand
path relative to two objects observed by the robot in its
environment. The constraints associated with the position of
the right hand with respect to an object n are thus represented
by the generalized trajectory x̂(n) and associated covariance
matrices Σ̂(n) (see Table I).

Fig. 2 shows how GMR encapsulates the task constraints
through the generalization process. Fig. 3 shows the results of
the generalization process (after six demonstrations) through
snapshots of the robot reproducing the learned skill in a new
situation (new initial positions of objects).

C. Incremental refinement of the skill, use of different modal-
ities and scaffolding process

A trend of research draws the attention on the role of the
teacher as being one of the most important key component
for an efficient transfer of the skill, where the teaching
interaction allows the user to become an active participant
in the learning process (and not only a model of expert
behaviour), see e.g. [12], [14]–[18]. This active teaching
process allows the learner to experience and adapt the
skill for his/her particular body capacities, as suggested by

Fig. 3. Example of a manipulation task using two objects, where
constraints on the hand-objects relationships along the motion are extracted
probabilistically, namely grasping the red cylinder, reaching for the yellow
cube (by using a bell-shaped trajectory to avoid hitting the cube), and
dropping the cylinder on top of the cube. The statistical representation of the
task constraints then allows the robot to reproduce the skill with different
initial positions of the objects. For this experiment, a Fujitsu HOAP-3
humanoid robot with 4 DOFs for the right arm and 1 DOF for the hand is
used.

Fig. 4. Different modalities are used to convey the demonstrations and
scaffolds required by the robot to learn a skill. The user first demonstrates
the whole movement while wearing motion sensors (top) and then helps
the robot refine its skill through kinesthetic teaching (bottom), that is, by
grasping the robot’s arms and moving them through the motion. 4 X-
Sens motion sensors attached to the torso, right upper-arm, right lower-
arm, and back of the head are first used to decompose the 3D absolute
orientation of each segment into a set of joint angles. Through direct
kinematics, the position of the hand in the 3D Cartesian space is then
estimated. For kinesthetic teaching, the motor encoders of the robot are
used to record information while the teacher moves the robot’s arms. The
user first selects the motors to control manually by slightly moving the
corresponding limbs just a few milliseconds before the reproduction starts.
The selected motors are set to passive mode, which allows the user to move
freely the corresponding degrees of freedom while the robot executes the
task, thus providing partial demonstrations while the robot executes the
remaining motion. For these two methods, two webcams within the robot’s
head are used to track the 3D position of the objects (see [12] for details).



developmental psychology studies [19].
Following this approach, Riley et al [17] highlighted the

importance of an active participation of the teacher not
only to demonstrate a model of expert behaviour but also
to refine the acquired motion by vocal feedback. Saunders
et al [4] provided experiments where a wheeled robot is
teleoperated through a screen interface to simulate a mould-
ing process, that is, by letting the robot experience sensory
information when exploring its environment through the
teacher’s support. Rohlfing et al highlighted the importance
of having multimodal cues to reduce the complexity of
human-robot skill transfer [18]. In their work, they consider
multimodal information as an essential element to structure
the demonstrated tasks. Through experiments, they showed
that humans transfer their knowledge in a social interaction
by recognizing what current knowledge the learner lacks.
They then suggested taking insights from these studies to
reduce the learning complexity of current RPD frameworks.
Thus, sharing human adaptability with the less knowledge-
able becomes a central issue when designing social robots,
and they therefore hypothesize that a human teacher can also
adapt naturally to a robot equipped with specific abilities.

In [12], we adopted a similar strategy and showed that the
skill transfer process can benefit from the user’s capacity to
adapt his/her teaching strategies to the particular context. We
extended the concept to the learning of continuous motion
trajectories and of actions on objects, and proposed exper-
iments where a humanoid robot learns new manipulation
skills by first observing a human demonstrator (through
motion sensors) and then gradually refining its skill through
kinesthetic teaching (see Fig. 4). In this application, the
user provides scaffolds to the robot for the reproduction of
the skill by moving kinesthetically a subset of the motors.
Through the supervision of the user who progressively dis-
mantles the scaffolds after each reproduction attempt, the
robot can finally reproduce the skill on its own (see also
Figs 3 and 2).

We thus suggest to use different modalities to produce
the demonstrations, similarly to a teaching process where
a human teacher would first demonstrate the complete skill
to the learner, followed by practice trials performed by the
learner under the supervision of the teacher. We take the
perspective that unlike observational learning, pedagogy is
required to facilitate the transfer of the skill, which is a
special type of communication used to manifest the relevant
knowledge of a skill.

As discussed by Gergely and Csibra, the teacher first needs
to analyze his/her knowledge content to emphasize in his/her
demonstrations the aspects that are relevant for the learner
[20]. In our experiments, observational learning is used
similarly as a first method for the user to demonstrate natural
gestures by controlling simultaneously a large number of
degrees of freedom (up to 14 joint angles for the tasks
considered in our experiments). Kinesthetic teaching then
provides a way of supporting the robot in its reproduction of
the task. Through this scaffolding process, the user provides
support to the robot by manually articulating a decreasing
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Fig. 5. Influence of the speech/gaze priors on constraints extracted
through statistical learning for an interaction with a naïve user. The first
and second rows correspond to the trajectories relative respectively to the
cylinder and to the cube (see Fig. 3). First column: Data extracted from 5
demonstrations and encoding through a Gaussian Mixture Model (GMM)
of 5 components (the optimal number of components is estimated through
Bayesian Information Criterion (BIC) [13]). Second column: Generalization
of the trajectories through Gaussian Mixture Regression (GMR) based solely
on cross-situational statistics. In this case, we see that five demonstrations
are not sufficient to extract interesting information concerning the task
constraints, i.e. the envelope thickness around the generalized trajectory does
not present much variations (see Fig. 2 for comparison). Third column: By
using GMR with the social priors defined in Eqs (1), (2) and (3), we see that
the envelopes become thinner in the relevant parts of the trajectories, namely
when grasping the cylinder and when dropping it on the cube (highlighted
by two circles in the graphs).

subset of motors. The scaffolds progressively fade away and
the user finally lets the robot perform the task on its own,
allowing the robot to experience the skill independently.

One advantage of this approach is that the user can provide
partial demonstrations by using the robot’s own kinematics
and can demonstrate the task in the robot’s own environment.
This kinesthetic teaching process also allows the user to
feel the robot’s body limitations and provide appropriate
examples that take these limitations into consideration.

To apply technically this teaching approach, we also
demonstrated in [11] that it was possible to use a
GMM/GMR framework to learn a skill incrementally and
in an on-line manner without having to keep each demon-
stration in memory. Such an incremental learning approach
allows the teacher to watch the robot’s reproduction attempts
after each demonstration, and thus helps him/her assess the
robot’s current understanding of the skill and prepare the
following demonstration accordingly.

III. EXTRACTING TASK CONSTRAINTS
THROUGH SOCIAL CUES

The system presented in the previous section requires
to observe the skill in slightly different situations. Even
if this variation appears naturally when executing the skill
several times, the robot’s capacity to generalize over different
contexts also depends on the pedagogical quality of the
demonstrations provided (e.g. gradual variability of the situ-
ations and exaggerations of the key features to reproduce).

This fact shares similarities with the human way of
teaching. Indeed, a good teacher also extends the demon-
strations progressively so that the learner can more easily



infer the connections between the different examples, and
the range of the possible situations where the skill may
apply is progressively increased. Thus, by using a statistical
learning strategy alone, we implicitly suggest that one way
of increasing the speed of the teaching process is to rely
on the user’s natural propensity for teaching by structuring
the successive examples provided and guiding the learner’s
exploration.

Indeed, in our teaching scenarios up until now, an expert
user displaces progressively the objects after each demon-
stration to provide variability in the exposures of the skill.
In such a situation, it is nearly always possible for the robot
to extract the task constraints with only a few demonstrations
(from four to ten for most of the tasks that we have
considered). However, it may happen that untrained users
provide a set of demonstrations remaining either too similar
or too different from one example to the other. In this
case, a larger set of demonstrations would be required to
generalize the skill. The first two columns of Fig. 5 show an
experiment similar to the one performed by an expert user
(presented in Fig. 2), where the untrained user provided five
demonstrations that were too similar to extract correctly the
task constraints through statistics.

To weaken the drawback of such situations, we follow a
learning approach where the joint use of cross-situational
observations and social cues ensures an efficient transfer of
the task through interaction with the user. We thus propose
to enhance the statistical learning strategy with information
coming from various social cues, and show that these cues
can be represented statistically as priors in the GMM/GMR
framework. We focus here on gaze and speech information
to demonstrate that interactional cues of different natures can
be considered. It is important to note that we do not aim at
developing state-of-the-art gaze tracking systems or speech
recognition systems. We only describe here prototypes of
these systems to show that multimodal social cues can be
integrated in our framework through generic probabilistic
approaches.

By using a computer game, Thomaz and Breazeal explored
the ways in which machine learning can be designed to
take advantages of natural human interaction and tutelage.
They demonstrated that augmenting a reinforcement learning
process with the social mechanisms of attention direction
and gaze positively impacts the dynamics of the underlying
learning mechanisms, highlighting the reciprocal nature of
the teaching-learning partnership [15]. They showed through
their experiments that the teacher’s ability to guide the
learner’s attention to appropriate objects at appropriate times
creates a significantly more robust and efficient learning
interaction. Our work follows a similar approach and extends
this concept to the learning of continuous gestures by a
humanoid robot.

In the field of speech acquisition and word learning, Yu
and Ballard explored how humans can learn words/objects
couplings through statistical learning, and proposed a model
for early word acquisition in a unified framework integrating
statistical and social cues [21]. Their model links these two
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Fig. 6. Illustration of the use of gaze information to speed up the
learning process through a probabilistic measure of saliency when the head
is turned toward an object (see also Table II). Top: Estimation of gaze
direction by representing the position and orientation of the head (extracted
through X-Sens motion sensors) as a cone of vision which intersects with a
surface. Bottom-left: Probabilistic representation of the intersection as a 2D
Gaussian distribution. Bottom-right: Estimation of the probability to focus
the attention of the robot at a particular time on a particular object i placed
on the table knowing its initial position x(i) (the object position is tracked
through the robot’s built-in stereoscopic vision system).

sources of information by considering joint attention and
prosody on the one hand, and statistics from cross-situational
observations on the other hand. Our work follows a similar
approach by extending the concept to robot learning by
imitation.

A. Use of head/gaze information as priors

A large body of work explored the use of gaze direction
and head orientation as a way to convey the intention of
the user, see e.g. [14], [22], [23]. In [24], we showed that
we can roughly extract gaze information by measuring the
orientation of the head through X-Sens motion sensors. Even
if this remains a strong assumption (as head orientation can
not be considered directly as a social cue), it affects gaze
following, i.e., the head naturally turns towards a goal when
there is no other constraint.

Fig. 6 and Table II present a method to detect joint
attention by representing gaze direction as a cone of vision
whose intersection with a table can be represented as a
Gaussian distribution. Instead of simply defining an attention
point as the intersection of a gaze direction line with a plane,
this method also evaluates the robustness of the measure
through a covariance matrix. Following this method, the
last row of Fig. 7 presents an example of the probability
pG extracted along the task, representing the probability of
bringing the robot’s attention to one of the objects detected
in the scene (either the cylinder or the cube).

B. Use of vocal information as priors

Vocal deixis using speech recognition engines has been
explored as a way for the user to highlight through linguistic
information the steps of the demonstration that are deemed



TABLE II
PROBABILISTIC ESTIMATION OF THE GAZE DIRECTION.

• The gaze is modeled by a cone of vision with vertex point t1,
direction d1 and half-cone angle θ. A point x on the cone satisfies

d1

(

x − t1

|x − t1|

)

= cos(θ),

or in a matrix form (I denotes the identity matrix)

(x − t1)T M(x − t1) = 0,

with M = d1dT
1 − (cos(θ))2 I.

• The table is defined by a plane with origin t2, and directions d21

and d22. A point x on the plane satisfies

x = t2 + x1 d21 + x2 d22.

• The intersection of the cone and the plane defines a conic

c1 x2
1 + 2c2 x1x2 + c3 x2

2 + 2c4 x1 + 2c5 x2 + c6 = 0,

with t12 = t2 − t1, c1 = dT
21Md21, c2 = dT

21Md22, c3 =
dT
22Md22, c4 = tT12Md21, c5 = tT12Md22 and c6 = tT12Mt12.

• This conic can be re-written in an homogenous matrix form

xT Cx = 0 , C =





c1 c2 c4
c2 c3 c5
c4 c5 c6



 =

(

CR Ct

CT
t Cδ

)

,

where x = (x1, x2, 1)T , CR ∈ R
2×2, Ct ∈ R

1×2 and Cδ ∈ R.
• The canonical form of the conic Cc is determined by transforming

the conic matrix C through an Euclidean transformation H

Cc =





Cc1 0 0
0 Cc2 0
0 0 Cc3



 = HT CH,

with H =

(

R t

0T 1

)

,

where the rotation R and translation t are found by diagonalizing
CR through Principal Component Analysis

CR = RΛRT , t = −RΛ−1RT Ct.

• By considering an elliptical intersection (see Fig. 6), the canonical
conic Cc1x2

c1 + Cc2x2
c2 + Cc3 = 0 can be re-written as

x2
c1

a2
+

x2
c2

b2
= 1 with a =

√

−
Cc3

Cc1
, b =

√

−
Cc3

Cc2
,

which can also be represented as a 2D Gaussian distribution
N (µ, Σ) = N (t, R Σc RT ), where Σc is defined by

Σc =

(

a2 0
0 b2

)

.

• By considering this distribution in our experiments, the likelihood
Li,j at time step tj for an object i (located at initial position x(i))
can then be defined by

Li,j =
1

√

(2π)2|Σj |
e
−

1
2

(

(x(i)
−µj)T Σ−1

j
(x(i)

−µj)
)

.

• When considering M different objects, a probabilistic measure of
interest (level of saliency) for object i at each time step tj is thus
defined by (see also the bottom graph of Fig. 7)

pG
i,j =

Li,j
∑M

n=1 Ln,j

∈ [0, 1]. (1)

TABLE III
DETECTION OF ATTENTIONAL UTTERANCES IN THE VOCAL TRACE.

OFFLINE TRAINING PHASE

• A set of 10 short common attentional utterances used as vocal
spotlights (such as ”Look here!” or ”Watch this!”) produced by
the user is first recorded in a training phase prior to the interaction.
A set of 10 random words and/or sentences spoken in a neutral way
(e.g. by reading an instruction) is also collected.

• The pitch and energy of the sound signals are extracted, where the
pitch (corresponding to the fundamental frequency f0) is evaluated
by the subharmonic-to-harmonic ratio method proposed by Sun
[25].

• The two sets of pitch and energy traces are used to train two Hidden
Markov Models (HMMs) λA and λN (”attentional model” and
”neutral model”), where the number of states has been determined
empirically. Each HMM is thus defined by 3 states, where each ob-
servation output is defined by a 2D Gaussian distribution (to encode
the pitch and energy). The parameters are trained through the Baum-
Welch algorithm [26], estimating iteratively the HMM parameters
{π, A, µ, Σ}, namely the initial state distribution π, the matrix of
states transition probabilities A and the output distributions defined
by centers µ and covariance matrices Σ.

ONLINE RECOGNITION PHASE

• When demonstrating a skill, the vocal trace of the user is recorded
through the robot’s internal microphone. It is then used to detect
the probability of an attentional bid, i.e., when the user is bringing
the attention of the robot to a particular aspect of the skill during
the course of his/her demonstration.

• To do so, a temporal window of fixed size W is used to keep
track of the pitch and energy signals during the last W seconds
(if tj < W , then W = tj ). We use here W = 0.5 sec., which
has been determined empirically. The data in this window are then
tested with the two HMMs λA and λN at each time step tj
through the forward procedure [26]. LA

j and LN
j are thus computed,

corresponding to the likelihoods at time tj of belonging respectively
to the ”attentional model” λA or to the ”neutral model” λN .

• At each time step tj , the probability of detecting an attentional
utterance is finally defined by (see also fourth graph of Fig. 7)

pS
j =

LA
j

LA
j + LN

j

∈ [0, 1]. (2)

most important, see e.g. [5], [27]. Another approach focuses
on the prosody of the speech pattern rather than the exact
content of the speech, which is used similarly to infer
information on the user’s communicative intent, see e.g. [14],
[18], [28]. Some works also combine both information, see
e.g. [23].

In this paper, we follow the prosodic approach by using
Hidden Markov Models (HMMs) to detect particular into-
nation patterns while uttering attention to particular events
during the demonstration of the task (e.g. emphasizing the
use of a particular object).

Table III presents a method for the training and recognition
of attentional cues using HMMs, showing how a vocal prior
pS can be retrieved from this model. The first four rows
of Fig. 7 present an example of the result for the objects
stacking task.

C. Combining several priors

We have seen in Section II that the statistical constraints
relative to an object i are represented by the generalized
trajectory µ̂(i) and associated covariance matrices Σ̂(i). By
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Fig. 7. Extraction of priors from speech (first 4 rows) and gaze information
(last row) for the task depicted in Fig. 3. The first four graphs show the
probabilistic extraction of attentional events in the vocal trace by using
pitch and energy information (the temporal window of size W used to
detect attentional cues is represented in dashed line). The first row shows
the sound signal corresponding to the sentence ”You take THIS and you
put it THERE” told by the user when executing the skill (while observed
by the robot, see left snapshot in Fig. 4). We see that the particular events
in the demonstration, corresponding respectively to the subparts when the
user grasps one object (”THIS”) and drop it on the other object (”THERE”),
are highlighted through the user’s voice. These events correspond roughly to
local patterns characterized by a higher energy and a larger pitch amplitude
with consecutive rising and falling intonation contours, which are typical to
prosodic patterns serving as spotlights during the interaction [21], and which
are automatically captured in our system through the HMM encoding. The
third graph represents the probability pS

j at time tj of hearing an attentional
utterance (see Table III). The bottom graph shows the probability pG

j at
time tj of looking at the red cylinder (in solid line) or at the yellow cube
(in dashed line), which also implicitly informs the robot that the user is
conveying information on the relevance of these two objects at different
time steps (see Table II).

using this GMR representation, we can modify easily the
influence of the constraints by taking into consideration at
each time step tj gaze priors pG

i,j on object i and speech
priors pS

j . To do so, we first compute the mean values
p̄G

i,j and p̄S
j at time step tj by averaging over the different

demonstrations provided to the robot (here, five). Then, we
multiply by a weighting factor the covariance matrices of the
GMR representation such that

Σ̂
(i)′

j = Σ̂
(i)
j (1− α p̄G

i,j p̄S
j ), (3)

where p̄G
i,j p̄S

j represents the joint probability at time step
tj (when considering speech and gaze as independent vari-
ables), which serves as a spotlight to emphasize particular
events during the demonstration. α is a factor weighting the
influence of the social cues over the constraints extracted
through cross-situational statistics (here, α = 0.5 has been
selected empirically). Thus, for the reproduction of the task,

the influence of the generalized trajectory with respect to
object i is increased when p̄G

i,j p̄S
j is high.

The imprecision due to the estimation of social cues is
reduced by considering different demonstrations and differ-
ent modalities. For example, in the bottom graph of Fig. 7,
we see that from time step tj = 8 sec., the system detects
that the user is looking at the initial position of the cylinder
(which is already stacked on the cube). This error may be
due to tracking imprecision or because the user does not need
to focus on a particular object/position anymore after he has
dropped the cylinder. In both cases, this error disappears by
taking into consideration the joint probability of events (i.e.,
the vocal analysis does not detect a particular event at these
time steps), as well as the multiple demonstrations provided
to the robot.

The right column of Fig. 5 shows the results of applying
speech and gaze priors as proposed in Eq. (3) to the extrac-
tion of the task constraints (thinner envelope when p̄G

i,j p̄S
j

is high). By using social cues as priors, the robot can thus
generalize the skill to different situations similarly to the
reproduction results presented in Fig. 2.

IV. DISCUSSION AND FURTHER WORK

The early results presented above show that the integration
of social cues within our statistical learning approach is
promising. However, as only a very limited dataset has been
used so far, the robustness of the approach still needs to
be evaluated with untrained users teaching new skills in
real-world experimental setups. The weighting mechanism
defined in Eq. (3) to combine prosodic spotlights and joint
attention spotlights is rather simple and serves as a first step
towards evaluating the integration of social cues within the
statistical framework. One direction of further work is to
investigate the dependencies and relevance of these different
cues in a human-robot teaching interaction context.

The advantage of using invasive devices such as the X-
Sens motion sensors to track the user’s gesture principally
concerns the precision of the tracking procedure and robust-
ness to occlusion. However, it is not an aim per se to use this
modality, and a further step for user-friendly human-robot
interaction will be to use the proposed framework with more
human-equivalent modalities such as vision, see e.g. [1].

Ongoing work also concerns the joint use of this RPD
framework with other methods such as a dynamical system
in order to be robust to changes in the environment while
the robot reproduces the learned skill [29], [30], or by using
reinforcement learning as a way to let the robot explore
its environment and learn by itself, thus extending the skill
learned by imitation to a broader context than the one
observed during the demonstrations [31].

Further work will extend the proposed scenarios to more
complex interactions where the teaching phase and repro-
duction phase are more closely intertwined, allowing a richer
interaction where the robot could request the user for advices
at any time, where the user could provide advices on the
robot’s reproduction attempts, and where a more complex
scaffolding process could be used. In this direction, one



short-term goal is to investigate how we could benefit from
the probabilistic representation of the task constraints to
segment the whole task into subtasks that can be reorganized
differently to let the user provide scaffolds for each subpart
independently at the desired speed and rhythm. Longer-term
goals focus on developing robots that would have the ca-
pability to understand the user’s intent from demonstrations,
which would for example allow them to learn new skills even
from failed attempts.

V. CONCLUSION

We presented a probabilistic approach in robot program-
ming by demonstration that allows to extract incrementally
the constraints of a task in a continuous form and to repro-
duce a generalization of the learned skill in new situations.
We highlighted the importance of including the user’s teach-
ing abilities in the machine learning process, by using dif-
ferent modalities to convey the demonstrations (observational
learning and kinesthetic teaching), and by designing human-
robot interactive scenarios mimicking the human process of
teaching. We then presented our current research towards a
socially driven statistical learning framework to reduce the
complexity of the skill transfer process. Through a manipu-
lation task interaction with a humanoid robot, we illustrated
how various social cues could be integrated in the proposed
probabilistic framework to disambiguate automatically the
role of the different variables/objects characterizing the task.
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