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Abstract— We present a task-parameterized probabilistic
model encoding movements in the form of virtual spring-
damper systems acting in multiple frames of reference. Each
candidate coordinate system observes a set of demonstrations
from its own perspective, by extracting an attractor path whose
variations depend on the relevance of the frame at each step of
the task. This information is exploited to generate new attractor
paths in new situations (new position and orientation of the
frames), with the predicted covariances used to estimate the
varying stiffness and damping of the spring-damper systems,
resulting in a minimal intervention control strategy. The ap-
proach is tested with a 7-DOFs Barrett WAM manipulator
whose movement and impedance behavior need to be modulated
in regard to the position and orientation of two external objects
varying during demonstration and reproduction.

I. INTRODUCTION
Two important challenges in learning by imitation are

to generalize an observed skill to new situations and to
generate movements that are natural, efficient and safe for
the surrounding users [1], [2]. We present an approach com-
bining a statistical mixture model with a dynamical system to
encode movements, exploiting the predicted task variations
and couplings to regulate the impedance of virtual spring-
damper systems acting in several frames of reference. The
model shares links with optimal feedback control strategies
in which deviations from an average trajectory are corrected
only when they interfere with task performance, such as in
the minimal intervention principle [3], [4].

A widespread approach for movement primitives learning
in robotics is to combine dynamical systems in sequence
and in parallel such as in the dynamic movement primitives
(DMP) model [5]. In DMP, a forcing term for each dimen-
sion of the movement modulates a spring-damper system
centered on a target, where the different forcing terms are
synchronized by another dynamical system acting as a decay
term. After converting an observed movement into forcing
term trajectories, and after setting a set of basis functions
sequentially activated through the decay term, the learning
task consists of individually approximating the forcing term
profiles.

Although the DMP formulation does not restrict the way
in which forcing terms are learned [5], most work relied
in practice on locally weighted regression to train the model
parameters with predefined basis functions (e.g., equal band-
width and equal interval spacing). The forcing terms in
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Fig. 1. Illustration of the challenges addressed in the paper. The first
challenge consists of generalizing the movement to new situations (new po-
sitions and orientations of the cones, plausibly moving during the execution
of the task). The second challenge consists of exploiting the redundancy
of the task to regulate the stiffness and damping gains of a virtual spring-
damper system actuating the robot. This is achieved by using the predicted
variability along the movement with a minimal intervention control strategy
based on linear quadratic regulators.

such dynamical systems can however be learned by other
learning strategies. Several regression techniques have been
developed for multidimensional inputs and unidimensional
output problems [6]. Here, representing movements as a
set of univariate outputs can be restrictive if we want to
exploit different sources of local correlations among inputs,
among outputs, and in-between input-output variables (e.g.,
to discover and re-use sensorimotor patterns or synergies in
the output variables). This paper explores the use of multi-
output regression in the context of proportional-derivative
control systems, by exploiting the predicted task regularities
modeled from consecutive demonstrations of a task.

We presented in [7] a probabilistic formulation of dynamic
movement primitives, by encoding the joint evolution of the
input (decay term) and the output (forcing terms) within
a multivariate Gaussian mixture model (GMM). Gaussian
mixture regression (GMR) [8] could then be used to retrieve
at each iteration the forcing terms corresponding to the
current input (either time-dependent or time-invariant). We
showed in [9] that such mixture model formulation could be
exploited to adapt the centers and covariances of a GMM
to the location and orientation of multiple objects, virtual
landmarks or coordinate systems. The model allows the au-
tomatic transitions between different coordinate systems that
are potentially relevant for the task. This task-parameterized
GMM probabilistically encodes the changing relevance of
candidate frames throughout the task. The combination of the
two approaches [7], [9] extends the generalization capability
of dynamic movement primitives, offering the possibility to
adapt movements with respect to multiple viapoints (which



can be in the middle of the movement), with local position,
orientation and shape modulation.

The contributions of the current paper are threefold: 1)
An improved formulation of the task-parameterized mixture
model [9], making its computation more efficient; 2) A
method to include end-effector orientation data in the model;
and 3) A minimal intervention control strategy using the
predicted covariances to reduce the control commands, by
adapting the tracking gains in regard to the current relevance
of the reference signal for the completion of the task.

Fig. 1 illustrates the tackled challenges. The proposed ap-
proach is detailed in Section II. The experiment is described
in Section III. Conclusion and future work are presented in
Section IV.

II. PROPOSED APPROACH

The complete procedure consists of a demonstration phase,
a learning phase and a reproduction phase. In the demonstra-
tion phase, a set of movements is recorded as position and
orientation of the robot end-effector (output) with associated
time stamp (input). The multiple demonstrations are aligned
in time with dynamic time warping. The position and orien-
tation of a set of candidate frames (related to objects in the
robot workspace) is also collected. In our application, the
orientation of the robot end-effector is represented with pan-
tilt angles, while the orientations of objects are represented
as rotation matrices whose columns form the orthogonal
basis of a frame of reference. The recorded movements are
projected in these frames (observation of the same movement
from multiple viewpoints). The input and output variables
are concatenated for each frame, forming a 3rd order tensor
dataset. Here, time is used as input variable, but a decay term,
the robot state or other external object position variables can
similarly be employed [7].

In the learning phase, a task-parameterized mixture model
is fit to the tensor training set by following an expectation-
maximization (EM) procedure (subsection II-A). The training
set can then be discarded. In the reproduction phase, for a sit-
uation involving new position and orientation of objects, the
learned model is first used to estimate a temporary Gaussian
mixture model (GMM), that is automatically updated if there
is a change in position/orientation of the objects. Depending
on the application, this temporary GMM either needs to
be updated at each time step (e.g., adapting movements
to moving targets), or for each new reproduction attempt
(planning approach). Gaussian mixture regression (GMR) is
then used to retrieve statistical information about the current
reference to track, corresponding to the equilibrium point
of a virtual spring-damper system (subsection II-B). This
information is finally used by a linear quadratic regulator to
form a minimal intervention controller (subsection II-C).

The source codes of the proposed approach are available at
http://programming-by-demonstration.org/ICRA2014/.

A. Task-parameterized model

The task parameters are represented as P coordinate sys-
tems, defined at time step n by {bn,j ,An,j}Pj=1, representing

respectively the origin of the observer and a set of basis
vectors {e1, e2, ...} forming a transformation matrix A =
[e1e2 · · · ].

A movement ξ ∈ RD×N is observed from these differ-
ent viewpoints, forming a third order tensor dataset X ∈
RD×N×P , composed of P trajectory samples X(j)∈RD×N

observed in P candidate frames, corresponding to matrices
composed of D-dimensional observations at N time steps.
In our application, D=6, corresponding to the aggregation
of time variable (1 dimension), Cartesian position attractors
(3 dimensions), and pan-tilt orientation attractors (2 dimen-
sions).

The parameters of a model with K components are defined
by {πi, {µ(j)

i ,Σ
(j)
i }Pj=1}Ki=1, where πi are the mixing coef-

ficients. µ(j)
i and Σ

(j)
i are the mode-j center and covariance

matrix of the i-th Gaussian component.
Learning of the parameters is achieved with the con-

strained problem of maximizing the log-likelihood under
the constraints that the data in the different frames are
generated from the same source, resulting in an EM process
to iteratively update the model parameters until convergence.

E-step:

γn,i =
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N
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,

Σ
(j)
i =

∑N
n=1 γn,i (X

(j)
n − µ

(j)
i )(X(j)

n − µ
(j)
i )⊤∑N

n=1 γn,i
. (1)

The model parameters are initialized with a k-means
procedure. Model selection is compatible with the techniques
employed in standard GMM (Bayesian information criterion
[10], Dirichlet process [11], etc.). In a standard GMM, the
role of EM is to estimate constant Gaussian parameters µi

and Σi. Here, EM is used to estimate task-parameterized
model parameters µ

(j)
i and Σ

(j)
i by incrementally modeling

the local importance of the candidate frames. In the proposed
experiment, the overall learning process typically takes 1 to
4 sec. The reproduction is much faster and can be computed
online (below 1 msec).

The above model is equivalent to the model presented
in [9], but is computationally more efficient. The E-step as
formulated above involves a product of probabilities (multi-
plication of scalars), while the E-step in [9] first computes
the intersection of Gaussians (products of Gaussians) before
evaluating the likelihoods. With the above formulation, there
is no need of explicitly providing the parameters An,j

and bn,j in the learning phase (this information is already
contained in the third order tensor dataset X , with the
demonstrations observed from different perspectives).



The learned model can then be used to reproduce move-
ments in other situations (for new positions and orientations
of candidate frames). The model first retrieves at each
time step n a GMM by computing a product of linearly
transformed Gaussians

N (µn,i,Σn,i) ∝
P∏

j=1

N
(
An,jµ

(j)
i +bn,j , An,jΣ

(j)
i A⊤

n,j

)
,

⇔ Σn,i =
( P∑

j=1

(An,jΣ
(j)
i A⊤

n,j)
−1)−1

, (2)

µn,i = Σn,i

P∑
j=1

(An,jΣ
(j)
i A⊤

n,j)
−1(An,jµ

(j)
i +bn,j).

B. Gaussian mixture regression

Gaussian mixture regression (GMR) is used to generate
the movements [8], [12]. GMR can be viewed as a trade-
off between a global and local approach in the sense that
the placement and spread of the basis functions are learned,
together with their response, as a soft partitioning problem
through expectation-maximization (EM),1 while the predic-
tion is a weighted superposition of locally linear systems.
The prediction provides information about the local varia-
tions allowed by the task and about the correlations among
the different output terms, thus allowing the extraction of
local coordination patterns. It allows the robot to generate
natural movements with a co-variability following the es-
sential characteristics of the task, which can be exploited
for stochastic exploration [13] or for natural interaction in
human-robot collaboration [14].

In GMR, the underlying representation as mixture of
Gaussians is independent from the training algorithm used
to estimate the model parameters. Various methods can be
employed depending on the application requirements, such
as expectation-maximization (EM) [15], online EM [16]
or spectral learning [17]. If the application requires the
encoding of high-dimension data from few observations,
subspace learning techniques such as mixtures of factor
analyzers (MFA) [18] can be used to locally reduce the
dimensionality without modifying the representation (full
covariances can be reconstructed from the MFA parameters).
Common synergy information can be shared among the
Gaussians with parsimonious GMM [19] (e.g., to re-use and
adapt previously discovered coordination patterns).

The superscripts I and O will be further used to describe
the dimensions that span for input and output variables (for
vectors and matrices). For the movement data, at iteration
n, ξI

n and ξO
n represent the input and output variables, while

ξn represents the same datapoint in a concatenated form. For
trajectory encoding in task space, I corresponds to the time
input dimension, and O corresponds to the output dimensions
describing a path in task space (position and orientation).

1Competition/collaboration arise due to the weighting term γn,i in Eq.
(1) summing over the influence of the other Gaussian components.

With this notation, a block decomposition of the datapoints
ξn, vectors µn,i and matrices Σn,i can be written as

ξn =

[
ξI
n

ξO
n

]
, µn,i =

[
µI

n,i

µO
n,i

]
, Σn,i =

[
ΣI

n,i Σ
IO
n,i

ΣOI
n,iΣ

O
n,i

]
.

By using the temporary GMM parameters computed in
Eq. (2), GMR relies on the joint distribution P(ξI

n, ξ
O
n )

to estimate P(ξO
n |ξ

I
n). At each reproduction step n, this

conditional probability is estimated as an output distribution
N (ξ̂O

n , Σ̂
O
n ), that is also Gaussian, with parameters

ξ̂O
n =

∑
i

hn,i(ξ
I
n)

[
µO

n,i +ΣOI
n,iΣ

I
n,i

−1
(ξI

n − µI
n,i)

]
,

Σ̂O
n =

∑
i

h2
n,i(ξ

I
n)

[
ΣO

n,i −ΣOI
n,iΣ

I
n,i

−1
ΣIO

n,i

]
, (3)

and activation functions hn,i defined as

hn,i(ξ
I
n) =

πi N (ξI
n| µI

n,i,Σ
I
n,i)∑K

k=1 πk N (ξI
n| µI

n,k,Σ
I
n,k)

.

The estimated output in Eq. (3) encapsulates variation and
correlation information in the form of a probabilistic flow
tube [20], continuously differentiable in time.

C. Minimal intervention controller

With the above method, a reference trajectory is estimated
as a full distribution N (ξ̂O

n , Σ̂
O
n ) varying at each time step

n given by Eq. (3). Similarly as the solution proposed by
Medina et al. in the context of risk-sensitive control for hap-
tic assistance [21], the predicted variability can be exploited
to form a minimal intervention controller (in task space or
in joint space). The procedure will first be described for a
controller in task space, where an acceleration command

un = K̂P
n(x̂n − xn)− K̂V

nẋn (4)

is used to control the robot, with x̂n estimated by GMR in
Eq. (3).
K̂P

n and K̂V
n are full stiffness and damping matrices

estimated by a linear quadratic regulator (LQR) with time-
varying weights. For a finite horizon LQR, this is achieved
by minimizing the cost function

c(1) =
T∑

n=1

(x̂n−xn)
⊤Qn(x̂n−xn) + u⊤

nR un, (5)

subject to the constraints of a double integrator system.
The solution can be computed by backward integration of
a Riccati ordinary differential equation with varying full
weighting matrix Qn = Σ̂x

n

−1
estimated with Eq. (3). It

provides a time-varying feedback control law in the form
of Eq. (4) with full stiffness and damping matrices K̂P

n and
K̂V

n.
To solve the above minimization problem, a boundary

condition needs to be set on the final feedback term, which
is set to zero in our experiment. Namely, we assume that
the task is fulfilled at the end of the movement and that the
robot can become compliant again.



(a) Reproductions for the same 6 situations as in the training set. (b) New reproductions with test set.

Fig. 2. (a) Reconstruction results from the model parameters. The dark cones are the candidate frames (the frames that were part of the training set
are shown in lighter color). The ellipsoids represent the temporary GMM with Gaussians N (µn,i,Σn,i) computed in Eq. (2). The light and dark lines
represent respectively demonstrations and reproductions. (b) Reproductions of movements for the 4 new situations that were not part of the training set.

At iteration n, the backward recursion to minimize Eq.
(5) requires the estimation of Σ̂x

t for t ∈ {n, n+1, ... , T}. If
the position and orientation of external objects are changing
over time, the predicted trajectory and associated covariances
need to be recomputed during the movement, providing a
new recursion path for the Riccati equation.

In some situations, it might be computationally expen-
sive to recompute at each iteration n a prediction on the
remaining movement. An approximation can in this case be
locally computed by considering an infinite horizon LQR
formulation to estimate a feedback term at iteration n by
considering only the current estimate Σ̂x

n. This corresponds
to the estimation of a feedback controller that does not know
in advance whether the precision at which it should track a
target will vary. The corresponding cost function at iteration
n corresponds to

c(2)n =
∞∑
t=n

(x̂n−xt)
⊤Qn(x̂n−xt) + u⊤

tR ut, ∀n∈{1,..., T}

(6)
which can be solved iteratively through the algebraic Riccati
equation, providing a feedback controller in the form of Eq.
(4) with full stiffness and damping matrices K̂P

n and K̂V
n.

In [22], a similar feedback controller was heuristically
estimated by computing a stiffness matrix at each iteration n

as proportional to the estimated precision matrix Qn=Σ̂x
n

−1

of the current point to be tracked. The LQR approaches
minimizing Eqs (5) and (6) result in a controller sharing
similar characteristics, but it provides a formal way of
adapting the impedance parameters.

The approach described above can similarly be applied in
configuration space by computing a reference trajectory in
joint space with inverse kinematics, and locally projecting the
covariance information through the Jacobian at the current
configuration. This variant will be used in the experiment to
reduce the control commands at the joints level.

III. EXPERIMENT

A torque-controlled Barrett WAM 7 DOFs manipulator
is used in the experiment. The aim of the task is to move a
conic peg from one place to another, by moving the peg from
one extruded cone to an other extruded cone.2 The task is
recorded 10 times with different positions and orientations
of the holes, by physically moving the robot through the
task while actively compensating for the gravity (kinesthetic
teaching process). While demonstrating the task, the robot
records the position and orientation of the peg attached to
its end-effector. The position and orientation of the extruded
cones are pre-recorded by bringing the robot to these two
candidate frames prior to the demonstration of the movement.
For the first 8 recordings, only the second cone is moved
from one demonstration to the other. For the remaining 2
recordings, both cones are moved to new poses.

The first 6 recordings are used as training set. The last
4 recordings are used as test set, in order to compare
the generalized movements reproduced by the robot with
the recordings of the user achieving the task in the same
situation. Thus, for two reproduction attempts, the robot will
not only need to generalize the movement to new ending
frames (characterized by position and orientation), but it will
also need to adapt the movement to new starting frames
(even though only the same starting frame was observed
in the training phase). A task-parameterized model with 3
components is used to learn the movement (selected by
Bayesian information criterion [10]).

In this experiment, ξn and {bn,j ,An,j}Pj=1 are defined as

ξn=

 tn
xp
n

xr
n

} ξI
n}
ξO
n
, bn,j=

 0
pn,j

rn,j

,An,j=

1 0 0
0 Rn,j 0
0 0 I

, (7)

2We focus here on the transportation aspect, i.e., the peg is smaller than
the extruded cones and no insertion force is considered.



where tn is a time step, xp
n is a 3-dimensional Cartesian

position variable, and xr
n is a 2-dimensional orientation

variable (pan-tilt angles). pn,j denotes the 3-dimensional
Cartesian position of frame j. rn,j and Rn,j both represent
the orientations of frame j, expressed respectively as pan-
tilt angles and rotation matrices. 0 and I are zeros matri-
ces/vectors and identity matrices of appropriate size.

Note that this choice of coordinate system remains valid
for a wide range of tasks. It corresponds to the situation in
which time is not modulated by the frames, and in which
pan-tilt data should be shifted with rn,j to obtain a relative
orientation (no additional rotation).

Currently, this parameterization of the candidate frames is
left to the experimenter. A potential solution to omit this step
it is to pre-select many candidate frames and let the system
discover which are the most relevant (at the expense of
requiring more demonstrations to obtain sufficient statistical
information to learn the model).

The optimal control part is implemented in configuration
space, with the aim of reducing the acceleration control
commands at the joint angles level. for this control strategy,
the only parameter left to the experimenter is the weight
matrix R in Eqs (5) and (6). It is set in our experiment
to R = I (identity matrix). Alternatively, another strategy
would be to set Rn in an online manner to apply the local
minimal intervention selectively to the joints (e.g., to cope
with temporary damaged, unpowered or weak motors, or
to preserve some degrees of freedom for additional task
constraints).

In order to analyze the effects of the LQR methods, the re-
productions are also achieved with a proportional-derivative
controller of constant diagonal stiffness and damping gains,
as in Eq. (4), with a stiffness empirically tuned by the
experimenter (K̂P

n = I · 100), and a damping adjusted to
obtain a damping ratio of 1/

√
2.

A. Experimental results

Fig. 2 shows the generalization capability of the approach
(with a controller of constant gains). We can see that smooth
movements are reproduced and that the system can easily
extrapolate the task to new situations that are far from the
demonstrations.

Fig. 3 presents the results when combining the probabilis-
tic estimation with an optimal control strategy. The results
show only little difference in the movements retrieved by
the two methods. We can see that the two LQR approaches
with finite and infinite horizons, minimizing costs in Eqs
(5) and (6), efficiently exploit the predicted task redundancy
(red flow tube). This is achieved according to the predicted
precision requirements varying along the movement, by priv-
ileging control commands oriented towards the most relevant
directions of the task (corrections in the most invariant
directions).

Fig. 4-(a-b) presents the averages and standard deviations
of the cumulated accelerations and jerks over the four
reproduction attempts in Fig. 3. Compared to a proportional-
derivative controller with constant gains, the LQR methods

User recording (for comparison)
Spring−damper with constant gains

Finite horizon LQR
Infinite horizon LQR

Fig. 3. Reproduction results for the 4 new situations with minimal
intervention control (green and orange lines). For comparison, the user
recordings (not provided in the training set) and the reproductions with
constant gains are also depicted (gray and red lines). The transparent flow
tube in red depicts the series of Gaussians N (ξ̂xn, Σ̂

x
n) computed in Eq.

(3), estimated at each time step n. We can see that the volume is larger in
the middle of the motion than at the beginning and at the end.
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Fig. 4. Effects of the minimal intervention controller.

with finite and infinite horizons could, on average, reduce
the cumulated accelerations in joint space by 36% and 37%.
The average jerks in joint space were respectively reduced
by 55% and 49%. Fig. 4-(c) shows the evolution of the joint
accelerations for the first reproduction attempt.

Fig. 4-(d) depicts the evolution of the stiffness matrix
determinant for the first reproduction attempt. The profile
for the controller with constant gains is out of the range and
not depicted (constant determinant of 1014). We can observe
that both LQR controllers first require to guide the peg out
of the first cone and can then reduce the gains in the phase
of the transportation that does not require high precision.
When reaching the second cone, the stiffness increases to



guide the robot toward the cone. When the peg reaches its
final destination, the solution with finite horizon returns to
a fully compliant mode (desired final feedback terms set by
the experimenter), while the solution with infinite horizon
regulates the movement based on the latest estimate of the
required precision QT .

Qualitatively, the difference of behaviors between the two
versions of LQR is in this experiment very small (see
also accompanying video3). However, this difference could
increase for other types of movements in which we can
expect LQR with finite horizon to provide a better estimate,
due to the consideration of the varying precision in the
remaining part of the movement during the adjustment of
the gains.

For tasks in which the candidate frames can change be-
tween two consecutive reproduction trials but will not change
during the execution of the task, both LQR approaches can
be computed with an iteration time slightly below 1 msec on
a standard laptop. For coordinate systems moving during the
execution of the task, the infinite horizon LQR conserves the
same computation time, while the finite horizon LQR varies
from 0.1 sec to 1 msec depending on the remaining part of
the motion to be completed.

IV. CONCLUSION AND FUTURE WORK
We presented an approach capable of adapting the cen-

ters and covariance matrices of a GMM to external task
parameters represented as candidate frames of reference.
This task-parameterized model is applied in the context of
learning from demonstration to encode and generalize a
demonstrated task to new situations. We showed that the
approach could be combined with a virtual spring-damper
system with variable impedance gains. For new position
and orientation of candidate frames, the system generates
a flow tube predicting the path of the virtual spring and
its variations. The covariance information is exploited in
an optimal control strategy to locally reduce the control
commands according to the precision required at each step
of the task. Two different minimization strategies were
considered to estimate varying full stiffness and damping
matrices for the regulation of the movement, depending on
the (non-)availability of the predicted covariances over the
whole movement.

Our future work aims at exploiting the current model
within a context-based inverse optimal control (IOC) ap-
proach developed in [23]. After providing candidate rewards
such as minimizing torques, torque-changes, target tracking
errors, etc, IOC could first be used to determine the parts of
the tasks in which these costs are prominent. The variability
of the task could then be exploited in different manners
depending on the context and on the most salient objective
functions extracted during demonstrations.
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