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Abstract— We present an overview of our research to help robots acquire manipulation and drawing skills by imitation and self-
refinement. We advocate frugal learning in our research, where frugality has two goals: 1) learning movement behavior skills from only
few demonstrations or exploration trials; and 2) learning only the components of the skill that really need to be learned. Toward this goal,
our work investigates the roles of movement primitives, distance fields, optimal control and ergodic control strategies as inductive biases to
facilitate movement generation and drawing in robotics.
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I. INTRODUCTION

Despite significant advances in AI, robots still struggle with tasks involving physical interaction. Robots can easily beat
humans at board games such as Chess or Go but are incapable of skillfully moving the game pieces by themselves (the part of
the task that humans subconsciously succeed in). What makes research in robotics both hard and fascinating is that movement
skills are tightly connected to our physical world and to embodied forms of intelligence. In the next sections, an overview
of representation and control strategies is presented, with the goal of handling limited training data and uncertainty in robot
manipulation and drawing activities.

II. MOVEMENT PRIMITIVES AS A SUPERPOSITION OF BASIS FUNCTIONS

Fig. 1: Left: Examples of basis functions to encode movement primitives, see [1] for details. Right: Automatic transformation
of a piecewise Bézier curve into a distance field and a dynamical system, see [2] for details.

The term movement primitive is often used in robotics to refer to the use of basis functions to encode trajectories [1]. It
corresponds to an organization of continuous motion signals in the form of a superposition of simpler signals (in parallel and in
series), which can be viewed as modular “building blocks” to create more complex movements, see Fig. 1-left. This principle,
coined in the context of motor control [3], remains valid for a wide range of continuous time signals (for both analysis and
synthesis).

The simpler form of movement primitives consists of encoding a movement as a weighted superposition of basis functions.
This compression/factorization aims at working in a subspace of reduced dimensionality (smaller number of decision variables),
while denoising the signal and capturing the essential aspects of a movement (e.g., continuity and smoothness).

Basis functions can for example be used to encode trajectories, whose input is a 1D time variable and whose output can be
multidimensional. For basis functions ϕ(t) described by a time or phase variable t (see Fig. 1-left), the corresponding continuous
signal x(t) is encoded with x(t) = ϕ(t)w, with t a continuous time variable and w a vector containing the superposition
weights.

When using Bernstein basis functions, instead of considering high-order polynomials to encode long or complicated
movement, is is useful in practice to instead consider a concatenation of lower-order polynomials (see Fig. 1-right for an
example of concatenation with two quadratic Bézier curves). When concatenating curves, constraints on the superposition
weights are typically considered. Since these weights can be represented as control points in the case of Bézier curves and
splines (see the blue points in Fig. 1-left), the last point(s) of a curve and the first point(s) of the next curve will typically be
constrained to maintain the continuity of the curve.
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While movement primitives (MPs) provide a compact and modular representation of continuous trajectories, they are
essentially time-based or phase-based representations, which can only handle perturbations in a limited way. This motivated
the line of research of considering autonomous systems as a time-independent alternative providing control policies based on
state-action pairs [4]–[6].

We proposed in [2] a simple and flexible approach that gathers the advantages of both representations by transforming
MPs into autonomous systems. The key idea is to transform the explicit representation of a trajectory into an implicit shape
encoded as a distance field. This conversion from a time-dependent motion to a spatial representation enables the definition
of an autonomous dynamical system with modular reactions to perturbation. Asymptotic stability guarantees are provided by
using Bernstein basis functions in the MPs, representing trajectories as concatenated quadratic Bézier curves, which provide
analytic distance computation. This approach bridges conventional MPs with distance fields, ensuring smooth and precise
motion encoding, while maintaining a continuous spatial representation. By simply leveraging the analytic gradients of the
curve and its distance field, a stable dynamical system can be computed to reproduce the demonstrated trajectories while
handling perturbations, without requiring a model of the dynamical system to be estimated, see Fig. 1-right.

III. ERGODIC CONTROL

Fig. 2: Ergodic control with a spectral multiscale coverage (SMC) problem formulation.

An accurate reproduction of movements is often not enough to account for all possible sources of uncertainty that can
interfere with a robotic task. To handle this issue, ergodic control can be exploited as way to cope with uncertainty of the real
world. It can more generally be applied to a wide range of problems requiring the automatic exploration of regions of interest,
including active sensing, localization, surveillance, peg-in-hole insertion or construction.

This is particularly helpful when the available sensing information and/or robot actuators are not accurate enough to fulfill
the task with a standard controller. This includes situations with limited vision, soft robotic manipulator, or when the relative
location of the robot gripper and the grasped tool/object is uncertain (namely, by specifying the task as a distribution instead
of a point, see Fig. 2-bottom). In all these situations, the robot still has crude information about these locations, which can be
exploited for guidance towards most promising areas.

In a collaborative task, ergodic control can also be used when the user’s input is not accurate enough to fully reproduce
the task, which then requires the robot to explore around the requested input (e.g., a point of interest selected by the operator).
For picking and insertion problems, ergodic control can be applied to move in the region of the picking/insertion point,
thereby facilitating the prehension/insertion [7]. It can also be employed for active sensing and localization (either detected
autonomously, or with help by the operator). Here, the robot can plan movements based on the current information density,
and can recompute the commands when new measurements are available (i.e., updating the spatial distribution used as target).

Research in ergodic control addresses fundamental challenges linking machine learning, optimal control, signal processing
and information theory. Mathematically, ergodic theory studies the connection between the time-averaged and space-averaged
behaviors of a dynamical system, which enables optimal exploration of an information distribution. A conventional tracking
problem in robotics is characterized by a target to reach, requiring a controller to be computed to reach this target. In ergodic
control, instead of providing a single target point, a probability distribution is given to the robot, which must cover the
distribution in an efficient way. Ergodic control thus consists of moving within a spatial distribution by spending time in
each part of the distribution in proportion to its density. The term ergodicity corresponds here to the difference between the



time-averaged spatial statistics of the agent’s trajectory and the target distribution to search in. By minimizing this difference,
the resulting controller generates natural exploration behaviors.

Several ergodic control problem formulations exist, including spectral multiscale coverage (SMC) [8], diffusion-based [9],
energy-based [10] and kernel-based [11] approaches. It can also be applied to surfaces characterized by meshes or point clouds
[12]. The objective of SMC corresponds to a tracking problem in the spectral domain (matching of frequency components), see
Fig. 2-bottom. The advantage of this simple control formulation is that it can be easily combined with other control objectives
and constraints. It requires the spatial distribution to be decomposed as Fourier series, with a cost function comparing the
spectral decomposition of the robot path with the spectral decomposition of the distribution, in the form of a weighted distance
function with a decreasing weight from low frequency to high frequency components. The resulting controller allows the robot
to explore the given spatial distribution in a natural manner, by starting from a crude exploration and by refining the search
progressively (i.e., matching the Fourier coefficients with an increasing importance from low to high frequency components),
see Fig. 2-right.

Fig. 2-left illustrates the use of ergodic control to search for a key in a living room, where regions of interest are specified
in the form of a distribution over the spatial domain (see bottom-center inset). These regions of interest correspond to the
different tables in the room where it is likely to find the key. The left and right columns respectively depict an ergodic search
and a patterned search. For a coverage problem in which the duration is given in advance, a patterned search is well suited
because the agent will optimize the path to reduce the number of transitions from one area to the other. In contrast, an ergodic
control search will typically result in multiple transitions between the different regions of interest. When searching for a key,
since we are interested in finding the key as early as possible, we have a problem in which the total search duration cannot
be specified in advance. In this problem setting, an ergodic search is better suited, generating a natural way of exploring
the environment by first proceeding with a crude search in the whole space and by progressively fine-tuning the search with
additional details until the key is finally found. Indeed, to search for a key, a patterned search would be an inefficient and
unnatural way of scanning the whole environment regularly by looking at all details regions by regions, instead of treating the
problem at different scales (i.e., at different spatial frequencies as in SMC). Insertion tasks can similarly be achieved robustly
with ergodic control, yielding a control strategy capable of coping with limited or inaccurate sensing information, see [7] for
details.

IV. APPLICATION: DRAWING ROBOTS

The modular movement representations and the control strategies presented in the previous sections are also exploited in
our work to provide robots with drawing and writing capabilities.

In Fig. 3-(a), movement primitives were used to generate the upper-body movement of a mini-humanoid robot drawing
portraits (incl. bimanual gestures with natural-looking oscillations) [13]. Different shades of gray were generated through
concentric arc circles to emulate the movement of a wrist during hatching.

In Fig. 3-(b), a torque-controlled full-size humanoid was used to generate rapid and compliant movements to produce
calligraphic graffiti art [14], [15]. In this experiment in collaboration with researchers from Goldsmiths University of London,
an interface for artists was developed to let them edit trajectory paths by also considering variations in the underlying dynamics
of the traces. To do this, the notion of control points in splines was extended to the use of Gaussian distributions to provide
coordination and variation information. Optimal control was then used as the underlying mechanism to generate dynamic
motions.

Fig. 3-(c) exploits a diffusion-based ergodic control method called HEDAC to draw portraits with a series of small strokes
[16]. The underlying optimal control problem consists of covering a given distribution (the grayscale portrait image), so that
the robot will pass more frequently on the dark regions of the image, effectively producing different shades of gray with a
single ballpoint pen. When observing the robot at work, the doodles appear meaningless at first sight, with the global objective
progressively revealed as time passes. Interestingly, while the result might appear to be composed of aleatory strokes, the whole
process is purely deterministic and does not introduce any stochasticity in the generative process (namely, the code does not
involve any random number generation). These doodles appear to be random when they are observed from close distance, but
they are in reality the result of the optimal control problem, with the doodles revealing the global objective only when the
drawing is finished.
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