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Abstract— We present a probabilistic architecture for solving
generically the problem of extracting the task constraints
through a Programming by Demonstration (PbD) framework
and for generalizing the acquired knowledge to various situ-
ations. We propose an approach based on Gaussian Mixture
Regression (GMR) to find automatically a controller for the
robot reproducing the essential characteristics of the skill by
handling simultaneously constraints in joint space and in task
space. Experiments with two 5-DOFs Katana robots are then
presented with two manipulation tasks consisting of handling
and displacing a set of objects.

I. INTRODUCTION

Robot Programming by Demonstration (RbD) covers
methods by which a robot learns new skills through human
guidance. In previous work, we presented an approach to
teach gestures to a HOAP-3 humanoid robot by provid-
ing a set of demonstrations performed in slightly different
situations. Through the use of Gaussian Mixture Model
(GMM), the robot could extract autonomously the essential
characteristics of the set of trajectories captured through the
demonstrations [1], [2]. Then, Gaussian Mixture Regression
(GMR) was used to retrieve a generalized version of the
trajectories either in joint space (characterized by a set of
postures changing through time) [3], or in task space (char-
acterized by the 3D Cartesian position of the hand relative
to the objects in the scene) [2]. To find a controller for the
robot that takes into account constraints both in joint space
and in task space, as well as the kinematic redundancy of the
humanoid arm, we previously proposed two approaches: (1)
a method based on Jacobian computation using Lagrange
optimization [1]; and (2) a geometric inverse kinematics
approach for a 4 DOFs humanoid arm, by representing the
motion of the arm by the 3D Cartesian path of the hand
and by an additional parameter representing the elevation of
the elbow with respect to a vertical plane [2]. Even if these
approaches provided solutions for the reproduction of a set
of constraints represented in different data spaces, they still
lacked generality when the skill required to handle simul-
taneously task space and joint space variables. Indeed, in
[1], a metric of imitation performance had to be analytically
derived to find an optimal controller for the reproduction. In
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Fig. 1. Illustration of the process used to retrieve a skill by considering
constraints on different objects in task space (first two rows) as well as
constraints in joint space (last row). The pseudoinverse Jacobian matrix
J
† is used to project the GMM representation of the constraints in task

space to a corresponding representation in joint space. As the different
GMMs are encoded in the same data space, an optimal solution can then
be computed through GMR by multiplying the resulting distributions using
the product properties of Gaussian distributions. Note that by projecting a
Gaussian distribution from task space to joint space through the Jacobian, we
implicitly assume that we can approximate the nonlinear projection function
by the locally linear transformation J

†, i.e., that the local transformation
remains valid for the span of data represented by the covariance matrix of
the Gaussian distribution [4].

[2], the geometric approach was pre-specified for the robot
considered and could not be directly applied to more complex
robot architectures such as the 5 DOFs Katana robots that
we consider here.

In this paper, we thus propose a new approach to find an
optimal controller for the reproduction of the skill, which is
based on simple statistical properties of Gaussian distribu-
tions. The approach allows to handle constraints on multiple
objects in task space and in joint space simultaneously, and
can be used generically for different robot architectures.

A. Related work

Generic approaches to transfer new skills to a robot are
those that allow the robot to extract automatically what
are the important features characterizing the skill and to
search for a controller that optimizes the reproduction of
these characteristic features. A key concept at the bottom
of these approaches is that of determining a metric of
imitation performance. One must first determine the metric,
i.e. determine the weights one must attach to reproducing
each of the components of the skill. It is then possible to find
an optimal controller for imitation by trying to minimize this
metric (e.g., by evaluating several reproduction attempts or
by deriving the metric to find an optimum). The metric acts
as a cost function for the reproduction of the skill [5]. In other
terms, a metric of imitation provides a way of expressing



quantitatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing those.

To learn the metric (i.e. infer the task constraints), one
common approach consists of creating a model of the
skill based on several demonstrations performed in slightly
different conditions. This generalization process consists of
exploiting the variability inherent to the various demonstra-
tions to extract which are the essential components of the
task. These essential components should be those that remain
invariant across the various demonstrations.

A large body of work explored the use of a symbolic
representation to both the learning and the encoding of skills
and tasks, see e.g. [6], [7]. The main advantage of a symbolic
approach is that high-level skills (consisting of sequences
or hierarchies of symbolic cues) can be learned efficiently
through an interactive process. However, because of the
symbolic nature of their encoding, these methods rely on a
large amount of prior knowledge to predefine the important
cues and to segment those efficiently.

Another body of work focusses on representing the task
constraints at a trajectory level to avoid putting too much
prior knowledge in the controllers required to reproduce
a skill. Following this approach, Ude et al [8] use spline
smoothing techniques to deal with the uncertainty contained
in several demonstrations of motion performed in joint space
or in task space. The Mimesis Model [9] follows an approach
in which a Hidden Markov Model (HMM) is used to encode
a set of trajectories, and where multiple HMMs can be used
to retrieve new generalized motions based on a stochastic
process. In [10], the variability across the demonstrations
made by different demonstrators is used to quantify the
accuracy required to achieve a Pick & Place task. The
different trajectories form a boundary region that is then
used to define a range of acceptable trajectories. In [11],
a set of sensory variables is acquired by the robot when
demonstrating a manipulation task consisting of arranging
different objects. At each time step, the mean and variance of
the collected variables are computed and stored by the robot.
The sequence of means and associated variance is then used
as a simple generalization process, providing respectively a
generalized trajectory and associated constraints. The draw-
backs of this approach are: (1) the system is memory-based
and requires to keep all historical data, which can lead to a
scaling-up problem (see the rapid development of sensors for
humanoid robots exploiting various modalities); (2) as RbD
considers only a few demonstrations of the task, using simple
statistics is usually not sufficient to guarantee the generation
of trajectories that are smooth enough to be replayed by
the robot; and (3) the constraints concerning the correlation
across the different variables are not extracted.

B. Proposed approach

Several regression techniques based on Locally Weighted
Regression (LWR) were proposed in robotics to generalize
over a set of demonstrations [12], [13]. Our approach follows
a similar strategy by using Gaussian Mixture Model (GMM)
and Gaussian Mixture Regression (GMR) [14] to respectively

encode a set of trajectories and retrieve a smooth generalized
version of these trajectories and associated variabilities. The
advantage of this approach is that the dataset is encoded
in a compact representation learned through the efficient
Expectation-Maximization algorithm, which allows to deal
with recognition and reproduction issues in a common prob-
abilistic framework.

For an exhaustive review and comparisons of our approach
with the different methods proposed above, the interested
reader can refer to [15], [16]. We also showed in [3]
that it was possible to use this framework to learn a skill
incrementally (without having to keep each demonstration
in memory).

To control redundant manipulators in task space, several
inverse kinematics solutions were proposed mainly based
on local resolutions methods. The most simple Jacobian-
based solution consists of computing the Moore-Penrose
pseudoinverse of the Jacobian matrix representing the inverse
mapping between the joint variables and task variables.
Methods based on gradient projection were proposed to
locally optimize a cost function in the null space of the
Jacobian, where the cost function could take various forms
[17]–[19]. The method was then extended successfully to
handle hierarchy of constraints for whole-body motion con-
trol of humanoid robots [20]. Alternative approaches were
proposed by imposing additional constraints in task space
to be executed along with the original task through an ex-
tended Jacobian method [21]. The approach was successfully
applied to robotic applications handling multiple task con-
straints by using an augmented task space formulation of the
inverse kinematics problem and by setting different priorities
to the constraints [22]–[25]. Grochow et al [26] proposed
an alternative strategy for computer graphics animation of
avatars by resolving the redundancy of the inverse kinematics
problem based on the observation of a set of human motions,
which then guided the search of a solution that looks similar
to natural human gestures.

Our approach follows in essence a similar strategy by
combining several constraints expressed both in task space
and in joint space. However in our framework, the search
for an inverse kinematics solution is facilitated by the user
implicitly providing through his/her demonstrations possible
solutions for the resolution of the task, thus restricting the
search space of the robot for inverse kinematics solutions.
To do so, our approach follows a simple strategy by: (1)
computing several inverse kinematics solutions solving the
different constraints in task space; and (2) by combining
these constraints with the ones represented initially in joint
space. For the first part of the process, a pseudoinverse
Jacobian method with optimization in the null space is used
[17], in order to keep the motion in joint space as close
as possible to the demonstrated joint angle trajectories. The
advantage of this approach is that it can be directly used
within our probabilistic representation of the task constraints
through Gaussian Mixture Regression (GMR).

The remainder of this paper is organized as follows.
Section II-A presents the probabilistic encoding of the skill.



TABLE I
PROBABILISTIC ENCODING OF THE TASK CONSTRAINTS AND

GENERALIZATION THROUGH GAUSSIAN MIXTURE REGRESSION (GMR).

• The dataset ξ = {ξj}
N
j=1 is defined by N observations ξj ∈ R

D of
sensory data changing through time, where each demonstration is rescaled to
a fixed duration T . Each datapoint ξj = {tj , ξS

j } consists of a temporal
value tj ∈ R and a spatial vector ξS

j ∈ R
(D−1).

• The dataset ξ is first modelled by a Gaussian Mixture Model (GMM) of K
components (the optimal number of components is estimated here through
Bayesian Information Criterion (BIC) [27]). Each datapoint ξj is then defined
by its probability density function

p(ξj) =
K
∑

k=1

πk N (ξj ; µk, Σk),

where πk are prior probabilities and N (µk, Σk) are Gaussian distributions
defined by centers µk and covariance matrices Σk , whose temporal and
spatial components can be represented separately as

µk = {µ
T
k , µ

S
k } , Σk =

(

ΣT T
k ΣT S

k

ΣST
k ΣSS

k

)

.

• For each component k, the expected distribution of ξS
j given the temporal

value tj is defined by

p(ξ
S
j |tj , k) = N (ξ

S
j ; ξ̂

S
k , Σ̂

SS
k ),

ξ̂
S
k = µ

S
k + Σ

ST
k (Σ

T T
k )

−1
(tj − µ

T
k ),

Σ̂
SS
k = Σ

SS
k − Σ

ST
k (Σ

T T
k )

−1
Σ

T S
k .

• By considering the complete GMM, the expected distribution is defined by

p(ξ
S
j |tj) =

K
∑

k=1

βk,j N (ξ
S
j ; ξ̂

S
k , Σ̂

SS
k ),

where βk,j = p(k|tj) is the probability of the component k to be
responsible for tj , i.e.,

βk,j =
p(k)p(tj |k)

∑

K
i=1 p(i)p(tj |i)

=
πkN (tj ; µT

k , ΣT T
k )

∑

K
i=1 πiN (tj ; µT

i , ΣT T
i )

.

• By using the linear transformation property of Gaussian distributions, an
estimation of the conditional expectation of ξS

j given tj is thus defined
by p(ξS

j |tj) ∼ N (ξ̂S
j , Σ̂SS

j ), where the parameters of the Gaussian
distribution are defined by

ξ̂
S
j =

K
∑

k=1

βk,j ξ̂
S
k , Σ̂

SS
j =

K
∑

k=1

β
2
k,j Σ̂

SS
k .

• By evaluating {ξ̂S
j , Σ̂SS

j } at different time steps tj ∈ [0, T ], a generalized
form of the trajectories ξ̂ = {tj , ξ̂S

j } and associated covariance matrices
Σ̂ = {Σ̂SS

j } representing the constraints along the task can then be
computed.

Section II-B presents a probabilistic inverse kinematics so-
lution for the reproduction of the skill. Sections III and IV
present the experiment on two Katana robots, which is then
discussed in Section V.

II. PROBABILISTIC FRAMEWORK

A. Encoding and generalization

We consider in this paper datasets both in joint space and
in task space, where ξ = θ represents the joint angle trajec-
tories of the robot, and ξ = x represents the position of the
end-effector in a Cartesian space with respect to the objects
detected in the scene. Table I presents the procedure for the
encoding of the skill through cross-situational observations.

TABLE II
REPRODUCTION OF THE SKILL BY DETECTING N OBJECTS WITH

INITIAL POSITIONS {o(n)}N

n=1 .

OFFLINE PROCESSING AND INITIALIZATION

• Compute the direct kinematics function of the robot’s arm analytically

x = f(θ)
(

= [fx1
(θ) fx2

(θ) fx3
(θ)]

>
)

.

• Derive the Jacobian matrix analytically

J(θ) =









∂fx1
(θ)

∂θ1

∂fx1
(θ)

∂θ2
. . .

∂fx1
(θ)

∂θ6
. . . . . . . . . . . . . . . . . . . . . . . .
∂fx3

(θ)

∂θ1

∂fx3
(θ)

∂θ2
. . .

∂fx3
(θ)

∂θ6









.

• Compute the pseudoinverse of the Jacobian matrix

∆x = J(θ)∆θ ⇔ ∆θ = J
†
(θ)∆x, where J

†
= (J

>
J)

−1
J
>

.

• Initialize the starting posture and the starting position

θ0 = θ̂0, x0 = f(θ̂0).

LOOP FOR tj = 0 → T

LOOP FOR n = 1 → N

• Compute the expected ∆-values (or velocities) and associated covariance
matrices for the constraints relative to Object n (I represents the identity
matrix, and α = 0.5 is a weight factor)

∆θ
(n)
j+1 = J

†
(θj)∆x

(n)
j+1 + α

(

I − J
†
(θj)J(θj)

)

(θ̂j+1 − θj),

where ∆x
(n)
j+1 = (o

(n)
+ x̂

(n)
j+1) − xj ,

Σ
(n)
j+1 = J

†
(θj) Σ̂

x(n)
j+1

(

J
†
(θj)

)>
.

END LOOP n

• Compute the expected ∆-value and associated covariance matrix in joint
space

∆θ
(N+1)
j+1 = θ̂j+1 − θj , Σ

(N+1)
j+1 = Σ̂

θ
j+1.

• Compute the new posture (and associated covariance matrix) by evaluating
∏N+1

n=1 N (∆θ
(n)
j+1, Σ

(n)
j+1), which represents the joint probability of the

different constraints considered

θj+1 = θj +

(

N+1
∑

n=1

(Σ
(n)
j+1)

−1

)−1(N+1
∑

n=1

(Σ
(n)
j+1)

−1
∆θ

(n)
j+1

)

,

Σj+1 =

(

N+1
∑

n=1

(Σ
(n)
j+1)

−1

)−1

. (1)

• The new position of the end-effector is then defined by xj+1 = f(θj+1).
END LOOP tj

B. Reproduction by considering multiple constraints

By using the encoding method presented above, the con-
straints in task space are computed by considering the objects
detected by the robot in its environment. The constraints
associated with the position of the end-effector with respect
to an object n are thus represented by the trajectories x̂(n)

and associated covariance matrices Σ̂x(n). Similarly, the
constraints in joint space are represented by θ̂ and Σ̂θ.
These constraints can be mutually exclusive in the robot’s
workspace, i.e., the generalization in joint space does not
necessary coincide with the generalization in task space. To
find a controller for the robot satisfying several constraints
simultaneously, we then propose to use the probabilistic
properties of the Gaussian distributions to compute an ap-
propriate tradeoff during the inverse kinematics process.

The reproduction procedure is illustrated in Fig. 1 and
presented in Table II. Eq. (1) computes a trade-off based



Fig. 2. Top: Kinesthetic demonstrations of the two tasks considered, namely
grasping and placing a glass on a coaster (left), and grasping and emptying a
glass (right). Bottom: Reproduction of the skill by the two robots where the
initial positions of the objects are tracked by a stereoscopic vision system.

on the variabilities observed during the demonstrations to
determine the respective relevance of the constraints in joint
space and in task space (see also Fig. 6). If one wants to
use a controller satisfying the constraints in joint space only,
(1) can be replaced by θj+1 = θj + ∆θ

(N+1)
j+1 . Similarly, if

one wants to use a controller satisfying the constraints in
task space for a specific object n, (1) can be replaced by
θj+1 = θj + ∆θ

(n)
j+1.

III. EXPERIMENTAL SETUP
The setup of the experiment is presented in Fig. 2. Two

5 DOFs Katana robots from Neuronics are used for the
experiment, characterized by a repeatability of ±0.1 mm
and a maximum speed of 68◦/sec. A sixth motor controls the
opening and closing status of the gripper, which is generated
through a binary signal generalized over the multiple demon-
strations, as proposed in [1]. Each motor is equipped with
encoders which allows the user to move the robot manually
while registering joint angle information (see Fig. 2). During
this process, the position of the end-effector is computed
through direct kinematics.

Two different skills are considered in the experiment,
namely setting the table by grasping a glass on a shelf and
placing it on a coaster, and clearing the table by grasping the
glass from the table and emptying the glass in a basin. For
the first task, two objects are tracked by the robot (the glass
and the coaster), where the positions of the two objects can
vary. For the second task, only one object is tracked by the
robot, i.e., we assume that the glass covers the coaster and
that the basin is at a fixed position in the robot’s workspace.

Five demonstrations starting from
different initial positions

Reproduction with a new initial
situation
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Fig. 3. Left: Five demonstrations for the two tasks in 3D Cartesian
space. For the first task, the initial positions of the glass placed on a
shelf are represented with ’+’ signs. The initial positions of the coaster
on the table are represented with ’x’ signs. For the second task, the initial
positions of the glass (covering the coaster) are represented with ’+’ signs.
Right: Reproduction of the skill for new situations (bold ’+’ and ’x’ signs),
by combining constraints in joint space and in task space. The Cartesian
trajectories are represented in the robot’s frame of reference (see Fig. 2),
where the dots indicate the beginning of the motions.

A stereoscopic vision system is used to track a set of
objects in 3D Cartesian space, based on tracking in YCbCr
color space of colored patches attached to the objects (only
Cb and Cr are used to be robust to changes in luminosity).
The images from two webcams of 320 × 240 pixels are
processed at a frame rate of 15 Hz by the OpenCV vision
processing software, where each object to track is pre-defined
in a calibration phase by fitting a Gaussian distribution on
the CbCr subspace characterizing the color of the object.
The error obtained between various positions of an object
measured by the vision system and their real positions is
5.9 ± 2.8 mm.1

IV. EXPERIMENTAL RESULTS

Fig. 3 left shows the five demonstrations for the two
tasks. Figs. 4 and 5 show the extracted constraints for the
two tasks. Fig. 3 right shows the reproduction for a new
situation (new initial positions of the objects), during which
the essential features of the skill are reproduced. Fig. 6 shows
how the constraints in joint space and task space influence
the reproduction of the skill. For the first task, the actions
directed toward the glass are first of the most importance.
Then, the ones directed toward the coaster predominate. We
see that the controller determined by the system smoothly
switches from the generalized movement directed toward the
glass (see e.g. x1 at time steps 200-500) to the generalized

1For a complete description of the vision tracking system, the interested
reader can refer to [28].
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Fig. 4. Automatic extraction of the constraints for TASK 1 (the corresponding joints and frames of reference are depicted in Fig. 2), both in task space
(the first two columns represent the constraints on the different objects observed) and in joint space (third column). GMMs with 4 Gaussian components
are found to efficiently encode the skill (for each representation). The associated GMR representation is also depicted. We see that the trajectories relative
to the glass are highly constrained between time steps 200 and 500, i.e., when reaching for the glass. The trajectories relative to the coaster are highly
constrained at the end of the motion, when placing the glass on the coaster.
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Fig. 5. Automatic extraction of the constraints for TASK 2, where GMMs
with 5 Gaussian components are found to efficiently encode the skill (for
each representation). We see that the trajectories relative to the glass are
highly constrained between time steps 200 and 400 (when reaching for the
glass). Then, the trajectories in joint space are more constrained (at the end
of the motion), when emptying the glass in the basin by using a specific
gesture. The snapshots below the graphs illustrate a reproduction attempt by
automatically selecting a controller that smoothly reproduces the extracted
constraints.

movement directed toward the coaster (see e.g. x1 at time
steps 700-1000). For the second task, the trajectories relative
to the glass are first highly important (to reach for the glass
in Cartesian space), and then give way to a controller in
joint space (to empty the glass by tilting it). We see that the
controller smoothly switches from a controller in task space
(see e.g. θ5 at time steps 200-400) to a controller in joint
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Fig. 6. Reproduction attempts for the two tasks considered in the
experiment, by considering the different constraints extracted either inde-
pendently or simultaneously. The trajectories in solid line show the final
reproduction attempt considering the constraints in task space and in joint
space simultaneously. The trajectories in dash-dotted line consider only the
constraints for the first object in task space. The ones in dotted line (for the
first task) consider only the constraints for the second object in task space.
The ones in dashed line consider only the constraints in joint space. We
see that the final controller in solid line smoothly reproduces the essential
features of the skill by adapting the extracted constraints to the new situation.
For the first task, 1© and 2© correspond respectively to the time when the
robot grasps the glass and discards it on the coaster. For the second task,

1© and 2© correspond respectively to the time when the robot grasps the
glass and empties the glass by tilting it appropriately.



space (see e.g. θ5 at time steps 600-1000).

V. DISCUSSION AND FURTHER WORK

During the reproduction process (see Table II), the gen-
eralized joint angle trajectories θ̂ are used twice: (1) in the
null space of the Jacobian matrix to optimize the inverse
kinematics process when considering the constraints in task
space; and (2) to compute the final controller in joint space
by taking into consideration all the constraints. Note that
in the null space, the use of θ̂ only acts as an additional
optimization of the IK process (if possible), while the com-
putation for the final controller considers each constraint as
relevant to the reproduction of the skill (weighted by the
variabilities observed during the demonstrations).

The proposed approach presents advantages over our pre-
vious attempts at combining several constraints encoded in
different data spaces through a GMM/GMR representation.
Compared to the use of Lagrange optimization to derive a
metric of imitation performance [1], the proposed method
does not require to analytically derive the cost function. It is
then more generic and remains statistically sound. Compared
to the geometric inverse kinematics approach used in [2],
[3], the approach proposed here can be extended to different
robot architectures. Moreover, this direct computation ap-
proach allows to compute the resulting constraints (1) for
the final controller in the form of a covariance matrix by
using the product properties of Gaussian distributions.

For the experiments presented here, the whole computa-
tion (using Matlab) took less than one minute and is thus
satisfying for a teaching application where the demonstra-
tion phase and reproduction phase are separated. Further
work aims at: (1) investigating more complex interactions
where the demonstrations and reproductions are more tightly
intertwined; (2) coupling the proposed learning approach
with a dynamical controller to be dynamically robust to
perturbations and changes in the environment [29] when
reproducing the skill; and (3) extending the approach to
a scaffolding process where the two Katana robots are
simultaneously controlled in order to explore more complex
coordination tasks [30].

VI. CONCLUSION

We presented a probabilistic framework to extract au-
tomatically the essential features characterizing a skill by
handling constraints both in joint space and in task space,
and proposed an inverse kinematics method to re-use the
learned skill in new situations. We then demonstrated through
experiments performed on two Katana robots that the ap-
proach could be applied successfully to learn generically new
manipulation skills at a trajectory level by generalizing over
several demonstrations and by extending the learned skills
to new positions of objects.
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