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Abstract— We study the use of different weighting mecha-
nisms in robot learning to represent a movement as a combi-
nation of linear systems. Kinesthetic teaching is used to acquire
a skill from demonstrations which is then reproduced by the
robot. The behaviors of the systems are analyzed when the robot
faces perturbation introduced by the user physically interacting
with the robot to momentarily stop the task. We propose the
use of a Hidden Semi-Markov Model (HSMM) representation
to encapsulate duration and position information in a robust
manner with parameterization on the involvement of time and
space constraints. The approach is tested in simulation and in
two robot experiments, where a 7 DOFs manipulator is taught
to play a melody by pressing three big keys and to pull a model
train on its track.

I. INTRODUCTION

One building block common to various approaches in
robot learning is the representation of tasks and nonlinear
movements. We take the perspective that a superposition
of linear subsystems can represent the realm of the con-
tinuous world, and that such representation can be ma-
nipulated/visualized by users and help at generalizing the
task to new situations. Various representations of movement
primitives have been adopted, with the common perspective
that the combination of linear subsystems f i(x) can lead to
complex behaviors

ẋ =

K∑
i=1

hi(x, t) f i(x) =

K∑
i=1

hi(x, t)
(
Aix+ bi

)
. (1)

Examples of models that can be formulated in this way are
the Stable Estimator of Dynamical Systems (SEDS) [1], the
Dynamic Movement Primitives (DMP) [2], [3] (see [4] and
[5] for explanations of the reformulation), the Takagi-Sugeno
Model (TSM) [6], or the biologically-inspired computational
models combining irrotational and solenoidal vector fields
[7]. These methods differ in the representation of x,1 in the
way Ai and bi are estimated and constrained, and in the
mechanism that combines the different subsystems through
scalar weights hi.

We concentrate in this paper on this last issue, which
has often been put aside but which is a crucial aspect that
modifies the behavior of a system under strong perturbation.
We first review different weighting mechanisms to switch
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1For example, a second order system can be defined for DMP by
considering the state x =

(
θ
θ̇

)
in which θ and θ̇ are angular positions and

velocities, see [5] for details.

between movement primitives along the task, by emphasiz-
ing that these mechanisms are often interchangeable across
the different models, see e.g. [8], [9]. Resulting from this
analysis, we then introduce a new weighting scheme that
encompasses spatial, temporal and sequential perspectives
within a unified notation based on Hidden Semi-Markov
Model (HSMM) [10].

The core Hidden Markov Model (HMM) structure offers a
multitude of variants covering various robot learning issues
in real-world environment. In robot learning by imitation,
it presents relevant characteristics to handle spatial and
temporal variabilities across multiple demonstrations, see
e.g. [9], [11]–[15]. This structure is used here to study the
different forms of recovery that the robot can use when the
system is faced with strong perturbations such as stopping
the robot in the course of the task, or pushing the robot away
from its reproduced trajectory [16].

II. COMBINATION OF MOVEMENT PRIMITIVES

The problem of combining efficiently movement primi-
tives has been addressed with perspectives and formulations
in biology, robotics and system control. In its most simple
form, the superposition of movement primitives relates to
control approaches based on piecewise linear systems (see
e.g. [17]) defined by step-function switching rules hPLS

i =
Bi(x, t) with Bi = {0, 1}. Approaches in Fuzzy Logic such
as the Takagi-Sugeno Model (TSM) [6] extends the weighting
mechanism with linear switching rules hTSM

i = Ait + bi,
paralleling the subjective description of tasks in human
language.

Computational framework have been explored in biology
to superpose independent elementary vector fields to study
movement learning and control in both biological and arti-
ficial systems [7]. The aim of such models is to show that
the task of generating coordinated movements in a multi-
articular system can be carried out by combining vector fields
generated by independent modules of control. One of this
pioneer work considers a linear combination of irrotational
and solenoidal fields [7], where several sets of weights can
be considered to reproduce different behaviors.

A. Weights based on Gaussian distributions in time

Several weighting mechanisms do not use time directly
but create instead an implicit time dependency on the system
[4], [8].2 For example, the weighting mechanism in Dynamic
Movement Primitives (DMP) [2], [3] is defined by a decay

2The aim of such reparameterization is to include some modulation
properties.



term evolving through a dynamical system ṡ = −ωs,
initialized with s = 1 and converging to zero Even though the
weighting mechanism is originally defined on s, a common
practice is to define weighting kernels that equivalently have
equal spacing in time, see [3], [8].

A similar time-based mechanism can be defined as Gaus-
sian distributions (or equivalently radial basis functions) with
predetermined variance and centers equally distributed in
time

hTIME
i =

αTIME
i∑K

k=1 α
TIME
k

, with αTIME
i = N (t; µT

i ,Σ
T
i ). (2)

B. Gaussian Mixture Model and Hidden Markov Model

Approaches based on Gaussian Mixture Model (GMM)
and Gaussian Mixture Regression (GMR) [1], [9] can provide
autonomous systems based on time-invariant processes, with

hGMM
i =

αGMM
i∑K

k=1 α
GMM
k

, with αGMM
i = N (x; µX

i ,Σ
X
i ). (3)

The HMM representation presents an intermediary ap-
proach where the forward variable is used as a weight
encapsulating spatial and sequential information [18]. Here,
the output distribution of each HMM state is represented by a
Gaussian locally encoding variation and correlation informa-
tion. The parameters of the HMM {πi, ai,j ,µi,Σi}Ki=1 are
learned by Expectation-Maximization (EM), where πi is the
initial probability of being in state i and ai,j is the transitional
probability from state i to state j. µi and Σi represent the
center and the covariance matrix of the i-th Gaussian (one
Gaussian per HMM state is considered here). By using this
representation, the forward variable is used in [9] to combine
the movement primitives with weights recursively computed
as

hHMM
i,n =

αHMM
i,n∑K

k=1 α
HMM
k,n

, with (4)

αHMM
i,n =

( K∑
j=1

αHMM
j,n−1 aj,i

)
N (xn; µ

X
i ,Σ

X
i ),

and initialization given by αHMM
i,1 = πi N (x1; µ

X
i ,Σ

X
i ).

If one wishes to use only transition probability information
(discarding spatial information) to estimate the weights, the
forward variable can be initialized with αtHMM

i,1 = πi, and
recursively computed with αtHMM

i,n =
∑K

j=1 α
tHMM
j,n−1 aj,i. The

abbreviation tHMM will be used in this case.
Even if standard HMM encapsulates spatial and sequential

information, the forward variable in (4) exponentially biases
position information over transition information. Indeed,
temporal information is only poorly represented by the
model through homogeneous transition probabilities. Several
directions have been proposed to provide a better equity
between duration and space information.

Lee and Ott proposed in [14] to combine HMM with
Gaussian Mixture Regression (GMR) to counter the limi-
tations of the simple modeling of transition information in
standard HMM to retrieve smooth trajectories. In their work,
the efficiency of HMM for online incremental recognition is

HSMM

GMM HMM DMP
(decay term)

Spatial constraints Temporal constraints

Fig. 1. The Hidden Semi-Markov Model (HSMM) representation allows
us to parameterize the privileges for time and space information. At one
utmost limit, the system produces transitions across a set of primitives with
predefined duration and blending (such as in an explicit time-dependent
model). At the other utmost limit, the system produces weights based solely
on the current position (state) of the system, emulating an autonomous
system with GMM weighting mechanism. The probabilistic modeling of
state duration in HSMM allows the robot to cover a wider range of behaviors
for reproduction under strong perturbation.

combined with the efficiency of GMR for smooth trajectory
retrieval based on explicit time modeling.

Kim at al proposed in [19] to cope with the limitations
of weights based on GMM when one wishes to reproduce
motion with new timing constraints. The total duration of the
remaining movement is estimated by internally simulating
reproduction until convergence. This information is then used
to define a scalar gain in the form of a dynamical system that
modulates the velocity computed in (1).

C. Hidden semi-Markov model

We explore here the use of Hidden Semi-Markov Model
(HSMM) [10] to switch across dynamical systems by taking
into account temporal and/or spatial information. To illustrate
the approach, we will consider a physical human-robot
interaction example in which the user temporarily holds the
end-effector of the robot while it executes a skill. The robot
is gravity compensated and controlled with low gains to
provide a safe bidirectional interaction. In this context, the
desired recovery can be drastically different depending on
the executed skill. For example, the robot should continue
its movement without changing the path for a writing task
(spatial information prevails). For a drumming task, the robot
should recover from the delay involved by the perturbation by
skipping unimportant parts of the movement to reproduce an
adequate rhythmic behavior. When faced with perturbation,
most of the tasks require to set a compromise between space
and time constraints (with possible modification of these
constraints during the task).

Retrieving duration information based on the fixed set of
self-transition probabilities of conventional HMM does not
provide a good model of state duration. It is however possible
to modify the structure of the HMM to replace the self-
transition probability ai,i of each state i with a parametric
model pi(d) of the state duration d ∈ {1, 2, . . . , dmax},
where dmax determines a maximum limit for the number
of iterations that the system can stay in a state.3

3Note that by setting pi(d) to an exponential density, a standard HMM
is obtained. In practice, dmax can be set by dividing the length of the
demonstration by the number of states in the model, and defining dmax as
2-3 times this value to guarantee that the duration probability distribution
is well defined even if EM converges to poor local optima. Defining dmax

as the length of the trajectory is also possible but could be computationally
expensive for long movement.



There are several duration models in the HMM literature
sharing this core idea, see e.g. [10], [18]. We have selected
the HSMM because it provides a structure that can be
analyzed, visualized and modified in the most intuitive way,
which is a desirable feature in our application, see Fig. 1.

The rescaled forward variable of HSMM is defined as

hHSMM
i,n =

αHSMM
i,n∑K

k=1 α
HSMM
k,n

, with (5)

αHSMM
i,n =

K∑
j=1

min(dmax,n−1)∑
d=1

αHSMM
j,n−d aj,i pi(d)

n∏
s=n−d+1

N (xs;µ
X
i ,Σ

X
i ),

and initialization given by αHSMM
i,1 = πi N (x1; µX

i ,Σ
X
i ), see

[10] for details.
If one wishes to use only state duration and transition

information to estimate the weights (thus discarding spa-
tial information), the forward variable is initialized with
αtHSMM
i,1 = πi, and recursively computed with αtHSMM

i,n =∑K
j=1

∑min(dmax,n−1)
d=1 αtHSMM

j,n−d aj,i pi(d). The abbreviation
tHSMM will be used in this case.

The forward-backward (FB) procedure is the key process
for HMM parameters learning and likelihood estimation. For
standard HMM, the algorithm stores the state probabilities
for one time step, while for HSMM, it requires a state proba-
bility history determined by dmax iteration steps, see (4) and
(5). The complexity of computing the forward variable in
standard HMM is O

(
(D2 + 2)KN

)
for a left-right model,

with single Gaussian per state and full covariance (D is the
dimension of each datapoint, N the number of datapoints,
and K the number of HMM states).

With [10], the complexity of computing the HSMM for-
ward variable is O

(
(D2 + 1 + dmax)KN

)
. Practically, if

movements are recorded at a higher rate than the relevant
dynamics to acquire, the training dataset can be down-
sampled to reduce N and dmax. Even if the HSMM forward
variable computation is slower than HMM, it can be used in
practice for online robot applications (practical computation
time will be provided in Sec. III-A). In our paper, the
proposed algorithms are adapted to parametric state duration
pi(d) = N (d∆t; µD

i ,Σ
D
i ) and parametric output distribu-

tions represented by Gaussians N (µX
i ,Σ

X
i ).

4

D. Generalized formulation

The αi term in (2), (3) and (5) can be reformulated as5

αG
i,n=

[
α′
i,n

]w1
[ K∑
j=1

min(dmax,n−1)∑
d=1

α′′
i,n [α′′′

i,j,n]
w1w2

]w2

,with (6)

α′
i,n = N (xn; µ

X
i ,Σ

X
i ), α′′

i,j,n = αG
j,n−d aj,i pi(d),

and α′′′
i,n =

n−1∏
s=n−d+1

N (xs; µ
X
i ,Σ

X
i ).

4The interested readers can refer to [10] for details concerning the
computation of forward-backward variables and Gaussian distribution rees-
timation/evaluation processes.

5This can be seen by factorization of the last product term in (5) for the
time step t.

In the above equation, the weighting schemes correspond-
ing to a GMM, HSMM and tHSMM representation are
retrieved respectively with {w1=1, w2=0}, {w1=1, w2=
1} and {w1=0, w2=1}.

III. SIMULATION EXPERIMENTS

An S-shaped trajectory in a two-dimensional space is used
to highlight the properties of the approach and contrast
it to other weighting schemes. Each model uses 6 states
and shares the same output distributions (trained by EM).
Matrices Ai and vectors bi are also shared by the different
methods. These parameters have been estimated as an opti-
mization under constraint problem6 in which one searches
for Ai and bi values that match the demonstrated data,
under the constraint that the symmetric part of Ai (namely
1
2 (Ai+A⊤

i )) has eigenvalues with strictly negative real part
(one of the optimization criterion employed in SEDS [1],
see also the contracting properties of a linear time-varying
system in contraction theory [20]).

A. Simulation experiments results

Fig. 2 presents the simulation results. The top-left plots
show the result of the HSMM encoding, representing both
state duration (left) and output distribution (right) with
Gaussian distributions. The graph in the center illustrates
the difference of connectivity between an HMM (top) and
HSMM (bottom). The state duration information pi(d) shows
that the states in blue are quickly visited compared to the
state in orange that shows a longer duration and larger
variation.

The top-right timeline graphs show the trajectories re-
produced by HMM, HSMM and tHSMM with perturbation,
respectively represented with red, blue and green lines. The
demonstration is represented with black lines. We see that
after perturbation, the tHSMM trajectory skips some parts of
the motion to recover from the perturbation. For HMM, the
shape of the trajectory is only slightly distorted, i.e., both
temporal and spatial aspects are taken into consideration,
but the spatial component remains dominant. HSMM shows
a similar behavior, but provides a better balance between
temporal and spatial constraints.

The other plots in Fig. 2 show the reproduction behaviors
in normal and perturbed conditions for each model. For each
model, the first timeline graph shows the changes of weights
hi for a reproduction without external perturbation (with T =
200 iterations as in the demonstration). The second timeline
graph shows the results of an hard-coded perturbation that
simulates the user holding the arm of the robot during a few
iterations. In the range of iteration steps t = [95, 160], the
system is forced to stay at the same position. To show the
effect of the perturbation, the number of iterations has been
increased to T = 260. Note that the system is not aware of
the type, occurrence and duration of the perturbation.

For each model, the square graph on the right shows the
reproduced trajectories in 2D space, where the color of each

6We used an interior point solver for non-linear programming initialized
by weighted least-squares.



HSMM state duration and output distribution encoded with Gaussians: Trajectories reproduced by HSMM, tHSMM and HMM:
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Fig. 2. Learned models and reproduction attempts. For each model, the first and second timeline graphs show respectively the normal reproduction and
the reproduction with perturbation.

datapoint is blended according to the probability of belonging
to the state of corresponding color. The trajectories with
crosses and circles correspond respectively to unperturbed
and perturbed reproductions. The thick black cross represents
the position where the perturbation occurs.

Without perturbation, we see that all models reproduce a
similar shape, with tHMM retrieving the worst match with
strong smoothing of the original trajectory. This confirmed
our expectation, since only transition probabilities are used
at each iteration in tHMM to model the duration of each
state, which rapidly accumulates uncertainty after a couple
of iterations, as explained in Sec. II-C. TIME and tHSMM
share similar characteristics by representing state transition
information through an explicit encoding of time (for TIME)
and state duration (for tHSMM). The weighting mechanism
in TIME is characterized by a constant duration for each state
as well as a constant uncertainty for each transition between

two states, which is reflected by the regular shape of hi in the
timeline graphs. In contrast, tHSMM allows to set flexibly
different duration for each state and different uncertainty
on the transition time, while keeping a smooth blending
of the different subsystems. This allows the system to cope
with trajectories presenting different levels of granularity or
variable complexity along the movement.7

Reproductions with perturbation show different behaviors.
On the one hand, the systems focusing on temporal infor-
mation (tHSMM, tHMM and TIME) try to recover from
the perturbation by skipping some states to recover from
the induced time delay. By comparing HSMM and tHSMM
in the square graphs, we see that after the perturbation,
tHSMM takes a shortcut to finish the trajectory. On the other

7Note that by setting the same center and the same variance for the
duration of each state, the weighting mechanism in tHSMM can simulate
the weighting scheme in TIME by modeling probabilistically the duration
of a state instead of an explicit time variable.



hand, the GMM weighting mechanism (based only on spatial
information) continues the iteration after the perturbation as
if it did not occur (see the freezed hi values for GMM
during the perturbation). The models taking into account
both temporal and spatial information show an intermediary
behavior. We see that for HSMM, at the beginning of the
perturbation, the weight corresponding to the yellow state
first keeps the same value for a few iterations and then
progressively decreases until the next state in orange is
triggered.

The computation of each iteration step in (5) (HSMM)
and (4) (HMM) respectively takes 0.4ms and 0.3ms in
our implementation with a standard laptop running Matlab,
which is sufficiently low for on-line computation in our
application (the control loop is 2ms).

IV. REAL-WORLD ROBOT EXPERIMENTS

The experiment is implemented with a Barrett WAM 7
DOFs robotic arm, controlled by inverse dynamics solved
with a recursive Newton-Euler formulation. A gravity com-
pensation force is added to each link, and tracking of a
desired path in Cartesian space is achieved by a force
command F = mẍ, where m is a virtual mass and ẍ
is a desired acceleration command estimated by numerical
differentiation. This makes the robot actively compliant and
allows the user to stop the robot by holding its end-effector.

Two tasks are evaluated. The first consists of sequen-
tially pressing three large buttons to play a melody.8 The
second task consists of guiding a model train on its track
to pass over a bridge. Two demonstrations are provided
for each task through kinesthetic teaching, by physically
moving the robot’s arm through the task while the robot
is gravity compensated. Each demonstration collects 3D
Cartesian coordinates of the robot’s end-effector during the
movement. 11 and 8 states are respectively used for the first
and second tasks to encode the movement. 9 The general
weighting mechanism in (6) is used for the two tasks, by
setting parameters {w1=0, w2=1} for the melody playing
task (corresponding to the tHSMM formulation), and {w1=
1, w2=0} for the model railway task (corresponding to the
GMM formulation). The learned model is used to reproduce
the task, during which the user briefly holds the robot’s end-
effector to introduce perturbation.

A. Robot experiments results

Fig. 3 presents the results of the experiments. For each
task, the columns from left to right show the setup of
the experiment, the demonstrations and learned Gaussian
distributions, the reproduction behaviors under perturbation,
and the blending of the motion primitives according to the
weights hi (the perturbation is represented by the superim-
posed gray area). The two weighting mechanisms produce

8An interface has been developed that connects the buttons to the PC
controlling the robot to emit distinctive sounds when being activated.

9The number of states has been estimated empirically in these experi-
ments, but automatic model selection such as Bayesian Information Criterion
(BIC) could also be used.

different behaviors, by continuing the progress of the weights
in the melody playing task, and by ”freezing” the current
weights in the model railway task. In the melody playing
task, the path followed by the robot takes a shortcut to
recover from the time delay induced by the perturbation.
The slight tracking errors observed in the graphs are due to
the low gains used during reproduction to permit physical
interaction with the robot. A video of the experiments
accompanies the submission (video and sourcecode available
on http://programming-by-demonstration.org).

We also reproduced the two tasks by interchanging the
weighting mechanisms ({w1 = 0, w2 = 1} for the model
railway task, and {w1 = 1, w2 = 0} for the melody playing
task), in which the user applied again a similar perturbation
during reproduction (similar location and duration). For the
first task, the train quickly goes off its track after perturbation
(see accompanying video). For the melody playing task, we
analyzed the durations of subparts of movement based on
the recorded videos.

To reduce the unpredictable effect of the collision with the
object and the inconsistency of the sound emitting device
among multiple reproduction trials, we took an average
duration between two sound emissions and motion between
two hits (when the robot leaves the white button and reaches
the red button), which gives 2.5±0.5s during reproduction
for both models without perturbation. For a perturbation of
1.1±0.1s, the ”correct” and ”wrong” models respectively
produce durations of 2.5±0.5s (similar timing) and 4.0±0.5s
(introducing an undesired delay). These first two experiments
based on an HSMM weighting scheme confirms our expec-
tation that there is a non-negligible difference among the
different weighting mechanisms. A thorough analysis with
different types of perturbation will be part of future work.

V. CONCLUSION AND FUTURE WORK

We have demonstrated that different reproduction behav-
iors can be reproduced by using an HSMM representation of
the movement with a generalized formulation encapsulating
different weighting strategies. We showed through simulated
experiments and through two real-world human-robot inter-
action examples that different reproduction behaviors can
be obtained, which is particularly noticeable when strong
sources of perturbation are considered during the repro-
duction. We focused on the scenario where the user can
physically interact with the robot to provide demonstration
and to momentary halt (or slow down) the robot during
reproduction. The aim of such perturbation is to provide
an illustrative example to intuitively interpret the underlying
mechanism of the different approaches. The proposed system
is however not limited to this specific type of perturbation,
since the robot does not need to explicitly detect the pertur-
bation through an external mechanism.

We plan in future work to exploit the HSMM properties to
automatically extract the most relevant weighting mechanism
(namely, the parameters w1 and w2 in (6)) from a series
of demonstrations, depending on the task and expected
perturbation. More complex bi-direction teaching interaction
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Fig. 3. Top: Melody playing task in which temporal constraints are important to reproduce a desired melody under perturbation. Bottom: Model railway
task in which spatial constraints prevail when perturbation occurs. Namely, the robot needs to follow a specific path to keep the train on its track. The
starting position is depicted by a large point, and the position of the perturbation is depicted by a red cross.

will be considered in which the demonstration phase is not
separated with the reproduction phase. This is a particularly
challenging task because on the one hand, it is not possi-
ble to automatically extract information on the weighting
mechanism if noise-free demonstrations of the skill are
provided (such as in scaffolded environment). On the other
hand, it is not possible to robustly extract the characteristics
of the task from few demonstrations if several sources of
perturbations simultaneously occur. It is thus required to
explore bidirectional teaching interaction in which both the
user and the robot can set, test and evaluate reproductions
in new situations to determine in which manner the acquired
skill can be generalized while handling perturbation. We also
plan to study if the binary parameters w1 and w2 in (6) could
be defined as continuous variables to reproduce skills with
time and space constraints whose levels of importance vary
during the task.
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