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Abstract

This chapter presents an overview of learning approaches
for the acquisition of controllers and movement skills in
humanoid robots. The term learning control refers to the
process of acquiring a control strategy to achieve a task.
While the definition is in some cases restrained to trial-
and-error learning, we present here learning control in a
broader perspective, with a focus on the representation of
skills to be acquired, and on the different learning strate-
gies that can contribute to the acquisition of robust and
adaptive controllers for humanoids.
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1 Introduction

Humanoids present unique challenges for learning control.
The structural resemblance with humans can be exploited
to provide intuitive teaching interactions and to facilitate
the mapping between users and robots. Learning con-
trollers in humanoids can leverage upon different modali-
ties and learning strategies, including visual observation,
kinesthetic teaching, haptic correction, visual or oral feed-
back, and self-refinement.

Figure 1 presents examples of skills acquisition with hu-
manoids. These learning challenges are characterized by
an exceptional richness of structures and constraints that
can be explored with such platforms. When considering
humanoid controllers, the number of demonstrations or
trials that is considered will often be much lower in com-
parison to other fields in machine learning. This character-
istic provides a unique opportunity to develop models and
algorithms dedicated to humanoids, that can learn simi-
larly to humans, and that can generalize control skills to
new situations through demonstration and iterative learn-
ing. The selection of models and tools used in practice for
learning control is often guided by this mismatch between
the scarce number of observation/execution trials and the
high number of degrees of freedom to sense and control.
In terms of encoding, generative models can, for exam-
ple, be selected when there is the need to both recognize
and synthesize controllers. The scarcity of data also tends
to favor linear regression techniques. We will see in the
chapter that linear regression is often used in one way or
another, either locally or in a kernel form, in order to pro-
vide nonlinear global behaviors while keeping locally lin-
ear behaviors. Since the combination of learning and con-
trol is a challenge per se, the techniques used in practice
might appear as basic techniques from a learning or con-
trol theory perspective (often revolving around variants of
mixture models or linear quadratic regulators), but have
been shown in practice to be efficient. From a modeling
perspective, the combination of learning and control tech-
niques can also be facilitated by the correspondence be-
tween quadratic error minimization in linear systems and
log-likelihood optimization in statistical learning, which is
often the key to many approaches combining learning and
control.
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The chapter is organized as follows. Section 2 presents
different ways of collecting data when learning control
policies. Section 3 presents various approaches to rep-
resent control policies in a compact and modular man-
ner, by relying on movement primitives and associated
regression algorithms. The section covers weighted least
squares (§3.1), locally weighted regression (§3.2), dynami-
cal movement primitives (§3.3), Gaussian mixture regres-
sion (§3.4), Gaussian process regression (§3.5) as well as
various forms of trajectory distributions (§3.6), includ-
ing ProMP (§3.6.1) and trajectory-GMM (§3.6.2). We
then briefly introduce extensions to hidden Markov mod-
els (§3.7), followed by the introduction of various forms of
autonomous dynamical systems (§3.8).
Section 4 presents the use of these representations in

the context of control policy learning. Section 4.1 intro-
duces their use in the context of linear quadratic tracking.
Section 4.2 covers optimization strategies based on reward-
weighted averaging. Section 4.3 introduces iterative learn-
ing control. Section 4.4 extends the control policy learning
problem to the task prioritization issue in humanoids. Sec-
tion 4.5 finally illustrates the exploitation of these tools in
application examples.
§5 concludes this chapter by presenting future prospects

and open research directions. The source codes of simple
didactic examples accompany the different sections of this
chapter, and are available at
http://www.idiap.ch/software/pbdlib/.

2 Learning modalities for skills ac-
quisition

2.1 Visual observation

Visual observations of human motions can be exploited
in imitation learning. Three-dimensional motion capture
systems can be used for mimicking the user’s motion to
a robot, which is particularly convenient in the case of
humanoid robots. The overall structure consists of three
components: human motion measurement, motion map-
ping from a human to a robot, and motion control.
Human motions can be measured by different types of

systems, such as marker-based optical motion capture,
inertial motion capture, markerless optical motion cap-
ture, and time of flight sensors. Numerous techniques ex-
ist for human motion measurement and many commer-
cial motion capture systems are available on the mar-
ket, such as Vicon (http://www.vicon.com) or Optitrack
(http://www.optitrack.com).
The motion mapping problem concerns the mapping of

human motions to robot motions in spite of their kine-
matic and dynamic differences. The earlier work in online
mapping started with the imitation of upper-body mo-
tions. Pollard et al. [76] adapted the joint angles of a
human skeleton model to a robot according to joint and
velocity limits by local scaling. In order to measure quan-
titatively the humanlikeness of the arm motions, Kim et

al. [42] defined the elbow elevation angle and solved the
inverse kinematics analytically according to the geometric
relations by specifying six holonomic constraints for each
arm.

Another approach followed by [19, 17, 71, 32] is to de-
velop controllers in task space (i.e., marker space). In [19],
different priorities are assigned to the markers and realized
based on projections into subsequent nullspaces by using
the operational space approach. Dariush et al. [17] utilize
a closed-loop inverse kinematics strategy. In the Cartesian
control method for the retargeting of human motion to a
humanoid robot in [71], a set of control points on the hu-
manoid robot is connected to the corresponding measured
points on a human via virtual springs, where the spring
forces drive a simulation of the robot dynamics. The ap-
proach does not require a hard priority order between the
markers, and is applicable both for position control and
torque control.
Although the imitation of upper-body motion has been

explored with both task and joint space mappings at kine-
matic level, lower-body motions are often either neglected
or replaced by simple balance control without considering
the motion similarity of the lower body. Online footprint
imitation is realized on the MAHRU-R robot by feeding
the recognized and adapted human step parameters into
a classical zero-moment point (ZMP)-based walking con-
troller [43]. In [32, 46] whole-body human motions are
imitated in real time including stance foot changes by a
NAO humanoid robot. Foot position and orientation tra-
jectories are faithfully imitated rather than using a prede-
fined foot step plan. In [32, 71], the imitation algorithm is
combined with the paradigm of learning from demonstra-
tions. It is shown in [32] that the delay of online human-
legged motion imitation could be reduced by learning and
predicting human stances. By handling motion similar-
ity both in task space and joint space, more humanlike
motions are achieved in [33], namely knee-stretched walk-
ing by considering footprints, knee angles, etc. The on-
line walking imitation is formulated as an optimization
problem with a set of task space and joint space tracking
targets with different priorities, where conflicts in these
two spaces were resolved by taking into account dynamic
constraints during the different walking phases.

2.2 Kinesthetic teaching

Physical interaction provides a natural interface to kines-
thetic transfer of skills, where the user can demonstrate
or refine the task in the robot’s environment while feeling
its capabilities and limitations [10, 38, 55]. The recent
hardware and software developments toward compliant
and tactile robots (including variable stiffness actuators,
backdrivable motors, and artificial skins) make kinesthetic
teaching a promising teaching modality for the user.
Early work in kinesthetic teaching considered a passive

robot behavior [10, 38] by deactivating the controlled mo-
tion or setting very low servo gains. Therein the teacher
might tend to move motors one by one rather than demon-
strating natural coordinated movements. The develop-
ment of torque-controlled robots initiated new approaches
combining active impedance control and physical teaching
[54, 55, 83].
Methods for incremental learning using multiple learn-

ing modalities [54, 55] offer intuitive teaching of natural
motions and ensure synchronization of complex whole-
body motions. Therein, the learning procedure starts with
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Figure 1: Examples of skills learning in humanoids. (a) Constrained reaching tasks with the Honda ASIMO robot
[31]. (b) Task priority recognition with HRP-2 [29]. (c) Communicative gesture synthesis (high-five gesture) with the
IRT humanoid [56]. (d) Collaborative assembly with a bimanual upper-torso platform composed of two KUKA LWR
manipulators [64]. (e) Rice cooking with a humanoid developed at Hanyang University [57]. (f) Bimanual pouring
of liquid in a glass with ASIMO [68]. (g) Reaching an object (with hands initially under the table) by using the
Sarcos CB-i humanoid [97]. (h) Bimanual adaptation of pointing and reaching with the compliant COMAN humanoid
[12]. (i) Feeding task with the Fujitsu HOAP-3 humanoid [11]. (j) Dancing with Justin [55]. (k) Locomotion control
acquisition with NAO [32]. (l) Collaborative lifting with HRP-2 [21]. (m) Erasing a whiteboard with the Fujitsu
HOAP-2 humanoid [48]. (n) Teleaction with Robonaut [75]. (o) Knee stretched walking pattern acquisition with DLR
TORO [33].
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observation learning (i.e. whole-body motion retargeting
from a human demonstrator to a robot) and is followed
by kinesthetic motion refinement. A nonlinear impedance
control is designed to achieve the desired behavior dur-
ing physical coaching: good tracking in case of no physi-
cal contact and compliant behavior for physical guidance,
with a limited range of compliance. The impedance con-
troller allows both tracking of motion primitives in free-
space and a comfortable kinesthetic modification by a hu-
man supervisor.

In a user study on kinesthetic teaching [103], the role
of kinematic redundancy is identified as one of the main
difficulties for the user. An algorithm to teach both end-
effector and null-space movements was developed in [83] by
utilizing the concept of prioritized tasks. Multiple tasks,
such as end-effector and null-space motion primitives, can
be taught physically one by one using the compliance con-
troller. In [2], the taught tasks and the user’s physical
guidance are treated as prioritized tasks and their prior-
ities are adjusted dynamically according to the exerted
human force by task transition control.

In contrast to the upper body, kinesthetic teaching
for legged humanoid robots has not been studied exten-
sively (namely, where the human’s exerted forces influence
on the robot’s balancing). In [48], an interaction con-
trol approach for the upper-body motion was combined
with a lower-body balancing algorithm based on the reac-
tion nullspace approach. External forces from kinesthetic
teaching or from the task execution were considered as dis-
turbances for the balancer, which employed ankle and hip
strategy for balancing. In order to avoid big momentum
on upper body to keep ZMP stable, disturbance estima-
tion was used in [72] to take external force into account for
explicit balancing and for triggering a compliant behavior
at the interaction point. The method helps the user to
kinesthetically teach the full-body humanoid robot in a
synchronized and easy way, without worrying about bal-
ancing.

Besides the aforementioned learning modalities, other
strategies have been further utilized for teaching a hu-
manoid robot, which are covered in other dedicated chap-
ters. In particular, teleoperation systems enable the hu-
man subject to feel the interaction of a robot with the en-
vironment, which can be exploited to learn force profiles
for a desired task [21]. Thanks to the advances of artifi-
cial skins, tactile contact is used as a modality for learning
control by defining specific tactile patterns as control com-
mands. In addition, voice commands and oral feedback
can be integrated in the loop of learning control.

3 Movement primitive representa-
tions

Movement primitive representations in learning control
have the role of robustly and compactly encoding skills,
as building blocks that can be organized in parallel and
in series to create more complex behaviors. In contrast to
the use of movement primitives in the context of motion
analysis, movement primitives in the context of learning
controllers also require the capability to regenerate move-

ments. The challenge can often be recast as a regression
problem; see, e.g., [89] for a review of regression tech-
niques. We will present next several examples of tech-
niques for movement primitives encoding and retrieval.
Many relevant bridges can be built between these differ-

ent techniques. For this reason, a common notation and
terminology is adopted, which can sometimes partly de-
part from the original work, with the aim of bringing a
joint overview of the representations available for learning
control. From a structural perspective, these techniques
often differ (sometimes in a parametric way) in regard
to the spread of the regions in which each model compo-
nent is valid, from very local behaviors with simple poli-
cies changing frequently to global behaviors with complex
policies changing only sporadically.

3.1 Weighted least squares

In many humanoid robotics applications, least squares or
linear regression appears in one form or another, from sim-
ple to large-scale problems. This is mainly due to the fact
that an efficient and practical way to handle a nonlinear
regression problem is to solve it locally as a linear problem.
We first recall here linear regression and its weighted ver-
sion, which will be at the core of the techniques presented
further.
As inputs and outputs are most often multidimensional

in humanoid robots applications, we will employ a descrip-
tion of least squares with multidimensional input data or-

ganized as XI∈RN×DI

and multidimensional output data

organized as XO ∈ R
N×DO

, with N the number of data-
points, DI the dimension of the input and DO the dimen-
sion of the output. The datapoints typically consist of
multiple recordings/demonstrations. The concatenation

of M recordings of Tm datapoints provides N=
∑M

m=1 Tm

datapoints.

Linear regression aims at findingA ∈ R
DI×DO

such that
XO =XIA. A solution can be found by minimizing the
Frobenius norm

Â = argmin
A
‖XO −XIA‖2F

= argmin
A

tr
(

(XO −XIA)
⊤
(XO −XIA)

)

, (1)

which is solved by differentiating with respect to A and
equating to zero, providing

Â = (XI⊤
XI)

−1
XI⊤

XO,

with residuals (parameters errors) given by Σ̂A =

(XI⊤XI)
−1

. An alternative least squares solution is
given by

Â = XI⊤
(XIXI⊤

)
−1

XO.

The problem above with DI=DO=1 can be illustrated
in 2D as the problem of fitting a line to a set of data-
points, but it is important to notice that other functions
can be fitted by still keeping the problem linear. Indeed,
the function does not need to be linear in the input data,
only in the parameters that are determined to give the
best fit. For example, when fitting trajectories with XI
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representing time information, we can consider the rela-
tion XO = XIA with different forms of inputs such as
XI = [t1, t2, . . . , tN ]⊤ or XI = [t21, t

2
2, . . . , t

2
N ]⊤ while still

keeping the model linear in the A parameter.
A typical example is polynomial fitting by treating
{t, t2, ...} as distinct independent variables in a multiple
regression model, with input data populated with DI−1
derivatives (including t0 =1 to learn offset). For polyno-
mials of degree 3 (DI=4), we have

XI =








1 t1 t21 t31
1 t2 t22 t32
...

...
...

...

1 tN t2N t3N







. (2)

Polynomial regression is an example of regression us-
ing polynomial basis functions to model a relationship be-
tween two quantities. The drawback of polynomial fits is
that the functions are nonlocal. It is for this reason that
the polynomial basis functions are often used in learning
control along with other forms of basis functions, such as
splines, wavelets, or radial basis functions (RBFs). This
last form of RBFs is very popular in robotics, because they
are simple and allow the decomposition of a robot behav-
ior into piecewise behavior primitives that are smoothly
connected with each other. To allow such combination,
the problem above is first reformulated as weighted least
squares, by solving the objective

Â = argmin
A

tr
(

(XO −XIA)
⊤
W (XO −XIA)

)

, (3)

providing Â = (XI⊤
WXI)

−1
XI⊤

W XO, (4)

with a weighting matrix W ∈ R
N×N , and residuals (pa-

rameters errors) given by Σ̂A = (XI⊤WXI)
−1

. An al-
ternative least squares solution is given by

Â = W̃XI⊤
(XIW̃XI⊤

)
−1

XO. (5)

The above problems are ubiquitous in many humanoid
robot learning and control models.

3.2 Locally weighted regression (LWR)

Locally weighted regression (LWR) is a direct extension
of the weighted least squares formulation in which K

weighted regressions are performed on the same dataset
{XI,XO}. It aims at splitting a nonlinear problem so
that it can be solved locally by linear regression. LWR
was introduced by [16] and popularized by [4] in learning
control.

LWR computes K estimates Âk, each with a different
weighting function φk(x

I

n), often defined as the radial basis
functions (RBF)

φ̃k(x
I

n) = exp
(

−
1

2
(xI

n − µI

k)
⊤
ΣI

k
−1

(xI

n − µI

k)
)

, (6)

or in its rescaled form as (we will see later that the
rescaled form is required for some techniques, but for lo-
cally weighted regression, it can be omitted to enforce the

Figure 2: Polynomial fitting with LWR, by considering
different degrees of the polynomial and by adopting the
number of basis functions accordingly. On one extreme,
the top row depicts a local encoding of movement with
simple patterns, consequently requiring many basis func-
tions. The bottom row depicts the other extreme with a
global polynomial fitting of the same movement requiring
polynomials of high degree.

independence of the local function approximators)

φk(x
I

n) =
φ̃k(x

I

n)
∑K

i=1 φ̃i(xI

n)
, (7)

where µI

k and ΣI

k are the parameters of the k-th RBF. An
associated diagonal matrix

Wk = diag
(

φk(x
I

1), φk(x
I

2), . . . , φk(x
I

N )
)

, (8)

can then be used with (4) to evaluate Âk. The result can
finally be used to compute

XO=

K∑

k=1

WkX
IÂk. (9)

Often, the centroids µI

k in (6) are set to uniformly cover
the input space, and ΣI

k=Iσ2 is used as a common band-
width shared by all basis functions.
LWR can be directly extended to local least squares

polynomial fitting by changing the definition of the inputs.
Figure 2 shows examples of LWR with various choices of
basis functions and numbers of components. Multiple vari-
ants of the above formulation exist, including online esti-
mation with a recursive formulation [84], Bayesian treat-
ments of LWR [95], or extensions such as locally weighted

projection regression (LWPR) that exploit partial least
squares to cope with redundant or irrelevant inputs, with
an online algorithm to estimate the model parameters in-
crementally without having to keep the data in memory
[98].
Applications in humanoids are diverse, ranging from

whole-body inverse dynamics modeling [98] to skillful bi-
manual control such as devil-stick juggling [5].
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Figure 3: DMP with a GMM to encode the joint distribu-
tion of forcing terms f(s) and phase variable s.

3.3 Dynamical movement primitives
(DMP)

Dynamical movement primitives (DMP) are popular rep-
resentations in robotics for learning control. Originally
presented in [37], the model has evolved through years
with different variants and notations; see [36] for a re-
view. We will use here a notation facilitating the links
with the other techniques presented in the chapter. The
original DMP uses a unidimensional first-order notation
and a neural dynamics formulation of the attractor. At
the core of DMP lies a controller in acceleration modulat-
ing a spring-damper system with nonlinear forcing terms,
defined in its most minimal form by

ẍ = kP(µT − x)− kVẋ + f(s),

with f(s) =

K∑

k=1

φk(s) sFk. (10)

The acceleration command is composed of an attractor
to an end-point µT with a spring-damper system of stiff-
ness kP and damping kV . f(s) represents forcing terms,
where s is a phase variable encoding the time evolution of
the system. s can be defined in its simplest form as a dy-
namical system starting from s=1 and driven by ṡ = −αs
to converge to 0 with a given decay factor α; see inset of
Fig. 3.
At the beginning of the movement, the nonlinear forc-

ing terms are prevalent and determine the shape of the
movement. They then progressively disappear and let the
spring-damper system drive entirely the behavior of the
system to converge to the attractor point µT . An option
to handle different motion amplitudes consists of redefin-
ing the movement variables as x← x−x0

µT−x0
, or multiplying

(10) by a scaling factor (µT − x0); see [36] for details.
By employing the LWR notation from Section 3.2, DMP

represents the forcing terms with

XO =








ẍ1 − kP(µT − x1) + kVẋ1

ẍ2 − kP(µT − x2) + kVẋ2

...

ẍT − kP(µT − xT ) + kVẋT







, XI =








s1
s2
...

sT







,

Ak = Fk, Wk = diag
(

φk(s1), φk(s2), . . . , φk(sT )
)

.

(11)

In standard DMP, the centers µI

k of the RBFs defining
φk(s) are set at regular time interval, and a variance ΣI

k

(constant variance in time) is selected to have a sufficient
overlap to guarantee that the forcing terms have smooth
profiles. The organization of the receptive fields can al-
ternatively be learned, by either considering the learning
of each receptive field separately [36] or globally [14]. As
illustrated in Fig. 2, other options to represent the forcing
terms are possible. The first column of Fig. 4 shows an
example of movement learned by DMP.
Applications in humanoids include the adaptive control

of both discrete (point-to-point) and periodic (rhythmic)
motions, with experiments such as locomotion [69], reach-
ing while avoiding obstacles [36], interactive rehabilitation
exercises in stroke patients [37], playing the drums [97], or
cleaning a whiteboard [48].

3.4 Gaussian mixture regression (GMR)

Gaussian mixture regression (GMR) is another popular
technique for movement representation, which can be used
alone or in conjunction with DMP [12, 14]. It relies on
linear transformation and conditioning properties of mul-
tivariate normal distributions. GMR provides a synthe-
sis mechanism to compute output distributions in an on-
line manner, with a computation time independent of the
number of datapoints used to train the model. A charac-
teristic of GMR is that it does not model the regression
function directly. Instead, it first models the joint proba-
bility density of the data in the form of a Gaussian mix-

ture model (GMM), which can, for example, be estimated
by an expectation-maximization (EM) procedure. It can
then compute with very low computation the regression
function from the learned joint density model.
In GMR, both input and output variables can be multi-

dimensional. Any subset of input-output dimensions can
be selected, which can change, if required, at each iteration
during reproduction. In humanoids, this can be exploited
to handle different sources of missing data, since during
reproduction, any combination of input-output mappings
can be considered, where expectations on the remaining
dimensions can be computed as a multivariate distribu-
tion.
In the following, we will denote the block decomposition

of a datapoint xt at time step t, and the center µi and
covariance Σi of the i-th Gaussian in the GMM as

xt =

[
xI

t

xO

t

]

, µi =

[
µI

i

µO

i

]

, Σi =

[
ΣI

i ΣIO

i

ΣOI

i ΣO

i

]

. (12)

To make links with the techniques described in the pre-
vious sections, we will consider first the example of time-
based trajectory retrieval. At each iteration step t during
reproduction, P(xO

t |x
I

t ) can be computed as the multi-
modal conditional distribution

P(xO

t |x
I

t ) =
K∑

i=1

hi(x
I

t ) N
(

µ̂O

i (x
I

t ), Σ̂
O

i

)

(13)

with µ̂O

i (x
I

t ) = µO

i +ΣOI

i ΣI

i
−1

(xI

t − µI

i ) , (14)

Σ̂O

i = ΣO

i −ΣOI

i ΣI

i
−1

ΣIO

i (15)

and hi(x
I

t ) =
πi N (xI

t | µ
I

i ,Σ
I

i )
∑K

k πk N (xI

t | µ
I

k,Σ
I

k)
, (16)
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DMP LQT + HSMM SEDS + GMR CLFDM + GMR Diffeomorphism

Local Global

Figure 4: Learning and reproduction of a movement with different forms of motion encoding. The evolution of the
flow field for the reproduced motion in red lines is depicted at four different time steps (the four rows). The colored
map and black arrows indicate the direction of the flow field. The white contours indicate energy level sets. The first
two columns show approaches in which the flow field is local and evolves during the movement (either with an explicit
sequence of basis functions as in DMP or with a transition and local duration model as in HSMM). The last three
columns present approaches learning a global flow field representing the entire movement. The dataset consists of the
first five samples of the Snake movement in [40] (in gray lines). DMP: With dynamical movement primitives (DMP)
[36], the control behavior corresponds to the evolution of an attractor point with an isotropic flow field. K=12 was
selected for best results. LQT+HSMM: With linear quadratic tracking (LQT), using a stepwise reference retrieved
from a hidden semi-Markov model (HSMM) [94, 79], the control behavior corresponds to an adaptive evolution of the
attractor point, with a flow field coordinating the variables of the feature space to follow the local trend of the motion
(full tracking gain matrices changing over time). This comes at the expense of encoding of full covariances, whose effect
is toned down by a lower number of basis functions required in the model (K can be reduced when full covariances
are considered). K=7 was selected for best results. SEDS+GMR: By using a stable estimator of dynamical system
(SEDS) with Gaussian mixture regression (GMR) [40], a full policy can be learned throughout the feature space,
which is reflected by a flow field that does not change during the evolution of the motion (autonomous dynamical
system). When using an energy function based on the distance to the target, the global stability comes at the expense
of constraining the movement to move closer to the target at each iteration (monotonically decreasing distance to the
target), which can in some cases distort the movement. K =8 was selected for best results. CLFDM+GMR: An
extension of SEDS consists of learning energy functions as weighted sums of asymmetric quadratic functions, which
are used to redefine the energy levels so that they more closely follow the motion flow [41]. K = 5 was selected for
best results. Diffeomorphism: Approaches based on geometrical diffeomorphic transformations can also be used
in autonomous dynamical systems [70, 74]. The approach proposed in [74] is used here to learn energy functions as
smooth diffeomorphic mapping of a canonical dynamical system onto the demonstrated trajectories. In this example,
the movement is not encoded in a model.
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Figure 5: Different options for the structure of the covari-
ance matrices in Gaussian mixture models.

computed with

N (xI

t | µ
I

i ,Σ
I

i ) = (2π)−
D
2 |ΣI

i |
− 1

2

exp
(

−
1

2
(xI

t − µI

i )
⊤
ΣI

i
−1

(xI

t − µI

i )
)

. (17)

When a unimodal output distribution is required, they
resort to the law of total mean and variance to approxi-
mate the distribution with the Gaussian

P(xO

t |x
I

t ) = N
(

xO

t | µ̂
O

t , Σ̂
O

t

)

, with (18)

µ̂O

t =

K∑

i=1

hi(x
I

t ) µ̂
O

i (x
I

t ), and

Σ̂O

t =

K∑

i=1

hi(x
I

t )
(

Σ̂O

i +µ̂O

i (x
I

t ) µ̂
O

i (x
I

t )
⊤

)

− µ̂O

t µ̂
O

t
⊤
.

Figure 5 shows several types of covariance constraints
that are typically used in GMM. Figure 6 illustrates the
GMR process with 1D input and 1D output. Figure 3
presents an example of DMP computed through GMR; see
also [12, 14]. With the GMR representation, a standard
DMP corresponds to a GMM with diagonal covariances.
The formulation of DMP as GMR extends DMP so that
(1) it allows the encoding of local correlations between the
motion variables by extending the diagonal covariances to
full covariances; (2) it provides a principled approach to
estimate the parameters of the RBFs, similar to a GMM
fitting problem; (3) it allows a significant reduction of
the number of required RBFs, because the position and
spread of each RBF can be automatically adjusted from
the demonstrations; and (4) the online estimation of the
DMP parameters and the model selection problem (au-
tomatically estimating the number of RBFs) can readily
exploit techniques compatible with GMM (Bayesian non-
parametrics with Dirichlet processes, spectral clustering,
small variance asymptotics, etc.).

GMR has been applied in humanoids to learn various
tasks, including collaborative transport of objects [21],
pouring beverages in a glass [68], tactile correction of
humanoid upper-body gestures [82], cooking rice [57], or
rolling out pizza dough [13].

Figure 6: Gaussian mixture regression (GMR) has a sim-
ple formulation that can cover a wide range of regression
techniques, from multiple multivariate linear regression
(single Gaussian) to data-driven kernel-based regression
(Gaussian centered on each datapoint).

Figure 7: Illustration of Gaussian process regression
(GPR) for two different kernels (top: RBF, bottom:

periodic). The first column shows stochastic sam-
ples generated from the prior distribution xO∗ ∼
N
(
µ(xI∗),K(xI∗,xI∗)

)
. The second column shows

stochastic samples generated from the posterior distribu-
tion xO∗|xO ∼ N (µ∗,Σ∗) with the datapoints {xI,xO}
depicted in red. The last column shows the associated
distribution N (µ∗,Σ∗) with a shaded area corresponding
to one standard deviation.
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3.5 Gaussian process regression (GPR)

We consider the regression problem of the form xO =
f(xI)+η, with f an unknown function and η an additive
noise process. By assuming the existence of a dataset of
observations as input-output pairs {xI

t ,x
O

t }
N
t=1, the goal

is to evaluate the form of f and the corresponding output
distribution of xO given previously unseen xI∗, namely,
xO∗ ∼ P(xO|xI∗).
In Section 3.2, we have seen polynomial fitting as an

example of parametric modeling technique, where we pro-
vided the degree of the polynomial. There are many sce-
narios in which we have little or no prior knowledge about
the appropriate model to use but where we might still have
some domain specific knowledge that we would like to ex-
press in a more convenient form. For example, we may
know that the observations are samples from an underly-
ing process that is smooth, that has typical amplitude, or
that the variations in the function take place over known
time scales (e.g., within a typical dynamic range). Gaus-
sian processes can be used as a way of reflecting various
forms of prior knowledge about the physical process under
investigation; see, e.g., [101, 78].
GPR relies on the fact that each observation in a dataset

can be imagined as a datapoint sampled from a multivari-
ate Gaussian distribution. The infinite joint distribution
over all possible variables is then equivalent to a distri-
bution over a function space. The underlying model still
requires hyperparameters to be inferred, but these hyper-
parameters govern characteristics that are more generic
such as the scale of a distribution rather than acting ex-
plicitly on the structure or functional form of the signals.
The covariance lies at the core of Gaussian processes,

defined through the use of a kernel function k(xI

i ,x
I

j ) pro-
viding the covariance elements between two samples xI

i

and xI

j . For a set of inputs xI={xI

1 ,x
I

2 , . . . ,x
I

N}, the co-
variance matrix (also known as the Gram matrix) is then
defined as

K(xI,xI) =








k(xI

1 ,x
I

1) k(xI

1 ,x
I

2) · · · k(xI

1 ,x
I

N )
k(xI

2 ,x
I

1) k(xI

2 ,x
I

2) · · · k(xI

2 ,x
I

N )
...

...
. . .

...

k(xI

N ,xI

1) k(xI

N ,xI

2) · · · k(xI

N ,xI

N )







.

(19)
This means that the entire function evaluation f(xI)

associated with the set of inputs xI is a sample
drawn from a multivariate Gaussian distribution xO ∼
N
(

µ(xI),K(xI,xI)
)

. Therefore a GP specifies a distri-

bution over functions.
We can additionally assume there is noise associated

with the observed function values xO

t . Samples are of-
ten assumed to be independent and identically distributed
(iid), meaning that a term is only added to the diagonal
of K, giving a modified covariance for noisy observations
of the form

K̃(xI,xI) = K(xI,xI) + ΘGPI, (20)

where I is the identity matrix and ΘGP is a Gaussian pro-
cess hyperparameter representing the noise variance.
For regression problems, we are interested in the pos-

terior distribution of xO∗ given some input datapoint(s)

xI∗. The joint distribution of the demonstrated input-
output pair xI and xO augmented with xI∗ and xO∗ is
[
xO

xO∗

]

∼ N

([
µ(xI)
µ(xI∗)

]

,

[
K(xI,xI) K(xI,xI∗)
K(xI∗,xI) K(xI∗,xI∗)

])

.

(21)
We can then exploit the conditional probability prop-

erty of Gaussian distributions (see (13)) to evaluate the
posterior distribution over xO∗, yielding a Gaussian

xO∗|xO ∼ N
(
µ∗,Σ∗

)
, (22)

with mean and covariance

µ∗ = µ(xI∗) +K(xI∗,xI) K(xI,xI)
−1 (

xO − µ(xI)
)
,

Σ∗ = K(xI∗,xI∗)−K(xI∗,xI) K(xI,xI)
−1

K(xI,xI∗).

In the above, K(xI,xI) can be replaced by K̃(xI,xI) if
there is noise on the observed function values xO. It is also

often assumed in practice that

[
µ(xI)
µ(xI∗)

]

= 0. Gaussian

processes can thus be completely defined by their second-
order statistics, where the Gram matrix K is a positive
semidefinite covariance built on a scalar product of vec-
tors.
The kernel function is chosen to express a property of

similarity so that for points xI

i and xI

j that are similar,
the corresponding values xO

i and xO

j will be more strongly
correlated than for dissimilar points. The notion of simi-
larity will depend on the considered humanoid application.
Some common aspects that can be defined through the
covariance function k(xI,xI) are the process stationarity,
isotropy, smoothness or periodicity.

When considering continuous time series, it can usu-
ally be assumed that past observations can be informative
about current data as a function of how long ago they
were observed. This can, for example, correspond to a
stationary covariance dependent on the Euclidean distance
‖xI

i−x
I

j ‖2. The process is then considered as isotropic and
does not depend on directions between xI

i and xI

j . A pro-
cess that is both stationary and isotropic is homogeneous.
In robot learning control, the most employed covariance
function of this type is the radial basis function (RBF)
that we have seen in Section 3.2. RBF is widely employed
when it is expected that nearby inputs xI

i and xI

j will
have their corresponding outputs xO

i and xO

j also nearby
(assumption of continuity). When noisy observations xO

are assumed, the kernel can be defined as

k(xI

i ,x
I

j ) = ΘGP

1 exp

(

−
1

ΘGP

2

(xI

i −x
I

j )
⊤
(xI

i −x
I

j )

)

+ΘGP

3 δi,j ,

(23)
where δi,j = I(i=j) is equal to one only when i=j and is
zero otherwise, resulting in a covariance matrix K(xI,xI)
with noise related to observations only present in the di-
agonal (noise uncorrelated from sample to sample), scaled
by ΘGP

3 . The two other hyperparameters ΘGP

1 and ΘGP

2 ,
respectively, correspond to output and input scales.
Periodic kernels are another important family of func-

tions for the use of GPR in learning control for humanoids,
inducing periodic patterns within the behavior of the pro-
cess. More complicated covariance functions can also be
defined as a linear combination of simpler functions, which
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Figure 8: GPR and GMR behaviors for time-based 2D
trajectories with a missing portion of the data (see main
text for details).

can be exploited to incorporate different insights about
the dataset. Another powerful approach to the construc-
tion of kernels is to exploit probabilistic models. Given
a generative model P(xI), a valid kernel can be defined
as k(xI

i ,x
I

j ) = P(x
I

i )P(x
I

j ), which can be interpreted as
an inner product in the one-dimensional feature space de-
fined by the mapping P(xI). Namely, two inputs xI

i and
xI

j will be similar if they both have high probabilities.
This approach allows the application of generative models
in a discriminative setting, thus combining the respective
performance of both generative and discriminative mod-
els. This can bring additional properties to the underlying
process such as the capability of handling missing data or
partial sequences of various lengths (e.g., with HMM as
we will see later in the chapter).

Figure 7 shows GPR examples for two different kernels
(RBF and periodic). Figure 8 illustrates the differences
between GPR and GMR. When using a RBF kernel, GPR
retrieves a smooth trajectory, whose missing portion is
handled by coming back to the average of the points. The
retrieved covariance represents the confidence of the av-
erage trajectory estimate, which is here very small and
constant for portions of trajectories where datapoints are
available, and that grows for missing portions of the data.
Each output variable is retrieved individually, thus gen-
erating a diagonal covariance in the x1-x2 graph. In the
case of GMR, the datapoints are first used to learn a joint
distribution in the form of a GMM (here, with four Gaus-
sians modeling the joint distribution t-x1-x2). The dataset
is then discarded. GMR consists of computing a weighted
sum of conditional distributions and approximating it with
a Gaussian; see Section 3.4. The missing portion of the
data is handled by a smooth transition between the two
linear trends on the two sides of the missing data. In con-
trast to GPR whose variances represent the confidence on
the mean estimate, the retrieved covariances in GMR rep-
resent the variations and correlations observed in the data,
with full covariances retrieved for the output distributions,
indicating local coordination patterns (green ellipsoids in
the x1-x2 graph). Similarly to the mean estimate, the
missing portion of the data is handled by smoothly in-
terpolating between the observed covariance on the two
sides. Figure 8 then shows that depending on the con-
trol policy learning problem considered, one or the other
approach can be preferred. It should first be noted that
GMR is tightly linked to multivariate normal properties

(in particular, for Gaussian conditioning), while GPR is
not restricted to the use of Gaussian kernels and is thus
more generic. GMR is competitive when fast computation
is required, when the input and output components can
change (e.g., estimation from partial input observation),
or when an estimate of the variation and coordination of
a multivariate output signal is required. This comes at
the expense of requiring the estimation of a GMM, to-
gether with the number of Gaussians used in the model.
When coordination and variation information is impor-
tant, a generalized Wishart process can alternatively be
considered as a substitute for GP to model the evolution
of covariances [102].
Various applications of GPR have been proposed for

robot learning control. In [22], GPR is exploited in a hu-
manoid tracking and reaching movement, in which a set of
external task parameters is associated with DMP parame-
ters encoding movements, and where new task parameters
are used to generate movements with GPR in an online
manner. In [85], a sparse GP model is developed for the
control of a PR2 robot, with an efficient online selection of
the training points to learn inverse dynamics models from
large datasets. In [99], GPR is applied to a 2D bipedal
walking problem, where GPR is used to generalize a sub-
optimal joint trajectory by using previous optimization
results without running expensive nonlinear optimization
procedures.

3.6 Trajectory distributions

This section discusses different approaches to represent
multiple recordings of movements as trajectory distribu-
tions expressed in a compact form. A basic way of rep-
resenting a collection of M trajectories in a probabilistic
form is to reorganize each trajectory as a hyperdimen-
sional datapoint ξm=[x⊤

1,x
⊤

2, . . . ,x
⊤

T ]
⊤∈RDT , and fitting

a Gaussian N (µξ,Σξ) to these datapoints. Since the di-
mension DT might be much larger than the number of
datapoints M , a prior usually needs to be defined for the
estimation of the covariance, such as N (µξ,Σξ + β−1I)
(Tikhonov regularization). An eigendecomposition can
also be used to estimate only the first few eigencompo-
nents. Expressed in a matrix form, we have

Σξ = V DV⊤ =

D∑

j=1

λjvjv
⊤

j , (24)

with V = [v1,v2, . . . ,vD] and D = diag(λ2
1, λ

2
2, . . . , λ

2
D),

and a regularized covariance with minimal admissible
eigenvalue can be computed as Σξ ← V D̃V⊤ with
D̃ = diag(λ̃2

1, λ̃
2
2, . . . , λ̃

2
D) and λ̃j = max(λ̃j , λmin) ∀j ∈

{1, . . . , D}.
Representing a collection of trajectories in the form of

a multivariate distribution has several advantages. With
such representation, new trajectories can be stochastically
generated with

ξ ∼ N (µξ,Σξ) ⇐⇒ ξ ∼ µξ + V D̃
1
2 N (0, I), (25)

and the conditional probability property (see (13)) can
be exploited to generate trajectories passing through via-
points (including starting and/or ending points). This
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is simply achieved by specifying as inputs ξI in (13) the
datapoints the system needs to pass through (with corre-
sponding dimensions in the hyperdimensional vector) and
by retrieving as output ξO the remaining parts of the tra-
jectory.
Next, we will present two techniques to retrieve tra-

jectory distributions in a more parsimonious manner, by
either relying on RBF or GMM encoding.

3.6.1 ProMP

The ProMP (probabilistic movement primitive) model
[73] assumes that each demonstrated trajectory m ∈
{1, . . . ,M} can be approximated by a weighted sum of
K normalized RBFs with

ξm = Ψwm + ǫ, where ǫ ∼ N (0, λI), (26)

and basis functions defined similarly as LWR and DMP,
organized as

Ψ =








Iφ1(t1) Iφ2(t1) · · · IφK(t1)
Iφ1(t2) Iφ2(t2) · · · IφK(t2)

...
...

. . .
...

Iφ1(tT ) Iφ2(tT ) · · · IφK(tT )







, (27)

with Ψ∈RDT×DK and I∈RD×D. A vector wm∈R
DK can

be estimated for each of the M demonstrated trajectories
by the least squares estimate

wm = (Ψ⊤Ψ)
−1

Ψ⊤ξm. (28)

By assuming that {wm}
M
m=1 can be represented with a

Gaussian N (µw,Σw) characterized by a center µw∈RDK

and a covariance Σw∈RDK×DK , a trajectory distribution
P(ξ) can then be retrieved by integrating out w,

P(ξ) =

∫

P(ξ|w)P(w) dw, (29)

resulting in the trajectory distribution

ξ ∼ N
(

Ψµw , ΨΣwΨ⊤ + λI
)

, (30)

with ξ∈RDT a trajectory of T datapoints of D dimensions
organized in a vector form and I∈RDT×DT .
The ProMP parameters are λ, µI

k, ΣI

k, µw, and Σw.
As for DMP, the parameters of the RBFs µI

k and ΣI

k are
usually predefined by the experimenter, with centers µI

k

equally spread in time and a constant variance ΣI

k = σ2

set to provide a sufficient overlap of the basis functions. A
Gaussian of DK dimensions is estimated (instead of the
DT dimensions in (25)), providing a compact represen-
tation of the movement, separating the temporal compo-
nents Ψ and spatial components N (µw,Σw). Similarly to
DMP, ProMP can be coupled with GMM/GMR to auto-
matically estimate the positioning and spread of the basis
functions as a joint distribution problem, instead of spec-
ifying them manually.
ProMP has been demonstrated in varied tasks requiring

humanlike motion capabilities such as table tennis strokes
[80], playing the maracas, or handling a hockey stick [73],
as well as for collaborative object handover and assistance
in box assembly [64].

Figure 9: GMM with dynamic features to construct a tra-
jectory distribution. The top row depicts a 2D example,
showing that the approach does not require time align-
ment and can readily exploit piecewise demonstrations of
a movement. The bottom row illustrates, with a short
trajectory, the involved matrices depicted as blocks with
levels of gray proportional to the absolute values of the
matrix elements (white color depicts zero entries). This
shows the sparsity of the different operators and the re-
sulting full covariance representing the trajectory distri-
bution.

3.6.2 Trajectory-GMM

The exploitation of statistics from both static and dy-
namic features of a GMM, for the purpose of generat-
ing data, originates from the field of speech processing
[23]. Also called trajectory-GMM, this approach has a
long history and is considered as a standard technique in
this field, in particular when employed in the context of
hidden Markov models (HMM).
In robotics, it provides a simple approach to synthe-

size trajectories without discontinuities even when a small
number of Gaussians are used to encode the movement.
This is achieved by coordinating the distributions of both
static and dynamic features in the considered time series.
For the encoding of movements, velocity and accelera-
tion can be used as dynamic features [9]. By consider-
ing xt ∈ R

D as a multivariate position vector, with an
estimation of velocity (and higher-order derivatives) from
two consecutive time steps, we define an observation vec-
tor ζt ∈ R

DC as the concatenated position, velocity and
acceleration (C=3) vectors at time step t, namely,1

ζt =





xt

ẋt

ẍt



 =





I 0 0
− 1

∆t
I 1

∆t
I 0

1
∆t2

I − 2
∆t2

I 1
∆t2

I









xt

xt+1

xt+2



 . (31)

ζ=
[
ζ⊤1 , ζ

⊤

2 , . . . , ζ
⊤

T

]⊤
and x=

[
x⊤

1,x
⊤

2, . . . ,x
⊤

T

]⊤
are then

defined as large vectors concatenating ζt and xt for all
time steps.
Similarly to the matrix operator (31) defined for a single

time step, a large sparse matrix Φ can be defined so that

1To simplify the notation, the number of derivatives is set up to
acceleration (C = 3), but the results can easily be generalized to a
higher or lower number of derivatives.
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ζ=Φx, namely,2

ζ
︷ ︸︸ ︷



















...

xt

ẋt

ẍt

xt+1

ẋt+1

ẍt+1

...




















=

Φ

︷ ︸︸ ︷



















. . .
...

...
... . .

.

· · · I 0 0 · · ·

· · · − 1

∆t
I 1

∆t
I 0 · · ·

· · · 1

∆t2
I − 2

∆t2
I 1

∆t2
I · · ·

· · · I 0 0 · · ·

· · · − 1

∆t
I 1

∆t
I 0 · · ·

· · · 1

∆t2
I − 2

∆t2
I 1

∆t2
I · · ·

. .
. ...

...
...

. . .




















x
︷ ︸︸ ︷














...

xt

xt+1

xt+2

xt+3

...















.

(32)

A GMM is used to model a dataset {ζ1, ζ2, . . . , ζN}.
The GMM parameters ΘGMM ={πi,µi,Σi}

K
i=1, with µi∈

R
DC and Σi∈R

DC×DC , represent the mixing coefficients,
centers, and covariances of the Gaussian components,
which can, for example, be estimated by an expectation-
maximization (EM) procedure.
During reproduction, a sequence of states s =
{s1, s2, . . . , sT } of T time steps is first generated (or re-
trieved from a demonstration, as we will see later in Sec-
tion 3.7). With discrete states st ∈ {1, . . . ,K}, the likeli-
hood of a movement ζ = Φx is given by

P(ζ|s) =
T∏

t=1

N (ζt |µst ,Σst), (33)

where µst and Σst are the center and covariance of state
st at time step t. This product can be rewritten as

P(Φx|s) = N (Φx |µs,Σs),

with µs = [µ⊤

s1
,µ⊤

s2
, . . . ,µ⊤

sT
]
⊤

and Σs =
blockdiag(Σs1 ,Σs2 , . . . ,ΣsT ).
By using the relation ζ = Φx, a trajectory can then be

retrieved by solving

x̂ = argmax
x

logP(Φx | s), (34)

resulting in a trajectory distribution x ∼ N (x̂, Σ̂x) with
parameters

x̂ =
(
Φ⊤Σ−1

s Φ
)−1

Φ⊤Σ−1
s µs, Σ̂x = σ

(
Φ⊤Σ−1

s Φ
)−1

,

(35)
where x̂ ∈ R

DT is the average trajectory stored in a vector
form, σ is a scale factor, Φ∈RDCT×DT , Σs∈R

DCT×DCT ,
and µs∈R

DCT .
Some links with ProMP (see §3.6.1) can be drawn. In

trajectory-GMM, the smoothness of the retrieved move-
ments is ensured by the encoding of derivatives, where
the number of derivatives will influence the width of the
band-diagonal structure of the trajectory covariances. We
can indeed notice that for C = 1, we have Φ= I in (32),
and (35) collapses to a stepwise trajectory with x̂ = µs

and Σ̂x = σΣs. We can further note that similarly to
(30), µs and Σs can be constructed with µs= Ψ̃µw and
Σs = Ψ̃Σ̃wΨ̃⊤, where Ψ̃ is a binary version of Ψ in (27)
and Σ̃w is a block diagonal version of Σw in (30).

2Note that a similar operator is defined to handle border condi-
tions and that Φ can automatically be constructed with the Kro-
necker product operator.

Figure 10: The observation model associated with each
component of the HMM can take various forms.

Figure 11: Difference of model structures in GMM, HMM
and HSMM encoding.

Figure 9 illustrates the trajectory-GMM approach.
Such trajectory distribution encoding with dynamic fea-
tures has been exploited in robotics for humanlike motion
planning and control [92, 9, 79].

3.7 Hidden Markov models

It is often important in learning control to model the tran-
sitions between several regimes or between the motion
primitives described in the previous sections. As we will
see next, a first-order Markov assumption is often adopted
to simplify the model acquisition process.

3.7.1 Markov model (MM)

With a first-order Markov model, the joint distribution of
a sequence of states {st}

T
t=1 is assumed to be of the form

P(s1, s2, . . . , sT ) = P(s1)
T∏

t=2

P(st|st−1), (36)

thus providing

P(st|s1, s2, . . . , st−1) = P(st|st−1). (37)

Often, the conditional distributions P(st|st−1) is as-
sumed to be stationary (homogeneous Markov chain). A
transition matrix A can then be defined, where

ai,j = P(st+1=j | st= i) (38)

is the probability of getting from state i to state j in one
step.
Similarly, an initial state distribution can be defined by

Πi = P(s1= i) with

K∑

i=1

Πi = 1. (39)

The parameters of a Markov model of K components
are described as

ΘMM =
{
{ai,j}

K
j=1,Πi

}K

i=1
. (40)
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3.7.2 Hidden Markov model (HMM)

HMM is used in many fields for time series or sequence
analysis, or in fields where the goal is to recover a data se-
quence that is not immediately observable (but other data
that depend on the sequence are) [77]. This is typically
the case in humanoid robots, where the generative aspect
of the model can additionally be exploited for synthesis
purpose.
An HMM is composed of a set of hidden states whose

output can be described in different forms; see Fig. 10.
The most employed form in humanoid learning control is
to encode each output as a multivariate Gaussian. In the
context of robotics, we can then think of an HMM either as
a Markov chain with hidden states and stochastic measure-
ments, or as a GMM with latent variables changing over
time. The parameters of an HMM of K components, with
a single Gaussian as output distribution, are described as

ΘHMM =
{
{ai,j}

K
j=1,Πi,µi,Σi

}K

i=1
. (41)

HMMs are most often trained by an expectation-
maximization procedure [77], which guarantee to converge
to a local optimum from an initial estimate. However,
other techniques based on spectral learning or methods
of moments exist, aiming at finding global estimates; see,
e.g., [3].
HMMs have been exploited in [52] for hand drawing ges-

tures, in [56] for communicative gestures with a humanoid
robot (such as producing “high-five” hand gestures or con-
ducting an orchestra), in [51] for online learning of full-
body motion primitives, or in [93] for the autonomous ac-
quisition of motion symbols in a humanoid robot.

3.7.3 Hidden semi-Markov model (HSMM)

The state duration in standard HMM is indirectly modeled
through self-transition probabilities and follows a geomet-
ric distribution

P(d) = ad−1
i,i (1− ai,i), (42)

which is not very accurate to model duration informa-
tion. Instead of relying on self-transition probabilities to
estimate the above probability, the hidden semi-Markov

model (HSMM) provides an explicit model of the state
duration [77]. The parameters of an HSMM of K compo-
nents, where each component i ∈ {1, . . . ,K} is character-
ized by a single Gaussian N (µi,Σi) as output distribution
and a single lognormal distribution LN (µD

i ,Σ
D

i ) as state
duration, are described by

ΘHSMM=
{
{ai,j}

K
j=1,j 6=i,Πi, µ

D

i ,Σ
D

i ,µi,Σi

}K

i=1
, (43)

which can be trained by an expectation-maximization pro-
cedure. HSMM can be jointly used with dynamic features
as in Section 3.6.2 to generate sequences of states from the
model parameters [9].
From a learning control perspective, the duration model

in HSMM can be viewed as a local time duration encoding,
with a timer starting once we enter the state. This relative
duration encoding allows the encoding of both discrete and
periodic movements. Such model can be trained from a

set of partial observations of a movement, without requir-
ing temporal alignment. On the two ends of the spectrum,
a duration model as a flat distribution corresponds to a
time-independent state, and a peaked distribution corre-
sponds to a transition occurring at a specific duration after
which we enter the state.

Figure 11 illustrates the differences of structure in hid-
den Markov models (including standard GMM without
transition information). The second column of Fig. 4
shows an illustrative example of movement learned by
HSMM, and coupled with a linear quadratic controller.

The HSMM has been exploited for humanlike robot ma-
nipulation skills to learn controllers robust to both time
and space discrepancies [104, 94, 79].

3.8 Autonomous dynamical systems

Another approach to represent movements and skills in
humanoids is to encode the entire attractor landscape
in the state-space of the observed data. Such approach
can provide representations based on time-invariant au-
tonomous systems. It usually comes at the expense of es-
timating asymptotically stable dynamical systems in high-
dimensional spaces. The GMR representation (presented
in the context of trajectories to estimate P(x|t) in Sec-
tion 3.4) could, for example, be employed to retrieve an
autonomous system P(ẋ|x) from the joint distribution
P(x, ẋ) encoded in a GMM [30, 11], by computing itera-
tively velocity commands

ˆ̇x =

K∑

i=1

hi(x)
(

Ai
︷ ︸︸ ︷

Σẋx
i (Σx

i )
−1

x+

bi
︷ ︸︸ ︷

µẋ
i −Σẋx

i (Σx
i )

−1
µx

i

)

.

(44)

The stable estimator of dynamical systems (SEDS) [40]
relies on this regression strategy, by replacing the standard
EM procedure commonly used to estimate the GMM pa-
rameters with a constrained optimization procedure tak-
ing into account not only log-likelihood optimization but
also constraining the parameters to form a contractive sys-
tem [26]. This can be achieved by constraining the poles of
the dynamical system to have strictly negative real parts,
corresponding to Ai+A

⊤

i being negative definite. All com-
ponents in the GMM must also define the same attractor
point xT , corresponding to the constraint bi = −AixT .
Such constraints provide global asymptotic stability guar-
antee to the estimated GMM parameters when using (44).

SEDS results in fast and reactive movements character-
ized by a decaying distance to the target, which can distort
the original paths in some cases. This problem is tackled
in [41] by associating a different control Lyapunov function
(energy function) to the autonomous system. This energy
function is parametrized as a weighted sum of asymmetric
quadratic functions, guaranteeing to asymptotically reach
the target point. The resulting control Lyapunov function-
based dynamic movements (CLFDM) approach proceeds
in three steps: (1) learning a Lyapunov function from
the demonstrations by solving a constrained optimization
problem; (2) using a regression technique to model an (un-
stable) estimate of the motion from the demonstrations;
and (3) using (1) to ensure stability of (2) during the task
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execution by solving at runtime a constrained convex opti-
mization problem for online correction. An example with
GMR used as regression technique is shown in the third
column of Fig. 4.
Approaches based on geometrical diffeomorphic trans-

formation have also been investigated [70, 74]. In [74], the
objective is to learn a smooth diffeomorphism that maps
line segments onto the demonstrated trajectories, where
the line segments are characterized by the start and the
end of the movement (at the origin), corresponding to or-
bits of the dynamical system ẋ = −x). The smoothness
of the mapping is achieved by a composition of locally
weighted translations from a set of RBFs. The approach
allows the parametrization of the flow field to obtain differ-
ent correction/tracking behaviors when moving/starting
away from the demonstrated trajectories (by modulating
how strongly the system comes back to the reference tra-
jectories). An example is shown in the last column of Fig.
4.
The GMR, SEDS, CLFDM, and diffeomorphic ap-

proaches in the above have been demonstrated with hu-
manoids in experiments including packing tasks [30], feed-
ing tasks [11], reproducing natural upper-body gestures
[40], contouring obstacles [70], or catching objects in flight
[44].

4 Learning controllers

While Section 3 discussed movement primitives encoding
and retrieval, we discuss here how such representation can
be more tightly integrated with existing tracking and reg-
ulation control strategies employed in humanoids.

4.1 Linear quadratic tracking (LQT) and
regulation (LQR)

The previous section discussed the problem of generating
and adapting reference trajectories, by assuming that a
controller is available to track the retrieved reference. In
this section, the problem is extended to that of directly
estimating a controller ut for a discrete linear dynamical
system

ζt+1 = Aζt +But, (45)

with state variable ζt =
[
x⊤

t , ẋ
⊤

t

]⊤
∈RDC . The problem is

formulated as the minimization of the cost

c =
(
ζ̂T−ζT

)⊤
QT

(
ζ̂T−ζT

)

+

T−1∑

t=1

((
ζ̂t−ζt

)⊤
Qt

(
ζ̂t−ζt

)
+ u⊤

tRt ut

)

=
(
µs − ζ

)⊤
Qs

(
µs − ζ

)
+ u⊤Rsu, (46)

with ζ =
[
ζ⊤1 , ζ

⊤

2 , . . . , ζ
⊤

T

]⊤
∈ R

DCT the evolution

of the state variable and u =
[
u⊤

1,u
⊤

2, . . . ,u
⊤

T−1

]⊤
∈

R
D(T−1) the evolution of the control variable. µs =

[

ζ̂⊤s1 , ζ̂
⊤

s2
, . . . , ζ̂⊤sT

]⊤
∈ R

DCT represents the evolution of
the tracking target. Qs=blockdiag(Qs1 ,Qs2 , . . . ,QsT ) ∈
R

DCT×DCT represents the evolution of the required track-
ing precision, and Rs=blockdiag(Rs1 ,Rs2 , . . . ,RsT−1

) ∈

R
D(T−1)×D(T−1) represents the evolution of the cost on

the control inputs. The problem corresponds to an uncon-
strained linear model predictive control (MPC) problem.
It is worth noting that the objective function used in the
context of trajectory-GMM (see Section 3.6.2) is similar
to the cost function in (46) without control cost (i.e., with
Rs=0).
The tracking problem can be solved by different tech-

niques, either exploiting tools from physics, dynamic pro-
gramming or linear algebra [7]. It can, for example, be
solved with a batch approach and simple linear algebra,
by expressing all future states ζt as an explicit function of
the state ζ1. By writing

ζ2 = Aζ1 +Bu1,

ζ3 = Aζ2 +Bu2 = A(Aζ1 +Bu1) +Bu2,
...

ζT = AT−1ζ1 +AT−2Bu1 +AT−3Bu2 + · · ·+BuT−1,

in a matrix form, we get









ζ1
ζ2
ζ3
...

ζT










︸ ︷︷ ︸

ζ

=










I

A

A2

...

AT−1










︸ ︷︷ ︸

Sζ

ζ1+










0 0 · · · 0
B 0 · · · 0
AB B · · · 0
...

...
. . .

...

AT−2B AT−3B · · · B










︸ ︷︷ ︸

Su








u1

u2

...

uT−1








︸ ︷︷ ︸

u

,

(47)
with ζ ∈ R

DCT , Sζ ∈ R
DCT×DC , ζ1 ∈ R

DC , Su ∈
R

DCT×D(T−1) and u ∈ R
D(T−1). Substituting (47) into

(46), we get the cost function

c =
(
µs −S

ζζ1 −S
uu

)⊤
Qs

(
µs −S

ζζ1 −S
uu

)
+ u⊤Rsu.

(48)
Differentiating with respect to u and equating to zero

yield the sequence of control inputs

û =
(
Su⊤

QsS
u +Rs

)−1
Su⊤

Qs

(
µs − Sζζ1

)
, (49)

corresponding to a weighted least squares estimate with
Tikhonov regularization (ridge regression); see also Sec-
tion 3.6.

Similarly to the trajectory-GMM described in Section
3.6.2, the error on the ridge regression estimate can be
used to compute a covariance Σ̂u in control space. By
using the linear relation in (47), the distributionN (û, Σ̂u)
in control space can then be converted to a distribution
N (ζ̂, Σ̂ζ) in feature space with parameters

ζ̂ = Sζζ1 + Suû, (50)

Σ̂ζ = σSu
(
Su⊤

QsS
u +Rs

)−1
Su⊤

. (51)

The controller in (49) can alternatively be retrieved it-
eratively by relying on dynamic programming or the Pon-
tryagin maximization principle. For the discrete version
of the dynamical system defined by (45), two costate vari-
ables Pt and dt are introduced, and the cost is optimized
by recursion with

Pt = Qt−A⊤

(

Pt+1B (B⊤Pt+1B +Rt)
−1

B⊤Pt+1 − Pt+1

)

A,

(52)

dt =
(

A⊤−A⊤Pt+1B(B⊤Pt+1B +Rt)
−1

B⊤

)

(

Pt+1(Aζ̂t − ζ̂t+1) + dt+1

)

,

(53)
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which are solved backward in time from the terminal con-
ditions set by PT =QT and dT = 0. The first equation
is a Riccati equation for the discrete formulation of LQR,
while the second is a linear differential equation used to
compute the feedforward term (which depends on the so-
lution of the Riccati equation).
The costate variables Pt and dt are then used to com-

pute the control commands ut using the forward integra-
tion

ut = Kt(ζ̂t − ζt) + ft, (54)

with feedback gain and feedforward terms defined as

Kt = (B⊤PtB +Rt)
−1

B⊤PtA, (55)

ft = −(B
⊤PtB +Rt)

−1
B⊤

(
Pt(Aζ̂t − ζ̂t) + dt

)
. (56)

Alternatively, the tracking problem can be recast as
a regulation problem (namely, with a constant target at
zero) by considering a dynamical system with augmented
state defined by

[
ζt+1

1

]

︸ ︷︷ ︸

ζ̃t+1

=

[
A 0
0 1

]

︸ ︷︷ ︸

Ã

[
ζt
1

]

︸︷︷︸

ζ̃t

+

[
B

0

]

︸︷︷︸

B̃

ut, (57)

together with the augmented tracking weight

Q̃t =

[
Q−1

t +ζ̂tζ̂
⊤

t ζ̂t

ζ̂⊤t 1

]−1

, (58)

which is used to define the cost

c = ζ̃⊤T Q̃T ζ̃T +
T−1∑

t=1

(

ζ̃⊤T Q̃tζ̃T + u⊤

tRtut

)

, (59)

optimized by recursion with

Pt = Q̃t−Ã
⊤

(

Pt+1B̃ (B̃⊤Pt+1B̃+Rt)
−1

B̃⊤Pt+1−Pt+1

)

Ã,

(60)
solved backward in time from the terminal conditions set
by PT =Q̃T .
Pt is then used to compute the control commands ut

using the forward integration

ut = −K̃t ζ̃t, (61)

with a feedback gain defined as

K̃t = (B̃⊤PtB̃ +Rt)
−1

B̃⊤PtÃ. (62)

A similar approach can be used by defining the system
in a continuous form instead of discrete form; see, e.g.,
[7]. In addition, an infinite time horizon can be considered
instead of the finite horizon as presented in the above (also
both in discrete and continuous form).
The conventional use of the above technique in control is

to let the experimenter define the weighting terms Qt and
Rt to find a controller to track a predetermined target or
trajectory ζ̂t. When determined by the experimenter, Qt

and Rt are most often defined as diagonal and constant in
time. Qt can also typically be defined by the experimenter

as being null for a range of time steps (e.g., to indicate with
Qt the need to pass through a set of via-points).

Learning the weights in the objective function (46) can
be viewed as a basic form of inverse optimal control [1].
Several approaches have been proposed to exploit the
above formulation within a learning control context. In
[73], the ProMP representation (see §3.6.1) is exploited
within a dedicated LQT control formulation exploiting the
property of the covariance derivatives that can be com-
puted explicitly, instead of using a backward integration
procedure as in the conventional algorithm. In [65], the
above approach is used in the context of risk-sensitive con-
trol for haptic assistance. This is done by exploiting the
predicted variability to build a controller for the robot
(in task space or in joint space). The retrieved variabil-
ity and correlation information is first learned from the
provided data and is then exploited to generate safe and
natural movements within an optimal control strategy, in
accordance to the predicted range of motion that can be
exploited to reproduce the task in the current situation.

The approach can be generalized to cost functions act-
ing simultaneously in multiple coordinate systems [9, 104].
In this case, a task-parameterized Gaussian mixture model
(TP-GMM) is used to estimate from demonstrations the
trajectory to track (defining ζ̂t), as well as the required
tracking accuracy and coordination (defining Qt). In this
application, both ζ̂t and Qt are expressed in several coor-
dinate systems and are changing with time, with Qt de-
scribing full precision matrices. The approach is used to
learn a controller from demonstrations with time-varying
proportional and derivative gains, also known as gain
scheduling. The resulting controller can adapt to new
situations by autonomously adapting both the reference
trajectory and the impedance behavior. This autonomous
regulation of the stiffness and damping based on the vari-
ations observed in the demonstrations provides a minimal

intervention control strategy in which deviations from the
retrieved average trajectory are corrected only when they
interfere with task performance [96]. In humanoids, such
control strategy can be useful for reducing energy con-
sumption, as well as for safety when collaborating with
users or when contacts with the environment occur.

Figures 12 and 13 present examples of LQT controllers
with a trajectory distribution retrieved by HSMM. The
second column of Fig. 4 also shows an example of the
retrieved flow field.

4.2 Reward-weighted optimization

We have seen in the previous sections that motion skills
and controllers can be represented in several compact
parametric forms. We will represent a controller in this
parameter space as θn and will discuss in this section how
the controller can be refined iteratively by self-refinement.
Since this chapter does not aim at covering the whole field
of reinforcement learning, we will narrow the survey to
a recent trend in reinforcement learning to use parame-
terized policies in combination with probability-weighted
averaging.

Several reward-weighted optimization mechanisms are
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Figure 12: Linear quadratic tracking (LQT) with weights
and target sequence generated from an HSMM. Top-left:
Demonstrations of a movement (in gray lines), HSMM dis-
tribution outputs (ellipses with a different color for each
state), and five reproduction attempts (in red lines) start-
ing from initial points in the vicinity of the demonstra-
tions. Top-right: HSMM transition graph and state dura-
tion as lognormal distributions, with the seven states de-
picted with distinct colors. Bottom: The timeline graphs
at the bottom show the evolution of the activation weights
and the planar movement (demonstrations and reproduc-
tions in gray and red lines, respectively). The colored
blocks represent the stepwise transitions of the different
HSMM states, resulting in smooth trajectories after LQT.

Figure 13: An HSMM can be used to generate a sequence
of states, each characterized by a center and a covariance.
The sequence of centers is used as a stepwise reference
(black line segments), and the full covariance matrices are
used to build a sequence of full precision matrices (shaded
areas around the line segments). When combined with
LQT, the stepwise reference is smoothly tracked (red and
green lines) from any initial starting point (red and green
points). We can see that the observed variations and co-
ordination patterns influence the controller. Here, an ob-
served invariant motion segment (red shaded area) will be
more aggressively tracked than a segment allowing varia-
tions (green shaded area).

based on iteratively repeating the procedure

θn ∼ N (µθ,Σθ) ∀n ∈ 1, . . . , Ns,

θn ← sort(θn) w.r.t. rn = r(θn),

Σθ ←
Ns∑

n=1

wn(θn − µθ)(θn − µθ)
⊤

,

µθ ←
Ns∑

n=1

wnθn, (63)

where r(θn) is a given reward function evaluated by apply-
ing the controller defined by its parameters θn stored in
a vector form, and Ns is the number of samples. r(θn) is
often defined in a Gaussian, RBF, or exponential form to
obtain a similar update mechanism, as in an expectation-
maximization procedure. Σθ indicates where to search
at each iteration and µθ indicates the estimated average
solution in the parameter space.

In CEM (cross-entropy method) [50], an elite update
mechanism is used with wn=

1
Ne

for the first Ne samples
and wn = 0 otherwise. In PoWER (Policy Learning by
Weighting Exploration with the Returns) [45], a reward-
weighted update is used with wn=

rn∑Ns
m=1 rm

, and the up-

date is equivalently rewritten as µθ←µθ+
∑Ns

n=1 wn(θn−
µθ) to make connections with gradient-based approaches
in reinforcement learning and to show that the update is
within a convex hull of the sampled trials, providing a
conservative update rule. The collection of CMA-ES (co-
variance matrix adaptation evolution strategy) approaches
[39] exploits a similar form of updates, but they use a more
elaborated form of covariance update considering a history
(evolution path). In [14], the procedure in (63) is extended
to a mixture model by using a potentially growing num-
ber of Gaussians during exploration to cope with multiple
control options arising during the search.
PI2 (policy improvement with path integrals) [8] has

been derived from a different framework (stochastic op-
timal control) but also results in a probability-weighted
averaging procedure with parametrized policy, by defining
a reward function that can be evaluated at each time step
based on the retrieved trajectory. The cost of a trajectory
is determined by evaluating the reward for each time step
t, with a different parameter update µθ

t . A single param-
eter update is then computed by averaging over all time
steps, weighted such that earlier updates contribute more
(since earlier updates affect a larger time horizon, they
have more influence). In [87], PI2 is linked to the tech-
niques described above to update the sampling covariance
guiding exploration. The resulting PI2-CMA formulation
can be summarized by the iterative procedure

θn ∼ N (µθ,Σθ) ∀n ∈ 1, . . . , Ns,

Σθ
t ←

∑Ns

n=1 wn,t(θn − µθ)(θn − µθ)
⊤

µθ
t ←

∑Ns

n=1 wn,tθn

}

∀t ∈ 1, . . . , T ,

Σθ ←
∑T

t=1 wtΣ
θ
t , µθ ←

∑T
t=1 wtµ

θ
t ,

(64)
with wn,t =

rn,t
∑Ns

m=1 rm,t

and wt =
T−t∑

T
s=1

T−s
. The reward

function rn,t is usually defined as a cost-to-go function in
exponential form.
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The early developments in PI2 paved the way to several
improvements or variants of the original approach, includ-
ing policy improvement through black box optimization
(PIBB) [88], path integral relative-entropy policy search
(PI-REPS) [27], or reward optimization with compact ker-
nels and fast natural gradient regression (ROCK*) [35].
Applications of reward-weighted optimization ap-

proaches include skills such as controlling the center of
mass in biped walking [49], standing up from a chair [28],
flipping pancakes [14], propelling arrows [47], manipulat-
ing a rod with two hands [91] or pushing/opening a door
[90].

4.3 Iterative learning control (ILC)

Iterative learning control (ILC) is another paradigm to
refine a controller by self-practice. The goal of ILC and
repetitive control (RC) is to improve the performance of
control systems by adjusting the commands through learn-
ing from previous control trials [6]. They are typically used
for repetitive or cyclic tasks. ILC and RC resemble the hu-
man learning process (practice of a task) which updates
control input based on error signals from previous trials.
The formulation of ILC assumes deterministic system

dynamics, repeatability of the target tracking task over a
finite time horizon, and the same initial conditions of each
trial. Assume we have a tracking task with control input
u and output error e = yd− y, a widely used ILC learning
algorithm is formulated as

ui+1(t) = ui(t) + klei(t), t ∈ [0, Titer], (65)

where the subscript i denotes the iteration number, Titer

is the period of one iteration, and kl is the learning gain
which defines the learning speed. The learning time vari-
able t is reset to 0 at the beginning of each iteration.
There are several variants of ILC. For example, the

discrete-time PD-type ILC update can be written as

ui+1(t) = ui(t) + klpei(t) + kld
(
ei(t)− ei(t− 1)

)
, (66)

where klp is the proportional gain and kld is the derivative
gain. The ILC update law can be written as

ui+1(t) = u0(t) + kf
(
ui(t)− u0(t)

)
+ klei(t), (67)

where 0 < kf ≤ 1 is a forgetting factor. The convergence
condition of (67) is given as

|kf − kld| < 1. (68)

A forgetting factor smaller than one robustifies the ILC
but decreases the performance since the learned useful in-
formation is also discounted.
A feedback controller can handle unknown disturbances

and uncertainties in the system model, but has a lag in
transient tracking. In contrast, ILC is anticipatory and
generates an open-loop control signal through feedback
in the iteration domain. ILC learns compensation terms
for repeating noise and disturbance. In order to respond
to unanticipated and non-repeating disturbances, ILC is
in practice often combined with a feedback controller,
namely,

ui+1(t) = ui(t) + klei(t) + kei+1(t), t ∈ [0, Titer]. (69)

Figure 14: One period of COMAN steady-state pedaling
on a pedal racer in Webots dynamic simulator (top) and
in experiment (bottom).

In early work, ILC was most often used for tracking
of repetitive tasks with industrial manipulators. Recently,
ILC started to be incorporated in programming by demon-
stration for humanoid robots. In [25], a discrete dynam-
ical movement primitives (DMP) was modulated for in-
teraction with environment by ILC. While a typical DMP
consists of a second-order linear dynamical system with a
linear combination of nonlinear radial basis functions (as
shown in Section 3.3), an ILC-modulated DMP introduces
an additional nonlinear modulation term which is learned
by ILC from force/torque feedback.
Repetitive control (RC) is closely related to ILC [63].

Instead of making repeated runs of a desired finite time
trajectory, RC aims to perfectly execute a periodic com-
mand or to execute a periodic command in the presence
of a periodic disturbance. Repetitive control was, for ex-
ample, employed on a task of riding a pedal racer which
demands balancing of a humanoid robot [24]; see also Fig.
14. In this work, periodic dynamical movement primitives
are combined with RC according to force feedback.
When it comes to gait control in humanoid robots, it

seems reasonable to ask whether the model uncertainties
of the complex multi-body dynamics could be compen-
sated by incorporating error information from previous
trials (by trial-error learning). But as pointed out in [63],
the original form of ILC or RC cannot be directly applica-
ble to the gait problem. The dynamic models for walking
motions are highly nonlinear, and stability of the bipedal
walking is nontrivial. Moreover, unlike the pedaling ex-
ample, bipedal locomotion includes jump discontinuities,
and the duration of the phases is not the same from cycle
to cycle. In [63], four RC laws were proposed for bipedal
gait and showed reduced tracking errors in joint space in
simulation.
Although the feasibility of balancing on a pedal racer

was demonstrated with the COMAN humanoid robot in
[24], there are additional challenges in bipedal walking. In
the former case, the robot’s feet keep the contact with the
pedal racer during riding, and the feet trajectory is lim-
ited to a motion primitive constrained by the kinematics
of the pedal. In contrast, foot contact with the ground
involves discontinuities requiring walking motions to be
represented by a sequence of different repetitive motions.
Hu et al. [34] proposed an online iterative learning

control of zero-moment point (ZMP) trajectory for biped
walking, with the focus of improving walking robustness
by refining the walking pattern, i.e., reducing the effect
of unmodeled dynamics in the pattern generation stage.
The key idea is to learn a feedforward compensative ZMP
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Figure 15: Snapshots of short period disturbance simula-
tion recorded from 22s and with 0.4s time interval. Upper
row shows the results with learning and lower row shows
the result without learning. The learned compensative
term shows the improved stability during walking.

(CZMP) term through the actual ZMP error during the
repetition of the walking trials. The learned CZMP ad-
justs the ZMP reference trajectory and reduces the ZMP
disturbances due to the unmodeled dynamics, making the
measured robot ZMP converge to the desired ZMP tra-
jectory. This feedforward term is added to the conven-
tional ZMP-based online walking controllers of the preview
control-based pattern generator and the online feedback
balancer. Since the walking is only repetitive in the local
coordinate (with respect to the foot stance coordinate at
each walking cycle), the learning process is applied in the
local coordinate system of each iteration. The learning
process is conducted continuously without reset between
successive iterations. In order to achieve the continuity of
the learning process, an initialization iteration is designed
to transit smoothly from non-learning to learning phases.
The improved walking robustness was shown in simula-
tions and experiments. Figure 15 depicts a simulation
result showing the stability of the DLR TORO humanoid
robot against external disturbances during walking with
and without learning. Improved convergence speed and
reduced ZMP error during transition phases between dif-
ferent walking motions are achieved.

4.4 Task priority learning

An important and challenging category of applications in
learning control for humanoid robots concerns the learning
of priority constraints. It relates to the challenge of orga-
nizing movement primitives not only in series but also in
parallel (both for recognition and synthesis). The problem
of learning and controlling a humanoid by considering task
priorities can be tackled both at kinematic and dynamic
levels. We will define it here at a kinematic level with a
robot controlled with joint angle velocity commands, but
the presented techniques can be extended to torque-based
controllers.

We start from the objective function (1) used in Section
3.1 for computing a single least norm estimate. We now
consider the general solution of this linear system, which
is given by

Â = XI †
XO +

N
︷ ︸︸ ︷

(I −XI †
XI)V , (70)

where the right pseudoinverse of X is defined by X† =

XI⊤(XIXI⊤)
−1

, N is a nullspace projection operator,
and V can be any vector/matrix (e.g., resulting from the
minimization of a secondary objective function). In the
above, the solution is unique if and only if A has full
column rank, in which case N is a zero matrix. The
nullspace projection guarantees that ‖XO−XIÂ‖2 is still
minimized. An alternative way of computing the nullspace
projection matrix is to exploit the singular value decom-
position XI † =UΣV⊤ to compute N = ŨŨ⊤, where Ũ

is a matrix formed by the columns of U that span for the
corresponding zero rows in Σ.
The general solution above is important when consid-

ering the control of redundant kinematic chains such as
in humanoid robots, when DO < DI. Indeed, humanoids
are often required to produce movements described in task
space while being controlled in joint space. The problem
is commonly formulated with an objective function similar
to (1), by first computing the forward kinematics relation-
ship as

xt = f(qt) ⇐⇒ ẋt =
∂xt

∂t
=

∂f(qt)

∂qt

∂qt

∂t
= J(qt) q̇t,

(71)

where J(qt) =
∂f(qt)
∂qt

is a Jacobian matrix, and by com-
puting inverse kinematics as the least squares solution

ˆ̇qt = J†(qt) ẋt +N(qt) g(qt). (72)

Humanoids are frequently required to handle multiple
tasks in parallel that can be conflicting. This, for exam-
ple, corresponds to the control of the two hands and feet in
contact with the environment or the control of the center
of mass for balancing, requiring the definition of multi-
ple Jacobians for the different locations of interest in the
kinematic chain.
Learning control in humanoids requires the handling of

such task prioritization, where the goal is to learn how to
handle the priorities of multiple tasks running in parallel
(from demonstration or self-refinement). Early approaches
can be categorized in two research directions, by either
exploiting a strict hierarchy structure, as a generalization
of (72) applied to multilevel hierarchies, or by employing
a weighted least squares solution as in (4) for the inverse
kinematics.
The two techniques have pros and cons. Setting an ex-

plicit nullspace structure guarantees strict priorities at the
expense of constraining sometimes too much the tasks,
which quickly limits the number of tasks that can simulta-
neously be handled, compared to the number of degrees of
freedom available for controlling the robot. It can also cre-
ate discontinuities in the control problem when switching
from one hierarchy structure to another. A soft weighting
scheme can in contrast handle different levels of task im-
portance and gradual changes from one task to another,
but it does not provide strict guarantees on the fulfillment
of each separated task; see Fig. 16 for an illustrative ex-
ample.
Because of the limitations in selecting one or the other

approach, researchers have proposed alternative solutions
aiming to gather the benefit of the two techniques, which
can be divided in four broad categories, with approaches
concentrating on:
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Figure 16: Task prioritization based on a weighted least
squares estimate of inverse kinematics. Top: Variables in-
volved. Middle: with weights in joint space (with right

pseudoinverse ˆ̇qt = WQJ⊤(JWQJ⊤)
−1

ẋt; see also (5)).
Bottom: with weights in task space (with left pseudoin-

verse ˆ̇qt=(J⊤W XJ)
−1

J⊤W X ẋt; see also (4)).

1. Developing more versatile representations of task pri-
oritization;

2. Learning task priority from a pool of candidates, ei-
ther from demonstration or by self-refinement;

3. Learning the nullspace projection operators;
4. Developing human-robot teaching techniques that

can exploit already acquired nullspace structures.

Some of the work in the first research direction listed
above do not directly tackle a learning problem, but they
provide representations that facilitate task priority learn-
ing, with the aim of recasting the problem as a more stan-
dard task learning problem. [20] is an example of such ap-
proach, where a continuous nullspace projection technique
is developed to consider unilateral constraints, singular
Jacobian matrices, and dynamic variations of the prior-
ity order within the hierarchy structure. Inspired by this
approach, [60] propose a generalized projector to extend
the singular value decomposition used in [20] to compute
the nullspace projection operator, so that the generalized
projector can allow a task to be completely, partially, or
never projected into the nullspace of other tasks, with a
continuous priority parameterization. In this framework,
a strict priority becomes a limit case of a relative priority
of tasks, which is useful for humanoids acting in dynam-
ically changing contexts, since task priorities may have
to be switched in order to cope with changing situations
or when non-strict priorities between tasks may become
strict ones. Task hierarchies are handled by the modu-
lation of a priority matrix, without necessarily modifying

the control formulation each time the hierarchy changes.
Typically, the evolution of the task priorities is designed
manually with weight functions ranging from 0 to 1, con-
trolling if each task is fully, partially, or never projected
in the nullspaces of the other tasks with higher priority.
[67] is another example, where a weighted sum of torques,
each minimizing a different cost function, provides a con-
venient representation but requires the mixing coefficients
to be manually selected. In [2], a description of multiple
task definitions is constructed with the concept of flexible
priority structures. It handles efficiently unprioritized or
prioritized accumulations of tasks and priority switches by
incorporating interpolation in joint space. Consequently,
smooth, arbitrary, and consecutive task transitions are
achieved.

In parallel to the techniques described above, a col-
lection of work concentrates on learning task priority ei-
ther by stochastic search or from demonstration. Most of
the techniques assume that the set of elementary tasks is
known but can be used in conjunction with learning tech-
niques to acquire the elementary tasks. In [18], a mix-
ture of torque controllers is employed, with the mixing
coefficients learned by stochastic search with CMA-ES (a
derivative-free optimization strategy; see Section 4.2). In
[66], task priorities are learned by encoding the temporal
profile of the mixing coefficients with a RBF decompo-
sition of the signal and by using CMA-ES as stochastic
search algorithm. In [61], the presence of interferences be-
tween multiple tasks encoded in DMPs is detected, where
the tasks are then iteratively modified to resolve the po-
tential interferences. This is achieved by stochastic op-
timization in the DMP parameters space. The approach
exploits the fact that often, tasks are described within
an acceptable range of error, providing an opportunity to
render them compatible without an explicit need for prior-
itization. In [62], a technique based on GPR is developed
to exploit task variability as a way to modulate task pri-
orities during execution, by temporarily deviating certain
tasks as needed in the presence of incompatibilities. In
[53], an optimization framework with a nested sequence of
objectives (so as not to conflict with higher-priority ob-
jectives) is proposed with the aim of unifying prioritized
task-space and optimization-based control. For the case
of positive semidefinite quadratic objectives, a recursive
algorithm with real-time performance is obtained. In [81],
a strategy based on weights to represent the relative im-
portance of several tasks is proposed to deal with transi-
tions while performing a sequence of dynamic tasks with
a humanoid robot. In [29], prioritization is treated as a
reverse engineering problem based on the hypothesis that
the tasks the robot can execute are known, represented in
the form of a pool of candidate tasks and associated con-
trollers. This is achieved with the recognition of parallel
tasks that have been used to generate a motion, by de-
coupling the controllers through the nullspace projection
operation structure. The error with respect to reference
trajectories is thus used to select the best task among a
pool of candidates. The effect of this task is then canceled
from the original motion by projecting it in the nullspace,
where the process continues until the residual motion is
null. In [9], the task prioritization problem is treated with
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a task-parameterized model by exploiting the local lin-
ear property of nullspace operators. A set of candidate
projections representing multiple task hierarchies is used
during demonstration to extract how the different priori-
tization structures contribute and evolve during the task.
This information is then used to generalize the skill to new
situations while keeping the same evolution of the priori-
tization structure as in the demonstrations.
Another category of work focuses on directly learning

the nullspace projection operator. In [31], the variability
in multiple observations of different tasks is exploited to
learn nullspace controllers from demonstrations. In [59], a
method is proposed to learn the nullspace projection ma-
trix of a kinematically constrained system by exploiting
the property that the nullspace projection can be decom-
posed into a set of unidimensional projections. This line
of work emphasizes that in many everyday behaviors, it
is useful to estimate both of the policy underlying the
movement and its constraints. In this way, generaliza-
tion can be achieved both across constraints (i.e., apply-
ing the learned policy to new constraints), and within the
constraints (i.e., applying new policies to the learned con-
straint).
Finally, the last category focuses on learning from

demonstration, kinesthetic teaching, and interactive re-
finement techniques that can exploit the nullspace struc-
ture of the problem (assumed to be known or acquired
by one of the previous approaches). In [83], a method
to incrementally learn end-effector and nullspace motions
is developed, by kinesthetically teaching nullspace tasks
without affecting the end-effector task execution, where a
threshold on the external force is used to determine the
tasks priority. The resulting controller is able to dynam-
ically switch between multiple tasks priorities, allowing
the user to teach the robot motions, consisting of multi-
ple tasks organized in a hierarchical manner, by adding a
new task without disturbing the already learned tasks. In
[103], a kinesthetic teaching interface is developed to let
nonexpert users guide a kinematically redundant robot by
its end-effector, with the nullspace structure exploited to
let the robot efficiently exploit the redundancy by adopt-
ing natural poses while being steered by its end-effector.
This allows the user to fully concentrate on the task to
achieve, without worrying about the confined spaces or
joint limits of the robot.

4.5 Application examples

Examples of applications are shown in Fig. 17. Demon-
strations are provided from visual observation of a user
executing the task (§2.1). Three different skills are con-
sidered: a time-invariant bimanual reaching task, a peri-
odic bimanual sweeping movement, and a physical human-
robot interaction (give-me-five gesture). Details about the
experiments can be found in [12, 86, 56].
In the first two tasks, the control policy is represented

by a probabilistic variant of dynamical movement primi-
tives (§3.3) that uses Gaussian mixture regression (§3.4)
as core mechanism to learn and generate a virtual mass-
spring-damper system with the attractor changing either
with the location of the object to track (reaching task)
or with time (sweeping motion). The approach also uses

multiple coordinate systems acting in parallel, forming a
set of candidate frames of reference (of potential relevance
for the task). Based on the extracted variations during the
observation of the task, the robot determines which of the
candidate frame are relevant for the task, and how the dif-
ferent coordinate systems need to be combined to achieve
the task (in series and in parallel). In the give-me-five

interaction task, movements are encoded with continuous
hidden Markov models (§3.7), and interaction rules are
encoded with discrete hidden Markov models in a hier-
archical structure. Based on the symbolic reasoning, the
robot trajectories are reshaped in real time.

In the first task, the robot learns that an object on its
right-hand side should be reached with the right hand,
while the left hand can stay in a comfortable neutral pose,
and vice versa if the object is on the left-hand side. It also
learns that if the object is at a reachable distance in the
middle, both hands can be used to grab the object. In the
sweeping task, the robot learns more complex coordina-
tions of the two hands that can keep the broom in contact
with the floor and that can adapt to the position and ori-
entation of the area to sweep. In the last task, the robot
learns how to acquire movements and physical interaction
with a human. From the learned knowledge, it can then
recognize human movement, decide about an appropriate
interaction strategy, and establish intended physical hand
contacts with the human’s moving hand.

The approaches in the above experiments can easily be
extended to other encoding strategies. For example, al-
though the experiment with COMAN considered a variant
of GMM for the encoding, multivariate normal distribu-
tions as output, such as hidden Markov models (§3.7),
could be used. As shown in [55], hidden Markov mod-
els can be combined with Gaussian mixture regression.
The experiment used predetermined stiffness and damp-
ing parameters, but the retrieved variation and coordi-
nation information could easily be exploited in a linear
quadratic control strategy (see §4.1 or [15]). Also, the
demonstrations were provided so that the relevant fea-
tures were sufficiently salient to be learned from a small
number of demonstrations. To be more efficient, the ap-
proach could be augmented with other learning strategies
that would allow the humanoid to continue refining the
learned skill after the demonstrations, such as leveraging
iterative learning control (§4.3) or reward-weighted opti-
mization (§4.2).

5 Future directions and open
problems

This chapter introduced several representations for the
learning and control of movement primitives in humanoids,
together with examples of applications using these tech-
niques. There are many roads for further research, and we
introduce in this last section three examples.
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Figure 17: Learning and reproduction of adaptive controllers with the COMAN robot (left), with a bimanual platform
composed of two Barrett WAMs (center), and with the IRT humanoid (right). Adapted from [12, 86, 56].

5.1 Learning control representations for
wide-ranging data

In the field of machine learning, important efforts are de-
ployed toward developing learning algorithms dedicated to
large datasets and deep learning strategies; see, e.g., [58].
Most of these developments target problems in which data
are readily available or inexpensive to acquire. Learning
control in humanoids holds a distinct challenge, in the
sense that it often requires the robot to acquire skills from
only few experiences and interactions, with strong general-
ization demands. On the one side, a humanoid can collect
a very large amount of information from a large variety of
sensors, but on the other side, it is limited by the num-
ber of experiences or demonstrations that the user can
provide. Often, such approach requires a simulated envi-
ronment that can in some cases differ significantly from
the behavior of the real platform. Simulators help for one
part of the processing, but in some cases, they do not re-
flect reality in a sufficient level of details to be directly
transferred to the real platform without refinement.
For learning control in humanoids, one might endorse

the term wide-ranging data (instead of big data), because,
on the one hand, several applications in humanoids still re-
quire the use of sparse data (and sometimes as a strong
requirement, such as learning from demonstration) and,
on the other hand, the developed algorithms should be
able to exploit further data as efficiently as possible (if
available). This challenge is connected to diverse research
directions such as online learning, lifelong learning, con-
tinual adaptation, or never-ending learning.

5.2 Bridging the gap between symbolic
and continuous knowledge

The learning approaches covered in this chapter exploit
continuous representations that are tightly linked to the
low-level control capability of the humanoids. On the
other side of the spectrum, high-level learning approaches
exploit discrete representations to provide the level of ab-
straction required to perform cognitive tasks.
There are research efforts toward augmenting low-level

learning methods with the extraction of discrete features

and structural elements. Similarly, there are research ef-
forts to provide high-level learning methods with tech-
niques that more closely exploit the motor control capa-
bility of the humanoids. Research efforts are required to
bridge the gap between symbolic and continuous knowl-
edge in humanoids, which could lead to more flexible and
scalable learning of tasks. It requires the development of
models and algorithms capable of covering a wide spec-
trum of representations, from the continuous stream of
low-level sensorimotor data to macro actions, reasoning,
and higher-level symbolic representations of skills. By
starting from the low-level representations discussed in
this chapter, one first step in this direction is to inves-
tigate the problem of learning to organize in series and in
parallel multiple movement primitives (instead of learning
each primitive individually), and to tackle the problem of
learning the structures of models (instead of setting the
structure a priori and learning the parameters).

5.3 Exploiting the social interaction di-
mension in learning control

Most efforts in learning control have been to develop ef-
ficient learning and control algorithms by either assum-
ing that expert datasets are available (e.g., assuming that
the provided demonstrations are relevant solutions to the
problem) or by predetermining a specific learning strategy,
such as:

• Mimicking actions (without understanding the overall
objective);

• Goal-level imitation (inverse optimal control, extrac-
tion of the underlying objectives by discarding the
specific way in which the task is achieved);

• Exploration with self-assessed rewards or feedbacks
from an external observer;

• Refinement by kinesthetic corrections.

While such developments are important, they do not
account for the way in which data are collected. In con-
trast to many machine learning applications in which the
learning systems are independent of the acquired data, a
remarkable characteristic of learning control in humanoids
is that the iterative interaction with the users can be ex-
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ploited to influence the quality and nature of the collected
data.
Social learning studies reveal that several modalities

need to be combined to acquire skills efficiently [100].
In humanoids, the way in which these different learning
control modalities can be organized and coexist remains
largely unexplored. Questions include how and when a
humanoid should request feedback from the user, either
explicitly (e.g., through demonstration requests or spoken
questions to validate hypotheses about motor skill prop-
erties) or implicitly (e.g., by exaggerating parts of move-
ments to measure users reaction)? How to autonomously
determine which learning modality is currently the most
appropriate/available/efficient to improve the skill to be
acquired? How should this efficiency be measured (e.g., in
terms of interaction duration, in terms of generalization
ability)? Parts of this problem share links with active
learning but with a distinct and important multimodal
social interaction aspect.
In addition to extracting control patterns from predeter-

mined learning strategies, one further challenge of learning
control in humanoids is to acquire interaction patterns and
devise efficient ways of making different learning modali-
ties coexist, such as assessing autonomously which learn-
ing strategy to use in a given context. One such research
direction requires a better exploitation of the social dimen-
sion in human-humanoid interaction, where both actors
can influence the success of skills acquisition.
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