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Learning and reproduction of gestures by imitation
An approach based on Hidden Markov Model and Gaussian Mixture Regression

Sylvain Calinon, Florent D’halluin, Eric L. Sauser, Darwin G. Caldwell and Aude G. Billard

Abstract—We present a probabilistic approach to learning
robust models of human motion through imitation. The combi-
nation of Hidden Markov Model (HMM) and Gaussian Mixture
Regression (GMR) allows us to extract redundancies across
multiple demonstrations and build time-independent models
to reproduce the dynamics of the observed movements. The
approach is first compared with state-of-the-art approaches by
using generated trajectories sharing similar characteristics to
those of humans. Three applications on different types of robots
are then presented. An experiment with the iCub humanoid robot
acquiring a bimanual dancing motion is first presented to show
that the system can cope with cyclic and crossing motions. An
experiment with a 7 DOFs WAM robotic arm learning the motion
of hitting a ball with a table tennis racket is presented to highlight
the possibility to encode several movements in a single model.
Finally, an experiment with a HOAP-3 humanoid robot holding
a spoon and learning to feed the Robota humanoid robot is
presented. It shows the capability of the system to handle several
constraints simultaneously.

Index Terms—Robot programming by demonstration, Learn-
ing by imitation, Gaussian mixture regression, Hidden Markov
Model.

I. INTRODUCTION

ROBOT Programming by Demonstration (PbD) covers
methods by which a robot learns new skills through

human guidance. Also referred to as learning by imitation,
lead-through teaching, tutelage or apprenticeship learning,
PbD takes inspiration from the way humans learn new skills
by imitation to develop methods by which new tasks can be
transmitted to a robot [1], [2].

Learning control strategies for numerous degrees of freedom
platforms that interact in complex and variable environments
is faced with two key challenges: first, the complexity of the
tasks to be learned is such that pure trial and error learning
would be too slow. PbD thus appears as a way to speed up
learning by reducing the search space, while still allowing the
robot to refine its model of the demonstration through trial
and error [3]. Second, there should be a continuum between
learning and control, so that control strategies can adapt in
real time to perturbations, such as changes of position and
orientation of objects. The present work addresses both chal-
lenges in investigating and comparing methods by which PbD
is used to learn the dynamics of demonstrated movements,
and, hence, provides the robot with a generic and adaptive
model of control.

This work was supported in part by the FEELIX GROWING European
project under contract FP6 IST-045169, and by the AMARSi European project
under contract FP7-ICT-248311.

A. Related work and motivations

PbD is of interest for different levels of task representation.
A large body of work in PbD follows a symbolic approach
to the representation and encoding of the tasks, see e.g. [4]–
[9]. Such a symbolic description offers the advantage that it
provides a way to easily tackle sequences or hierarchies of
actions. One major drawback, however, is that they rely on
strong biases to predefine the important cues and to segment
those efficiently.

Most approaches to trajectory modeling estimate a time-
dependent model of the trajectories, by either exploiting vari-
ants along the concept of spline decomposition [10], [11] or
through an explicit encoding of the time-space dependencies
[12]. Such modeling methods are effective and precise in
the description of the actual trajectory, and benefit from an
explicit time-precedence across the motion segments to ensure
precise reproduction of the task. However, the explicit time-
dependency of these models requires the use of other methods
for realigning and scaling the trajectories to handle spatial and
temporal perturbations. As an alternative, other approaches
have considered modeling the intrinsic dynamics of motion
[13]–[16]. Such approaches are advantageous in that the
system does not depend on an explicit time variable and can
be modulated to produce trajectories with similar dynamics in
areas of the workspace not covered during training. We use
HMM in this work, which has previously been reported as a
robust probabilistic method to handle the spatial and temporal
variabilities of human motion across various demonstrations
[14], [16]. Most of the approaches proposed so far, however,
require either a high number of states to correctly reproduce
the motion (i.e. higher than for recognition purposes), or an
additional smoothing procedure which has the drawback of
reducing important peaks in the motion.

The proposed model relies on Gaussian Mixture Regression
(GMR) [12], [17], [18] to generalize the motion during re-
production. In contrast to other regression methods such as
Locally Weighted Regression (LWR) [19], Locally Weighted
Projection Regression (LWPR) [20], or Gaussian Process
Regression (GPR) [15], [21], GMR does not model the regres-
sion function directly, but models a joint probability density
function of the data. It then derives the regression function
from the joint density model [1]. This is an advantage in some
robotic applications since the input and output components
are only specified at the very last step of the process. Density
estimation can thus be learned in an off-line phase, while the
regression process can be computed very rapidly. It can also
handle different sources of missing data, as the system is able
to consider any combination of input/output mappings during
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Fig. 1. Example of motion encoding and reproduction using the unstable
estimate of the motion dynamics (left) and the stabilizer (right).

the retrieval phase.

II. PROPOSED APPROACH

M examples of a skill are demonstrated to the robot
in slightly different situations. Each demonstration m ∈
{1, . . . ,M} consists of a set of Tm D-dimensional positions
x = {xt}Tm

t=1 and velocities ẋ = {ẋt}Tm
t=1. The joint distri-

bution P(x, ẋ) is encoded in a continuous Hidden Markov
Model (HMM) of K states. The output distribution of each
state is represented by a Gaussian locally encoding variation
and correlation information. The parameters of the HMM
are defined by {Π, a, ¹,Σ} and learned using the Baum-
Welch algorithm [22], which is a variant of the Expectation-
Maximization (EM) algorithm. Πi is the initial probability of
being in state i, aij is the transitional probability from state i
to state j. ¹i and Σi represent the center and the covariance
matrix of the i-th Gaussian distribution of the HMM. Input
and output components in each state of the HMM are defined
as

¹i =

[
¹x
i

¹ẋ
i

]
and Σi =

[
Σx

i Σxẋ
i

Σẋx
i Σẋ

i

]
,

with i ∈ {1, . . . ,K}. The indices x and ẋ refer respectively
to position and velocity.

A desired velocity ˆ̇x =
∑K

i=1 ℎi(x)P (ẋ∣x, i) is estimated
through Gaussian Mixture Regression (GMR) as

ˆ̇x =

K∑

i=1

ℎi(x)
[
¹ẋ
i +Σẋx

i (Σx
i )

−1(x− ¹x
i )
]
. (1)

Given the current position, a velocity command is estimated
iteratively to control the system. In [23], we considered a
second order model. Here, our estimate is done solely on
the first derivative, which in practice proves to be more
robust to compute. In the original GMR framework [17], the
influence of the different Gaussians is represented by weights
ℎi ∈ ℝ[0,1], defined as the probability of an observed input
belonging to each of the Gaussians. We propose to extend
this estimation by recursively computing a likelihood through
the HMM representation, thus taking into consideration not
only the spatial information but also the sequential information
probabilistically encapsulated in the HMM1

ℎi(xt) =

(∑K
j=1 ℎj(xt−1) aji

)
N (xt; ¹

x
i ,Σ

x
i )

∑K
k=1

[(∑K
j=1 ℎj(xt−1) ajk

)
N (xt; ¹x

k,Σ
x
k)
] .

1We will omit the indices t in further equations.

Here, ℎi(xt) represents the HMM forward variable [22],
initialized with ℎi(x1) =

¼iN (x1; ¹
x
i ,Σ

x
i )∑K

k=1[¼kN (x1; ¹x
k,Σ

x
k)]

, and corre-
sponding to the probability of observing the partial sequence
{x1, x2, . . . , xt} and of being in state i at time t.

Fig. 1 left presents an example of encoding and reproduction
using this basic control scheme, where the number of states
in the HMM has been deliberately fixed to a low value.
Two reproduction attempts are represented by the thick blue
and red lines, where the initial positions are represented by
points. When the motion is initialized nearby the original
demonstrations, the system behaves as desired. However, if
initialized in a region that has not been covered during the
demonstrations (see trajectory represented by red lines), the
system does not follow the desired trajectory.

To tackle the inherent instabilities of the model of Eq. (1),
we add a secondary term that takes the form of a mass-
spring-damper system that brings back the trajectories toward
the centers of the Gaussians. Each of these centers acts as
a ”transient tracking point” to this secondary system, hence
driving the motion along the way. Transition across tracking
points is ensured by the transition probabilities of the HMM.

The stabilizer is derived as follows. At each time step,
a target velocity and target position are retrieved from our
estimate of the dynamics of motion, following Eq. (1) and
x̂ =

∑K
i=1 ℎi(x)[¹

x
i +Σxẋ

i (Σẋ
i )

−1(ẋ− ¹ẋ
i )].

Tracking of the desired velocity ˆ̇x and desired position x̂
is then ensured by the proportional-derivative controller. The
acceleration command is determined by

ẍ =

ẍV
︷ ︸︸ ︷
(ˆ̇x− ẋ)·V +

ẍP
︷ ︸︸ ︷
(x̂− x)·P , (2)

where ·V and ·P are gain parameters similar to damping and
stiffness factors.

In the above equation, ẍV allows the robot to follow the
demonstrated velocity profile. ẍP prevents the robot from
departing from a known situation, and forces it to come back to
the subspace of demonstrations, if a perturbation occurs. The
non-linear dynamics of the movement is thus approximated by
a mixture of linear systems, where the influence of the different
linear models is estimated through a non-linear process. Eq.
(2) can be formulated as a mixture of linear systems, see [24]
for details.

Note that the tracking term in (2) may distort the original
estimate of the dynamics (oscillations around the original
demonstrations). Avoiding such oscillations and minimizing
the distortions depends on choosing carefully the gains pa-
rameters. In practice, for the experiments reported here (and
for well chosen gains), the behavior of the system followed
the desired dynamics. Analysis and solutions to the problem
of stabilizing the first order system can be found in [25]. Fig.
1 right presents reproduction results with the stabilizer, where
the robot smoothly comes back to the demonstrated movement
when starting from a different initial situation.

Using constant gains in Eq. (2) may distort the demonstrated
dynamics of the movement in-between two consecutive Gaus-
sians (the effect tends to disappear by increasing the number
of Gaussians). While this solution may be acceptable for some
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tasks, we suggest here the use of adaptive gains. By setting a
proportional gain that decreases when the system is close to
the demonstrated trajectories, the system reproduces not only
the demonstrated path, but also follows the dynamics of the
movement while following this path, see [26] for details.

Parts of the movement where the variations across the
demonstrations are high indicate that the position does not
need to be tracked very precisely. Setting adaptive gains as in
[26] allows the controller to focus on the other constraints
of the task, such as following a desired velocity. On the
other hand, parts of the movement exhibiting strong invariance
across the demonstrations will be tracked more precisely, i.e.
the gain controlling the error on position will automatically be
increased.

III. EVALUATION THROUGH GENERATED DATA

A. Generation of human-like motion data

To analyze systematically the proposed system, several sets
of trajectories are randomly generated. First, a set of keypoints
X of D dimensions is created (each variable {Xi}Di=1 is
generated with a uniform random distribution U(0, 1)).

A Vector Integration To Endpoint (VITE) system, which has
been suggested as a biologically plausible model of human
reaching movement [27], is then used to generate trajectories
by starting from a first keypoint and recursively defining the
next keypoint as the target. It is defined here as a critically
damped mass-spring-damper controller ẍ = (X−x)·P − ẋ·V

with parameters ·V = 25, ·P = (·V)2/4, and time step
¿ = 0.003 sec. Every 50 iterations, the target is switched
to the next keypoint. For the last keypoint, 50 additional
iterations are used to let the system converge to the last
keypoint. To simulate motion variability, each dataset con-
sists of 3 trajectories produced by slightly varying, with a
Gaussian noise N (0, 0.1), the positions of the keypoints. The
resulting trajectories present natural looking motions that share
similarities with those of humans. The automation of the
generation process allows us to flexibly evaluate the imitation
performance of our algorithm with respect to several datasets
of different dimensionalities.

B. Comparison with other approaches

The approach that we propose in this paper will be further
denoted as HMM, as its core representation is based on a
Hidden Markov Model. We compare this approach with four
state-of-the-art methods that have proven good performance in
robotics applications.

TGMR: Time-dependent Gaussian Mixture Regression [12]
is based on our previous work, where time is used as an
explicit input variable, and where the demonstrations are first
aligned in time through Dynamic Time Warping (DTW). Then,
the distribution of temporal and spatial variables {t, x, ẋ} is
encoded in a Gaussian Mixture Model (GMM). At each time
step during the reproduction process, a desired position x̂
and a desired velocity ˆ̇x are then retrieved through GMR
by estimating P (x, ẋ∣t). The controller used by the robot to
reproduce the skill is the mass-spring damper system defined
in Eq. (2).

LWR: Locally Weighted Regression [19] is a memory-
based probabilistic approach. It is used here to estimate at
each time step a desired position x̂ and a desired velocity ˆ̇x.
Each datapoint of the dataset participates in the estimation of
the solution by using a Gaussian kernel with fixed diagonal
covariance matrix centered at the current position to weight
the influence of each datapoint. The controller used by the
robot is the mass-spring damper system defined in Eq. (2).

LWPR: Locally Weighted Projection Regression is an in-
cremental regression algorithm that performs piecewise linear
function approximation [20]. The algorithm does not require
storage of the training data and has been proved to be efficient
in a variety of robot learning tasks including high dimensional
data. We use here an implementation of LWPR with the input
space defined by a set of receptive fields with full covariance
matrices. By detecting locally redundant or irrelevant input di-
mensions, the method locally reduces the dimensionality of the
input data by finding local projections through Partial Least
Squares (PLS) regression. The learning parameters have been
set based on the recommendations provided in [20]. During
reproduction, LWPR is used at each iteration to estimate a
desired velocity ˆ̇x given the current position x. The receptive
fields are then used to determine a desired position x̂ in a
similar manner to the methods above. The controller used by
the robot is the mass-spring damper system defined in Eq. (2).

DMP: The Dynamic Movement Primitives approach was
originally proposed by Ijspeert et al [13]. The method allows
a target to be reached by modulating a set of mass-spring-
damper systems. This allows a particular path to be followed
with the guarantee that the velocity vanishes at the end of the
movement. A phase variable acts as a decay term to ensure
that the system asymptotically converges to a reaching point.

C. Metrics of imitation performance

Five metrics are used to evaluate a reproduction attempt
x′ ∈ ℝ(D×T ) with respect to the set of demonstrations x ∈
ℝ(D×M×T ) rescaled in time with T =

∑M
m=1 Tm

M .
RMS error ℳ1: This metric evaluates the generalization

capability by measuring how well the reproduced trajectory
matches the different demonstrations. It evaluates the accu-
racy of the reproduction in terms of spatial and temporal
information, where a root-mean-square (RMS) error on po-
sition (with respect to the M = 3 demonstrations of the
dataset) is computed along the reproduced motion ℳ1 =
1

MT

∑M
m=1

∑T
t=1 ∣∣x′

t − xm,t∣∣.
RMS error after DTW ℳ2: For this metric, the repro-

duced motion is first temporally aligned with the demonstra-
tions through Dynamic Time Warping (DTW), and a RMS
error on position similar to ℳ1 is then computed. In contrast
with ℳ1, spatial information is prioritized here (i.e., the
metric compares the path followed by the robot instead of
the exact trajectory along time).

Norm of jerk ℳ3: This metric evaluates the smoothness
of the reproduction based on RMS jerk quantification. This
measure, based on the derivative of acceleration, has been
shown to be a good candidate to evaluate smoothness of human
motion [28] ℳ3 = 1

T

∑T
t=1 ∣∣

...
x ′
t∣∣.
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Fig. 2. Influence of the number of states K on the metrics, for D = 7
dimensions. The dashed line in ℳ3 represents the mean RMS jerk of the
demonstrations.
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Fig. 3. Influence of the dimensionality D of the dataset on the metrics, for
K = 4 states (see Fig. 2 for legend).

Learning time ℳ4: Computation time of the learning
process.

Retrieval duration ℳ5: Computation time of the retrieval
process for one iteration.
ℳ4 and ℳ5 are evaluated through non-optimized Matlab

implementations of the algorithms running on a 2.5GHz Pen-
tium processor.

D. Evaluation results

Three different sets of movements are generated with the
approach presented in Sec. III-A. For each set of movements,
three reproduction attempts are performed. This process is then
repeated for various numbers of states, dimensionalities and
ranges of perturbation. The quantitative results are presented
in Figs 2-3.

Fig. 2 shows the influence of the number of states K in
the model (or basis functions), for the different methods and
metrics. As LWPR is an online incremental learning method,
the parameter that determines when new basis functions are
created (parameter wgen in [20]) has been gradually increased

until the number of receptive fields matches the desired
number of states. We see with ℳ1 and ℳ2 that all methods
perform very well, accurately following the demonstrated
movements in terms of RMS errors. By encapsulating cor-
relation information across input and output variables, HMM
performs well with a very small number of states. We see
with ℳ3 that DMP reproduces the smoothest movement (it
actually smoothes the original demonstrations, see RMS jerk
depicted in dashed line). It is noticeable that smoothness is
not much affected by the number of states in general. For
ℳ4, DMP and LWR show the best performance in terms of
the computation time used by the learning process (LWR is
zero as it is a data-driven approach without learning), while
HMM and TGMR (both trained by Expectation-Maximization)
show a slightly worse performance. For a better comparison
with the online learning nature of LWPR, 10 passes have been
performed with the dataset shuffled randomly. It should thus
be noted that by using a single pass, the computation time can
be reduced by an order of magnitude.

In this experiment, we concentrated on a case where the
learning process is separated from the retrieval process. In
this context, both a batch learning process and an online
learning process can be employed. For the subset of robotic
tasks that we consider here, the computation time needed for
learning has less importance than the one required for real-time
reproduction of a skill. In Fig. 2, we see that all the methods
learned in less than 2 sec. We make the assumption that this
idle time remains acceptable for the user. Note, however, that a
stricter constraint can be considered by modifying the stopping
criterions of the iterative Expectation-Maximization procedure
to take into account a measure of the acceptable waiting time.

For ℳ5, the computation time used by LWR for reproduc-
tion is not competitive and is thus not depicted here (it goes
over 7 × 10−2 sec. as in the proposed implementation, each
datapoint contributes to the estimation). The other approaches
show a linear dependency on the number of states and are
all suitable for online application in robotics (less than 1
millisecond per iteration for the considered number of states).

Fig. 3 shows the influence of the dimensionality D on the
metrics for the different approaches (see legend in Fig. 2),
when considering K = 4 states in the model. We see with
ℳ1 and ℳ2 that the methods perform equally well in terms
of RMS errors.

When the dimensionality is low, the difficulty is to correctly
handle the crossing points that can appear when randomly
generating trajectories (i.e., when passing through the same
point several times during a demonstration). When the di-
mensionality is high, these crossings are less likely to occur.
However, the difficulty is in this case to efficiently handle
the sparsity of the data (curse of dimensionality). This fact is
reflected by the data, and is particularly noticeable for LWR.
The comparison with LWPR is not very informative here,
as the lower performance is related to the online nature of
the learning process. Quantitative comparison would be unfair
as an online algorithm cannot determine in advance whether
loops in the motion will be encountered, while a batch learning
process can cluster the crossing points more easily.

For ℳ4 in Fig. 3, we see that the computation time of
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Fig. 4. Top: Demonstration of the skill and evaluation. The reproductions
with the HMM and DMP processes are respectively represented with black
and yellow lines. For ℳ3, the dotted line depicts the RMS jerk value for the
training data. Bottom: Model and reproductions. For visualization purpose,
the 14 DOFs periodic trajectories and associated HMM have been projected
into a latent space of 3 dimensions {»1, »2, »3} through Principal Component
Analysis (PCA).

Expectation-Maximization (EM) used by HMM and TGMR
produces very variable results. Indeed, EM is a local search
procedure that starts randomly (with k-means initialization)
and stops for example once a local maximum likelihood is
reached (other stopping criterions can be defined). Depending
on the initialization, a very different number of iterations may
be required to reach a local optimum.2 For reproduction, ℳ5

shows that the different methods remain competitive in terms
of online retrieval of data (less than 1 millisecond, and nearly
linear increase for dimensions below D = 12).

We can conclude from this evaluation that the HMM method
is competitive with respect to the other approaches. The
next sections present three robot learning applications, which
are aimed at showing the interesting characteristics of the
proposed approach. The experiments present different learning
situations where the above quantitative measures would not be
be an appropriate benchmark to highlight the properties of the
approach.

IV. EXPERIMENT WITH ICUB HUMANOID ROBOT

In the applications that we present next, we consider the dy-
namics of the movement but we do not consider the dynamics
of the robot itself. In the tasks that we consider, the robot
is sufficiently fast and precise to track the dynamics of the
trajectory (and the inertia remains low). However, if tracking
errors occur, they are intrinsically handled by the system,
which acts as an autonomous system robust to perturbation.
Videos of the experiments accompany the paper.

The aims of the experiment with iCub are to show that: (1)
the proposed approach can be used to learn periodic motion
containing crossings; and (2) the algorithm can cope with
bimanual movements in joint angle space.

2In practice, a maximum number of iterations can be set (which was not
the case in this experiment) to guarantee that the learning time remains short.

Fig. 5. Left: Teaching the Barrett WAM robotic arm to hit a ball, with
reproduction of a drive stroke (top) and topspin stroke (bottom). Right:
Teaching the HOAP-3 humanoid robot to feed a Robota robotic doll.

The iCub robot is used in the experiment [29]. 14 DOFs
out of the 53 degrees-of-freedom (DOFs) are used to control
the two arms of the robot. A set of motion sensors are used to
record the user’s gestures by collecting joint angle trajectories
of the upper-body torso, see Fig. 4. Six X-Sens motion sensors
are attached to the upper-arms, lower-arms, and at the back of
the hands of the user, sending 14 DOFs data to the robot.

A simple rhythmic movement is demonstrated through the
motion sensors and simultaneously mapped to the iCub. After
having observed 3-4 periods of the movement, the robot learns
a model of the cyclic motion. The motion is reproduced by
the HMM approach presented in Section II, and compared
to DMP. For DMP, the version of the algorithm for periodic
motion is employed, where the period of the movement has
been explicitly defined.

Fig. 4 presents the encoding, reproduction and evaluation
results. The 14 DOFs motion contains a crossing in joint space,
which is also observed in the PCA projection of the data. At a
given iteration, the robot must thus move differently depending
on the preceding postures and movements along the trajectory.
We see that the high-dimensional periodic movement with
crossing is correctly handled by DMP and HMM (8 states
have been used in both cases). DMP shows the best score
in terms of accuracy and smoothness. The cyclic form must
however be set beforehand (discrete and periodic signals use
a different representation in DMP), with an external method
required to estimate the period of the motion.

In contrast to HMM and DMP, LWR and LWPR fail to
reproduce the movement at the crossing point. Passing through
the same point several times along the the cycle is not correctly
handled here. When reaching the crossing point, these two
methods retrieve an undesirable average of the different motion
behaviors learned at this point. The system can also follow
indefinitely only a subpart of the periodic movement. For
this reason, LWR and LWPR have not been quantitatively
evaluated here. Similarly, TGMR has not been evaluated as it
cannot efficiently encode periodic motion due to the explicit
encoding of time in the model.

V. EXPERIMENT WITH WAM ROBOTIC ARM

This experiment shows that the framework can be used
in an unsupervised learning manner. By that, we mean that
several movements can be encoded in a single HMM, without
specifying the number of movements, and without associating
the different demonstrations with a class or label.
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Fig. 6. Encoding and reproduction results of the table tennis experiment
(in position space). Left: Demonstrated movements and associated Hidden
Markov Model, where 8 Gaussians are used to encode the two categories of
movements (the learned transitions are represented in Fig. 7). The position of
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depicted by dots. The trajectories corresponding to topspin and drive strokes
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represented by black lines (self transitions probabilities are not represented
here). From this representation, two different sequences defined by states
transitions 2-3-1-7 and 4-6-5-8 appear, initiated by 2 or 3 for the first one, and
by 4 or 6 for the second one. Position and velocity of the racket at the time
of the impact for the 8 demonstrations (center), and for the 10 reproduction
attempts (right).

The experiment consists of learning and reproducing the
motion of hitting a ball with a table tennis racket by using
a Barrett WAM 7 DOFs robotic arm, see Fig. 5 left. One
objective is to demonstrate that such movements can be trans-
ferred using the proposed approach, where the skill requires
that the target be reached with a given velocity, direction and
amplitude. In the experiment presented here, we extend the
difficulty of the tennis task described in [13] by assuming that
the robot must hit the ball with a desired velocity set by the
demonstrations.

In table tennis, topspin occurs when the top of the ball is
going in the same direction as the ball is moving. Topspin
causes the ball to drop faster than by gravity alone, and is used
by players to allow the ball to be hit harder, and still land on
the table. The stroke with no spin is referred to as drive. The
motion and orientation of the racket at the impact thus differ
when performing a topspin or a drive stroke. Training was
done by an intermediate-level player demonstrating several
topspin and drive strokes to the robot by putting it in an active
gravity compensation control mode, which allows him to move
the robot manually. Through this kinesthetic teaching process,
the user molds the robot behavior by putting it through the task

Fig. 8. Trajectories relative to the two landmarks are encoded in two HMMs
of 4 states. Each Gaussian encodes position and velocity information along the
task. Generated trajectories using the corresponding models are represented
with dashed lines, where the dots show the initial positions. The position of
the landmarks are represented with a triangle for the plate and with a square
for Robota’s mouth. The final reproduction is represented by a solid line. The
reproduction shows that the robot tends to satisfy the first constraint first (to
reach for the plate) and then switches smoothly to the second constraint (to
reach for Robota’s mouth).

of hitting the ball with a desired spin. The ball is fixed on a
stick during demonstration, and its initial position is tracked
by a color-based stereoscopic vision tracking system (Vivotek
cameras with a resolution of 640x480 pixels).

The recordings are performed in Cartesian space by con-
sidering the position x and orientation q of the racket with
respect to the ball, with associated velocities ẋ and q̇. A
quaternion representation of the orientation is used, where
three of the four quaternion components are used (the fourth
quaternion component is reconstructed afterwards). The user
demonstrates in total 4 topspin strokes and 4 drive strokes in
random order. The categories of strokes are not provided to
the robot, and the number of states in the HMM is selected
through Bayesian Information Criterion (BIC) [30]. A damped
least square inverse kinematics solution with optimization in
the null space of the Jacobian matrix is used to reproduce the
task, see [12] for details.

Figs 5 and 6 present the encoding and play back results.
We see that the HMM approach reproduces an appropriate
motion in the two situations. Fig. 7 left, presents the states
transitions learned by the HMM. We see that the model has
correctly learned that two different dynamics can be achieved
here, depending on the initial position of the robot. It is
thus possible to encode several motion alternatives in a single
model, without having to provide the number (and labels) of
the movements during the demonstration phase. The different
gestures are then automatically retrieved depending on the
initial situation. Fig. 7 also presents the results of the strokes
at the time of the impact with the ball. We see that the
system correctly strikes the ball at a velocity similar to that
demonstrated (in terms of both amplitude and direction).

VI. EXPERIMENT WITH HOAP-3 AND ROBOTA

This experiment shows that the framework can be used
to learn a controller by taking simultaneously into account
several constraints. Here, we consider the case where a set of
movements relative to a set of landmarks must be considered
for a correct reproduction of the skill (i.e., where several
actions on objects are relevant for the task).

In the previous experiment, we learned trajectories in the
frame of reference of a single object (the ball). This experiment
with a humanoid robot extends this approach by considering
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trajectories with respect to multiple landmarks. A HOAP-3
humanoid robot from Fujitsu is used in the experiment. It has
in total 28 DOFs, of which the 8 DOFs of the upper torso
are used in the experiment (4 DOFs per arm). A kinesthetic
teaching process is used for demonstration. The selected
motors are set to passive mode, which allows the user to move
freely the corresponding degrees of freedom while the robot
executes the task. The kinematics of each joint motion are
recorded at a rate of 1 kHz.

The experiment consists of feeding a Robota robotic doll
[31], where HOAP-3 first brings a spoon to a plate to collect
mashed potatoes and then moves it with an appropriate path
towards Robota’s mouth, see Fig. 5. Four kinesthetic demon-
strations are provided by changing the initial positions of the
landmarks from one demonstration to the other.

The set of landmarks (or objects) tracked by the robot is
pre-defined. The position of the plate is recorded through a
patch attached to it, which is tracked by an external vision
system placed to the side of the robot. The position of Robota’s
mouth is tracked by proprioception through the robot’s motor
encoders.3

In the demonstration phase, the position x of the end-
effector is collected in the frame of reference of the robot’s
torso (fixed frame of reference as the robot is seated during
the experiment). This trajectory is expressed in the frames
of reference of the different landmarks (moving frames of
references) defined for each landmark n by position o(n) and
orientation matrix R(n) through x(n) = R(n)⊤(x − o(n)) and
ẋ(n) = R(n)⊤ẋ.

A Hidden Markov Model is learned for each landmark.
During the reproduction phase, for new position o′(n) and
orientation R′(n) of the landmarks, the generalized position
x̂ and velocity ˆ̇x of the end-effector with respect to the
different landmarks is projected back to the frame of reference
attached to the torso through x̂′(n) = R′(n)x̂(n) + o′(n) and
ˆ̇x′(n) = R′(n) ˆ̇x(n).4

At each time step, the command defined in Eq. (2) is
used to retrieve the desired velocity ˆ̇x′ and desired po-
sition x̂′, where the resulting distributions N (ˆ̇x′, Σ̂′ẋ) and
N (x̂′, Σ̂′x) are respectively computed through the Gaussian
products

∏N
n=1 N (ˆ̇x′(n), Σ̂′ẋ(n)) and

∏N
n=1 N (x̂′(n), Σ̂′x(n)).

This allows the system to combine automatically the different
constraints associated with the landmarks.

Fig. 8 presents the encoding results. It shows through the
patterns of the Gaussian distributions that parts of the motion
are more constrained than others. With respect to landmark
1, strong consistency among the demonstrations has been
observed at the beginning of the gesture (motion of the spoon
into the mashed potatoes), which is reflected by the narrower
form of the ellipses at this point. With respect to landmark
2 (left graph), strong consistency among the demonstrations

3HOAP-3’s left arm is rigidly attached to Robota, and HOAP-3 is connected
to Robota’s head encoders. Robota’s head is thus considered as an additional
link to the kinematic model of the robot (a visual marker would easily be
occluded by the spoon moving in the vicinity of the mouth).

4The associated covariances matrices are transformed through the lin-
ear transformation property of Gaussian distributions, yielding Σ̂′x(n) =

R′(n)Σ̂x(n)R′(n)⊤ and Σ̂′ẋ(n) = R′(n)Σ̂ẋ(n)R′(n)⊤.

has been observed at the end of the gesture (when reaching
for Robota’s mouth). Fig. 8, right, shows the reproduction
results. We see that the robot automatically combines the
two sets of constraints (associated with the plate and with
Robota’s mouth) to find a trade-off satisfying probabilistically
the constraints observed during the demonstrations.

VII. DISCUSSION

We presented an evaluation experiment based on randomly
generated data and three applications highlighting different
capabilities of the proposed system. The aim of the exper-
iment presented in Section III was to perform a systematic
evaluation for various dimensionalities and for models of
various complexity. It, however, remains valid only for the
subset of tasks that we consider here, that is, in the context
where an acceleration command is recursively evaluated after
having observed a set of position and velocity data. Future
comparison effort is required to evaluate the different methods
for a broader range of tasks.

The proposed HMM approach shares many characteristics
with the DMP approach, but has some advantages for the
subset of tasks that we considered in the experiments. First,
it is able to encode several motion alternatives in the same
model (see the table tennis experiment in Sec. V). Partial
demonstrations can be provided, which is a very important
characteristics for the teaching interaction (e.g. to refine one
part of the movement without having to demonstrate the whole
task again). Compared to DMP that must explicitly embed the
cyclic or discrete form of the motion, the HMM approach
allows periodic and reaching movements to be handled in a
unified way (and simultaneously), without having to specify
the representation beforehand (see the dance learning exper-
iment in Sec. IV). It is thus not necessary to specify the
frequency of the movement in contrast with DMP that requires
the use of an external system to estimate the fundamental
frequency of the system [32], [33].

DMP is robust to spatial perturbation but requires an exter-
nal mechanism to handle temporal perturbations such as delay
and pauses in the motion (the perturbation needs to be detected
in order to re-estimate the value of the decay term). For
example, if the robot needs to reproduce only one part of the
motion, or if the target is moving, the decay term must be re-
evaluated in consequence. Handling this type of perturbation
is in contrast inherently encapsulated in the proposed model.

The proposed model allows automatic learning of the cor-
relations between the different variables, and the use of this
information for reproduction. To handle multivariate data,
DMP considers the different variables as separate processes
synchronized by the phase variable, whereas HMM encapsu-
lates the complete correlation information.

The interesting properties of the proposed model however
comes with a drawback that requires further investigation. In
DMP, the weights are determined through a decay term, which
allows the system to guarantee convergence to an attractor.
In contrast, the HMM method has the disadvantage that its
stability relies on the proper choice of the gains in Eq.
(2). These gains must be set by estimating in advance the
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perturbations that one can expect during reproduction and/or
the range of novel initial positions that the system is expected
to handle.

VIII. CONCLUSION

We presented and evaluated an approach based on Hidden
Markov Model, Gaussian Mixture Regression and dynamical
systems to allow robots to acquire new skills by imitation.
The use of HMM allowed us to get rid of the explicit time
dependency that was considered in our previous work [12],
by encapsulating precedence information within the statistical
representation. In the context of separated learning and repro-
duction processes, this novel formulation was systematically
evaluated with respect to our previous approach, Locally
Weighted Regression (LWR) [19], Locally Weighted Projection
Regression (LWPR) [20], and Dynamic Movement Primitives
(DMP) [13]. We finally presented applications on different
kinds of robots to highlight the flexibility of the proposed
approach in three different learning by imitation scenarios.
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