
Joining high-level symbolic planning with low-level motion primitives
in adaptive HRI: application to dressing assistance

Gerard Canal∗1, Emmanuel Pignat∗2, Guillem Alenyà1, Sylvain Calinon2 and Carme Torras1

Abstract— For a safe and successful daily living assistance,
far from the highly controlled environment of a factory, robots
should be able to adapt to ever-changing situations. Program-
ming such a robot is a tedious process that requires expert
knowledge. An alternative is to rely on a high-level planner, but
the generic symbolic representations used are not well suited
to particular robot executions. Contrarily, motion primitives
encode robot motions in a way that can be easily adapted to
different situations. This paper presents a combined framework
that exploits the advantages of both approaches. The number
of required symbolic states is reduced, as motion primitives
provide “smart actions” that take the current state and cope
online with variations. Symbolic actions can include interactions
(e.g., ask and inform) that are difficult to demonstrate. We show
that the proposed framework can adapt to the user preferences
(in terms of robot speed and robot verbosity), can readjust
the trajectories based on the user movements, and can handle
unforeseen situations. Experiments are performed in a shoe-
dressing scenario. This scenario is particularly interesting be-
cause it involves a sufficient number of actions, and the human-
robot interaction requires the handling of user preferences and
unexpected reactions.

I. INTRODUCTION

Healthcare assistance is often related to close-contact
interactions. Caregivers frequently help users to get dressed,
eat or clean when they cannot do these tasks by themselves.
These Activities of Daily Living (ADLs) are basic needs of
every human being, and robots may help users to perform
them more autonomously. However, these ADLs are complex
tasks that often require close-contact physical interactions
that can be dangerous when performed by the robot.

Physical Human-Robot Interaction (pHRI) is a special case
of HRI in which safety becomes a central issue due to the
possibility of potentially causing harm to a human user.
Therefore, physically assistive robots need to be equipped
with two basic skills: compliant control to ensure safe
motion, and planning taking the user into consideration in
order to foresee possible problems and deviations in the
execution of the task.

This work has been supported by the ERA-Net CHIST-ERA project I-
DRESS (Spain’s Ministry of Economy and Competitiveness PCIN-2015-
147, Swiss National Science Foundation 20CH21-16085). It is also sup-
ported by the Spanish State Research Agency through the Mara de Maeztu
Seal of Excellence to IRI (MDM-2016-0656). Gerard Canal is also sup-
ported by the Spanish Ministry of Education, Culture and Sport via a FPU
doctoral grant FPU15/00504.

∗Both authors contributed equally to this work.
1G. Canal, G. Alenyà and C. Torras are with Institut de Robòtica i In-

formàtica Industrial, CSIC-UPC, C/ Llorens i Artigas 4-6, 08028 Barcelona,
Spain. {gcanal,galenya,torras}@iri.upc.edu

2E. Pignat and S. Calinon are with the Idiap Research
Institute, Martigny, Switzerland. {emmanuel.pignat,
sylvain.calinon}@idiap.ch

Therefore, adaptive interaction is a key element for the
success and acceptance of assistive robots. Some of the
challenges that need to be solved are how to transfer such
skills to robots in an easy manner, and how to enable robots
to cope with user reactions and other issues that may happen
during the task, ensuring a robust and safe behavior. In this
paper, we tackle both issues in a joint way. First of all,
we use a learning by kinesthetic demonstration approach to
teach the robot “smart” low-level movement primitives, so
that it can track the user state and move accordingly. Then,
a stochastic symbolic planner is used to obtain the sequence
of actions to complete the task. If, instead, the high-level
task planner were used without the low-level primitives, a
higher action granularity and more implementation effort
would be needed, and tackling the whole problem with the
low-level primitives without task planning would require a
larger number of demonstrations. Thus, the main advantages
of the proposed joint approach are a reduced number of easier
demonstrations, and less symbolic actions with better error
handling and robustness.

As an example, we propose the shoe-fitting scenario,
where a robotic arm has to put a shoe on a user’s foot.
We devise different actions for the robot, such as: shoe
grasping, approaching the foot, fitting the shoe, and releasing
it. Though simple, the task involves physical contact with the
user’s foot, which may be harmful. Accordingly, the robot
must take this into account, know how the user may behave
and suitably adapt its actions in order to fulfill the task
successfully, recovering from inappropriate situations when
needed.

II. RELATED WORK

Service robots in general, and the assistive ones specifi-
cally, must perform complex tasks with many particularities.
Therefore, joining a high-level symbolic task planner with
appropriate low-level motion primitives simplifies the task.

There are many works in literature that address task and
motion planning, in a consecutive or integrated way, but most
of them focus on the manipulation of still objects, while in
our case, we are physically interacting with a person that
may move freely.

Gravot et al. [1] present a collaborative cooking task with a
robot in which a symbolic HTN planner uses cooking recipes
to guide the performance of the task and decomposes them
into primitive actions, which may be sensing, making specific
movements, planning motion or interaction.

Other authors address motion planning as a geometrical
problem. De Silva et al. [2] propose an interleaved interface



to perform symbolic task planning and geometric planning.
The geometric planner is used to compute possible grasps
and object locations, taking into account geometric con-
straints. The symbolic planner is an HTN, and symbolic
tasks are related to their Geometric Task Planner’s tasks, for
which they propose an interleaved backtracking algorithm.
The authors apply it in the context of pick-and-place tasks,
including human handovers. In a similar manner, Srivastava
et al. [3] first compute a task plan using a symbolic planner,
and then search the instantiations of the pose references
used in the plan by means of a motion planner. When such
instantiations are not found, partial solutions are identified
and extended using the task planner. Another example is
the one by Ferrer-Mestres et al. [4], where they integrate
task and motion planning together, addressing the symbolic
and geometrical components of the task simultaneously.
Furthermore, Bidot et al. [5] present an hybrid task-and-
motion planning approach in which task planning is coupled
with motion planning and geometric reasoning. Lee et al. [6]
combine probabilistic activity grammars with low-level mo-
tion primitives to learn tasks with reusable structures.

The adaptive component is essential to solve our kind of
tasks in an efficient manner, as well as the use of learning
by demonstration to simplify the teaching of the movements.
Assistive dressing, the problem we are focusing on in this
work, has also received some attention from the community.
Gao et al. [7], [8] assist a user to put on a sleeveless jacket
by modeling the user’s movement space using a Gaussian
Mixture Model so the robot can dress the user taking
into consideration his/her movement capabilities. Then, they
perform online path optimization to personalize the dressing.
A jacket dressing is studied by Chance et al. [9]. An IMU
sensor installed in the robot’s end-effector is used along with
a force sensor to explore dressing error detection. Yamazaki
et al. [10] use visual and force sensing to help disabled
users to put on trousers in an adaptive manner. Another
example is the collaborative dressing scenario presented by
Klee et al. [11]. They use a turn-taking approach to move the
robot taking into account the user’s constraints and learning
them. The method is used to put on a hat. These works
present interesting approaches to model the user space and
capabilities, but lack the ability to demonstrate the task in an
easy manner that produces smoother movements and shows
a nice adaptability to the user movements.

III. SYMBOLIC TASK PLANNING: OBTAINING
THE NEXT ACTION TO PERFORM

Physical Human-Robot Interaction tasks, such as the ones
commented above, are appropriate to be tackled from a
task planning point of view. Since the robot is in contact
with a user, single reactive behaviors may not be enough to
deal with user actions in the long-term horizon of the task.
Therefore, it is important to have a plan of the robot’s actions
that should be performed, solving plan deviations as soon as
they occur.

A task planning problem Σ = 〈S,A, T, s0, g〉 is defined by
the set of discrete states S, the set A of actions that modify

the state, the state transition function T , the initial state s0 ∈
S and the goal state g ∈ S. The planner aims to find an action
sequence that starts from s0 and modifies the state using
actions in A to end up in g. The state is described by a set of
logic predicates, and each action ai ∈ A; ai = {pai , eai} is
composed by the preconditions pai ∈ S, predicates that must
be true in order to perform the action, and the effects eai ∈ S,
which define how the state changes after the execution of the
action. Such state is obtained from the internal (known) robot
state, but also from a visual system tracking both the user
and other objects related to the task.

Since HRI domains are highly non-deterministic as the
user is not a controlled agent, the computed plan should
consider unexpected effects. For this reason, we rely on
a stochastic representation, which allows the definition of
a domain in which actions can yield stochastic effects. In
this case, the actions’ effects eai are not just a unique
set but many possible sets of outcomes with an associated
probability πj of happening:

eai =


π1 : e1ai
π2 : e2ai
...
πn : enai

.

Formally, the problem is usually represented as a Markov
Decision Process (MDP) 〈S,A, P,R, γ〉, where P (s′|s, a)
defines the probability of going from state s to s′ when
performing action a, and R : S × A → R is the reward
function associating a score to each action. Then, the planner
is set up to find an action sequence that maximizes the
reward (or, equivalently, minimizes the cost), while taking
into account the probability of each action’s outcomes. An
application example of this type of planning applied to
robotized surface cleaning is provided in [12].

Therefore, we can define the actions so that their possible
outcomes are based on user reactions, and the planner will
compute a plan by considering the probabilities of each
effect. As a result, actions that may produce inconvenient
outcomes will be less likely to be selected.

Each symbolic action ai corresponds to one low-level
movement primitive (i.e. physical action). These movement
primitives, detailed in Section IV, are self-adapting motions
that can track entities of interest for the task, such as the
foot in a shoe-fitting scenario.

Once the plan P = [ai, aj , . . . , ak] has been computed,
each action is sequentially carried out. However, there may
be cases in which an action produces a non-satisfactory
outcome. In such cases, replanning is needed in order to find
a new sequence of actions P that brings from the current
system’s state to the goal state g, and the new plan will be
executed.

When interacting with human users, and more specifically
when assisting them in a physical manner, it is important to
interact with the user, and make clear what the robot is doing.
For this reason, we define two interaction actions: inform and



ask. The inform action is used to provide verbal information
to the person before the execution of each movement to avoid
misunderstandings or unexpected situations due to the user
misinformation about the robot behavior. The ask action is
used to obtain user’s collaboration in cases in which the
task cannot be completed. For instance, in the shoe-fitting
scenario, the robot would ask the user to put back the foot,
when he/she has moved it to an unreachable position, or to
avoid moving it when trying to perform a physical contact.

Not less important while interacting with human users, is
to adapt to the specific user the robot is assisting. There are
no two equal individuals, so the robot should not assist all
the users in the same way, but adapt to their preferences
and needs. Following our taxonomy of user preferences in
assistive scenarios [13], in the current work we consider two
kinds of preferences: the velocity of movements, and the
verbosity level.

Performing the task too slowly may result in user fatigue,
and doing it too fast may scare the person. Similarly,
a too verbose robot may irritate the user, and a non-
informative robot may confuse and scare the user. To cope
with these dilemmas, we have defined three speed levels
α ∈ {slow, medium, quick}, and two verbosity levels
β ∈ {informative, ¬informative}. A user model u =
{αu, βu} has been added to the planner by means of the
predicates α and β.Each action’s reward Ri depends on this
user model, penalizing such actions that violate it:

Ri = Rd − Pα(αi 6= αu)− Pβ(β 6= βu), (1)

where Rd is the default action’s reward, Pα is the penalty for
not following the user’s model speed αu in the current action
ai executed with speed αi. Similarly, Pβ is the penalty for a
wrong verbosity βu. This way, the planner not only computes
a plan to solve the task, but also does it while satisfying the
user preferences.

Furthermore, the penalties applied when user model viola-
tions occur can be also modified in order to favor exploration
outside of the current user model in cases of failure, coping
with poorly classified users and converging to an appropriate
robot behavior. This, however, is out of the scope of this
paper.

With the explained approach, the robot is able to compute
a plan from s0 to g that complies with the user model.
Moreover, when an unexpected behavior arises, the plan is
recomputed and its execution is resumed from the new state.
This means that the system is able to recover from errors,
repeating previous actions when needed in order to return to
a previous state or even starting over the task if required. For
instance, in a case in which the shoe-fitting is incorrect, the
robot would re-grasp the shoe and start the task if far from
the foot, or retry the insertion if the foot is close enough.

IV. LEARNED MOTIONS: MOVING THE ROBOT
TO FULFILL THE ACTION

The spatio-temporal definition of a unit action is encap-
sulated in a statistical model used for time-series, a hidden
semi-Markov model (HSMM) [14]. The parameters of this

Fig. 1: By providing demonstrations of a task in several
situations, the robot is able to generalize to a wide range
of new situations.

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

spatial

temporal temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

duration

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

observation

temporal

spatial

p(d|zm)

p(x|θk)

p(zm+1|zm)

d zm=1zm=2zm=3zm=3

transition

states

states

demonstrations

Fig. 2: Example of hidden semi-Markov model encoding the
spatio-temporal characteristics of the action of approaching
the shoe to the foot. (top) A set of continuous distributions,
named states, encodes positions, velocities, orientations, etc.
Each state is linked to a duration distribution. A transition
distribution indicates the possible sequencing of the states.

model are learnt by maximizing its likelihood on demonstra-
tion data, examples of the action. The same approach was
used in [15] to encode the task of putting on a coat.

A. Temporal representation of movements

The HSMM decomposes a complex skill in a discrete
sequence of spatial distributions encoding positions, orien-
tations, velocities, etc. To these discrete distributions, named
states, are associated a duration distribution, indicating how
many time steps the state lasts. A transition matrix, as
in standard hidden Markov models (HMM), encodes the
probability of transitioning to any other states, once the
current state reaches the end of its duration. These parameters
are illustrated in Fig. 2. In robotics, the advantages of HSMM
over HMM is the explicit encoding of the duration which
allows for a more accurate synthesis of motion subject to
precise timing constraints, as pointed out in [16]. Moreover,
in our application, modulating this distribution allows the



system to adapt the speed of the actions, which can be
determined by a higher-level planner according to the user’s
preferences.

B. Spatial representation of movements

The problem of adapting the actions to a varying environ-
ment is often seen as a problem of regression [17], [18]. In
our case, the input of the regression would be the position
and orientation of the foot of the user, or the shoe, in the
hand-over action, as shown in Fig. 1. If these techniques are
general with respect to the nature of the input variable, they
do not fully exploit the structure of the problem, thus limiting
the adaptation and generalization capabilities, as well as data
efficiency. As proposed in [19], the environment will be
defined by several coordinate systems in which the data will
be projected.

The features encoded in the model of the action are ỹt =[
x>
t ẋ>

t q>t
]>

, where xt is the position of the end-effector,
ẋt its velocity and qt its orientation in quaternion form. The
distribution of the data yt, given the current cluster zt, is the
product of normal distributions of the data under P different
transformations T j

t , varying at each time step t

p(yt|zt) =

P∏
j=1

N (T j
t (ỹt)|µjzt ,Σ

j
zt). (2)

This can be interpreted as different experts observing the
actions from various points of view. In this work, the experts
view the data projected in several coordinate systems that are
linked to the objects of interest, namely the robot itself, the
foot of the user and the shoe. The transformed data is

T j
t(ỹt) =

[
(A−1

t,j (xt − bt,j))
> (A−1

t,j (ẋt))
> (Q−1

t,j (qt))
>]>

where At,j is the rotation matrix of expert j at time step
t, bt,j its position and Qt,j its matrix representation of
quaternion form.

The set of experts forms an over-complete representation
of the action. The adaptation comes from the combination
of their views, some experts encoding more precisely some
part of the action (see Fig. 3). As defined in (2), the
combination is achieved through a product of experts, which
can be evaluated in closed form [20], given that linear
transformations of a normal random variable are also normal.

C. Controller

Given a statistical model of the action, the motion is
synthesized using optimal control. The density function acts
as a cost; the robot tries to track the zone of higher probabil-
ities, both in terms of positions, velocities and orientations.
An additional term is included for minimizing the control
commands ut, thus providing smooth motion

c =

T∑
t=1

(− log(p(yt|zt)) + u>
tRt ut), (3)

As the − log(p(yt|zt) is quadratic in yt and given a lin-
earised model of the robot as yt+1 = Atyt + Btut,

experts in different coordinate systems
expert 1 expert 2

product of experts
{bt,1,At,1}
{bt,2,At,2}
{µ(1)

i ,Σ
(1)
i }

{µ(2)
i ,Σ

(2)
i }

{bt,1,At,1}
{bt,2,At,2}
{µ(1)

i ,Σ
(1)
i }

{µ(2)
i ,Σ

(2)
i }

Fig. 3: In order to provide data-efficient adaptation to varying
poses of objects, the model (in red and green) is encoded
in different coordinate systems, linked to various objects of
interest. This can be interpreted as several experts observing
the data under different projections. The combination of their
knowledge provides the desired adaptation (in yellow).

High-level task planning

Pre: pai ∈ S

Post:


π1 : e1ai ∈ S
. . .

πn : enai ∈ S

ai

. . .

Pre: paj ∈ S

Post:


π1 : e1aj ∈ S
. . .

πn : enaj ∈ S

aj

s0 ⊇ pai s ⊇ eai s ⊇ paj

Low-level motion planning

mi mj

Fig. 4: Two-level planning architecture.

the problem of computing the sequence of input ut that
minimize c reduces to a linear quadratic tracking (LQT)
problem, which can be solved efficiently.

In this work, the robot is approximated as a rigid body, at-
tached to its end-effector, and of varying inertia. Operational
space control with Jacobian transpose is then used.

V. COMBINING HIGH-LEVEL SYMBOLIC TASK
PLANNING WITH LOW-LEVEL MOTION

PLANNING

In the previous sections we have defined both system
levels and given insights on how they are related. The
proposed architecture is depicted in Fig. 4. The symbolic
planner’s actions have a direct correspondence with the low-
level motion primitives. The high-level planner computes
the sequence of actions. Then, the low-level primitives,
previously learned by demonstration, are executed.

The strength of this approach is to overcome the limita-
tions of using the two levels separately. Although the same
task could be tackled from both points of view, the necessary
efforts are highly reduced by the union of both.



On the one hand, performing the full task with the senso-
rimotor motion primitives would require several demonstra-
tions of all the possible events that may happen throughout
the task. This results in the need of designing such demon-
strations in a thorough manner, taking into account every
case in the scenario.

On the other hand, using a symbolic planner to perform
the same task would require to split each of the actions
in subactions, obtaining a finer granularity. This not only
introduces an overhead in the plan computation (as the
domain will have many more actions and outcomes), but also
requires the design of the domain such that all the possible
outcomes of each action are properly defined. Moreover, this
also needs us to implement the control and movements of
each action in the robot, be it by demonstration or with
another technique.

Therefore, by using both approaches together, we obtain a
simpler and more efficient planning domain which is easier to
design, implement and debug. Such approach requires only
few demonstrations of the full task. Typically, the demon-
strations take the form of simple atomic movements instead
of complete movements. Moreover, such structure facilitates
the addition of verbal interactions and the handling of errors
by means of replanning. It provides a way to link high-
level actions to low-level control commands, facilitating the
modulation of low-level actions and the gradual acquisition
of complex skills.

Given that the learned motions are adaptable and they
do not depend on fixed start and end positions, they are
always chainable provided that the high-level actions are also
chainable.

A. High-level state transitions: a shoe fitting example

In order to demonstrate the advantages of the architecture,
we show in Fig. 5 some of the action transitions that are
possible in the shoe-fitting task. As it is clearly seen in the
graph, the structure of the transitions between actions is quite
complex, despite the task requires a low number of actions.
Therefore, teaching all the possible transitions by demonstra-
tion would result in a tiresome—if not unfeasible—work due
to the large number of demonstrations that would be needed.
Moreover, the use of the planner permits an easy inclusion
of interactive actions such as informing and asking the
user, which would have been much harder using a different
approach. Thus, the use of the task planner in the high-level
loop allows to reuse simple low-level movement primitives,
and diminishes the number of demonstrations to just a few
demonstrations for each high-level action.

VI. EXPERIMENTAL EVALUATION

The proposed two-level architecture has been implemented
using a Rethink Robotics’ Baxter robot, in a shoe-fitting
application. This section reviews some of the experiments,
more details and a visual demonstration of them can be seen
in the supplementary video material1.

1www.iri.upc.edu/groups/perception/twoLevelDressing

Inform
approach

shoe

Approach
shoe

Inform
grasp
shoe

Grasp
shoe

Inform
take

shoe back

Take
shoe
back

Inform
approach

foot

Approach
foot

Ask put
foot back

Inform
insert
shoe

Insert
shoe

Ask
not

move

Ask
orient
foot

Release
shoe

Inform
release
shoe

Goal
achieved

Fig. 5: Example of action transitions in the shoe-fitting task.
Orange nodes represent robot motion actions, while yellow
nodes represent interaction actions.

Shoe is
wrongly
fitted

Fit shoe Release shoeApproach foot

Take back shoe

. . .

Fig. 6: Example of error state management with the high-
level task planner in a non-demonstrated situation.

A. Experiment 1: Failure recovery after task completion

To demonstrate how the proposed approach is able to cope
with non-demonstrated events, we show an experiment in
which the user removes the correctly fitted shoe from the
foot, as shown in Fig. 6. The user removes the shoe after the
fitting, resulting in an incorrect fit (red node). The planner is
able to detect the situation, and recompute a plan to solve the
task by grasping the shoe again. Then, the planner decides
to fit the shoe if the foot is still close, or to take it back
and approach the foot again in case the user has moved the
foot away. Notice that all the high-level actions and low-level
primitives used in this scenario are the same ones that were
implemented for the original task. For instance, the grasp
shoe is used either to get the shoe from the user or to pick it
up from the foot after the bad positioning of the shoe. Several
kinesthetic demonstrations of the situation would have been
needed to obtain the same behavior without the high-level
task planner.

B. Experiment 2: Talking to the user when needed

Here we show how the interaction works. As already
introduced, the robot has two interactive actions: ask and
inform.



Fig. 7: Example of user moving the foot. This will trigger
an ask action to stop the movement, and may also produce
a speed change.

In a normal execution, the robot may be completely
silent, or inform the user if it is defined in the user model.
The interesting part is when the execution does not go as
expected. When fitting the shoe, the user may become tired
or scared, resulting in him/her removing the foot from the
robot’s working space. Then, in order to complete the task,
the robot must ask the user to put the foot back in the fitting
space, or it may ask him/her to reduce the motion of the
foot for a correct and safe fit, as shown in Fig. 7. Another
case may be one where an action keeps failing because of
different user reactions. In such case, the robot informs the
user about the actions it is performing. With this, the robot
may gain user’s trust and avoid misunderstandings during
completion of the task, even when the model of the user
does not take speech into account.

C. Experiment 3: Speed modulation

As already stated, there are many reasons to modify the
speed of the actions, among other aspects of the task. In a
first case, the robot makes a sudden quick movement that
scares the user, as seen in Fig. 7. In this situation, the user
performs a reflex action that moves away the foot, preventing
the task to be accomplished. In another case, the robot moves
too slowly resulting in fatigue that causes the user to remove
the foot from the robot’s working space. Such cases are
tackled by the high-level planner, which takes into account
the speed of the actions and the user model to compute a
scaling parameter for the low-level primitives.

VII. CONCLUSIONS

In this paper, we have presented a two-level approach
to develop assistive robotics applications. In the high-level,
a task planner computes a sequence of actions that will
bring the robot to the completion of the task. The low-level
reproduces the actions, which are learnt by demonstration
beforehand, in such a way that they are able to adapt to the
current situation by tracking entities of interest for the task.

The proposed approach reduces the number of demon-
strations that are needed to implement the task in the robot,
and makes them simpler and easier to teach. It also lowers
the number of symbolic actions that are needed, as well as
diminishes the number of replanning attempts. Moreover, it

provides better error handling, resulting in a robust execution
of the task.

The high-level stochastic planner and the low-level hid-
den semi-Markov model (HSMM) are lightly coupled in
this work. In the future, we plan to further integrate both
components so that probabilities are shared by the high-level
and the low-level actions, in order to facilitate the learning
of both levels at the same time.

REFERENCES

[1] F. Gravot, A. Haneda, K. Okada, and M. Inaba, “Cooking for hu-
manoid robot, a task that needs symbolic and geometric reasonings,”
in IEEE Intl. Conf. on Robotics and Automation, 2006, pp. 462–467.

[2] L. de Silva, A. K. Pandey, and R. Alami, “An interface for interleaved
symbolic-geometric planning and backtracking,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2013, pp. 232–239.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2014, pp. 639–646.

[4] J. Ferrer-Mestres, G. Frances, and H. Geffner, “Planning with state
constraints and its application to combined task and motion planning,”
in Workshop on Planning and Robotics (PLANROB), 2015, pp. 13–22.

[5] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric back-
tracking for combined task and motion planning in robotic systems,”
Artificial Intelligence, vol. 247, pp. 229 – 265, 2017.

[6] K. Lee, Y. Su, T.-K. Kim, and Y. Demiris, “A syntactic approach
to robot imitation learning using probabilistic activity grammars,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1323–1334,
2013.

[7] Y. Gao, H. J. Chang, and Y. Demiris, “User modelling for personalised
dressing assistance by humanoid robots,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2015, pp. 1840–1845.

[8] ——, “Iterative path optimisation for personalised dressing assistance
using vision and force information,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2016, pp. 4398–4403.

[9] G. Chance, A. Jevtić, P. Caleb-Solly, and S. Dogramadzi, “A quanti-
tative analysis of dressing dynamics for robotic dressing assistance,”
Frontiers in Robotics and AI, vol. 4, 2017.

[10] K. Yamazaki, R. Oya, K. Nagahama, K. Okada, and M. Inaba, “Bottom
dressing by a life-sized humanoid robot provided failure detection and
recovery functions,” in IEEE/SICE Intl. Symp. on System Integration,
2014, pp. 564–570.

[11] S. D. Klee, B. Q. Ferreira, R. Silva, J. P. Costeira, F. S. Melo, and
M. Veloso, “Personalized assistance for dressing users,” in Intl. Conf.
on Social Robotics (ICSR). Springer, 2015, pp. 359–369.

[12] D. Martı́nez, G. Alenya, and C. Torras, “Planning robot manipula-
tion to clean planar surfaces,” Engineering Applications of Artificial
Intelligence, vol. 39, pp. 23–32, 2015.

[13] G. Canal, G. Alenyà, and C. Torras, “A taxonomy of preferences for
physically assistive robots,” in IEEE Intl. Symp. on Robot and Human
Interactive Communication (RO-MAN), 2017, pp. 292–297.

[14] K. P. Murphy, “Hidden semi-markov models (HSMMs),” Technical
Report, 2002. [Online]. Available: www.ai.mit.edu/murphyk

[15] E. Pignat and S. Calinon, “Learning adaptive dressing assistance from
human demonstration,” Robotics and Autonomous Systems, vol. 93,
pp. 61–75, July 2017.

[16] S. Calinon, A. Pistillo, and D. G. Caldwell, “Encoding the time and
space constraints of a task in explicit-duration hidden Markov model,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), San
Francisco, CA, USA, September 2011, pp. 3413–3418.

[17] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion
synthesis and adaptation using a trajectory database,” Rob. Auton. Syst.,
vol. 60, no. 10, pp. 1327–1339, 2012.

[18] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Auton.
Robots, vol. 33, no. 4, pp. 361–379, 2012.

[19] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intell. Serv. Robot., vol. 9, no. 1, pp. 1–29, 2016.

[20] C. Williams, F. V. Agakov, and S. N. Felderhof, “Products of Gaus-
sians,” Adv. Neural Inf. Process. Syst. 14, no. 1, pp. 1017–1024, 2002.


