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Abstract Our research focuses on exploring new mo-
dalities to make robots acquire skills in a fast and user-
friendly manner. In this work we present a novel active
interface with perception and projection capabilities for
simplifying the skill transfer process. The interface al-
lows humans and robots to interact with each other in
the same environment, with respect to visual feedback.
During the learning process, the real workspace is used
as a tangible interface for helping the user to better
understand what the robot has learned up to then, to
display information about the task or to get feedback
and guidance. Thus, the user is able to incrementally
visualize and assess the learner’s state and, at the same
time, focus on the skill transfer without disrupting the
continuity of the teaching interaction. We also propose
a proof-of-concept, as a core element of the architec-
ture, based on an experimental setting where a pico-
projector and an rghb-depth sensor are mounted onto
the end-effector of a 7-DOF robotic arm.

Keywords Human-Robot Interaction - Learning by
Demonstration - Tangible Interfaces - Augmented
Reality

1 Introduction

While accuracy and speed have, for a long time, been
at the top of the agenda for robot design and control,
the development of new actuators and control architec-
tures is now bringing a new focus on passive and active
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Fig. 1 Conceptual illustration where a robot can actively
perceive objects and project information about a task pro-
gressively learned with the help of the user.

compliance, energy optimization, human-robot collab-
oration, easy-to-use interfaces and safety. The consider-
able growth of the number of service robots has brought
machines closer to the human, involving aspects of daily
life. The cooperation between robots and people with-
out technical skills is becoming even more common in
different fields and applications. Therefore, the classic
methods for interfacing with the robot do not satisfy
the new requirements of the modern world in which the
final user should not need to be an expert-programmer
to use the interface. Instead of stand-alone program-
ming, dynamic bidirectional models of interaction are
required, in which the robot (learner) actively acquires
the task demonstrated by the user (teacher).

Our recent studies have specifically addressed the
issue of finding new user-friendly physical interfaces in
order to reduce the complexity gap between humans
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and machines and to speed-up the skill transfer. The
aim of this paper is to propose a novel architecture in
Learning from Demonstration (LfD) scenarios, based on
a new configuration of both active perception and pro-
jection technologies, allowing the system to establish a
bidirectional communication channel for skill transfer.
Fig. 1 illustrates the concept of the proposed approach.
The proposed interface is designed to provide a visual
augmented operating space shared between the learner
and the teacher, as shown in the schematic in Fig. 2.
The aim is to share a common understanding of the
task needing to be transferred, by using the operating
space as a tangible interface where the task features
are graphically superimposed in an augmented reality
fashion. Consequently, the teacher can understand what
the robot is learning, by observing the surrounding en-
vironment, and eventually refine or rectify on-line the
skill whenever a robot mistake occurs. This adaptive
learning process enables the user to always be aware
of the learner’s state and to continue the task without
interrupting the teaching phase.

In order to exploit the perceptual and projective
features of the proposed system, our experimental setup
jointly adopts an rgb-depth sensor and a pico-projector,
both mounted onto the end-effector of a robot arm.
Adopting such a mobile configuration, instead of a fixed
setup, leads to a number of key advantages, such as:
a) an extended field of view due to the different angle
views reachable by the robotic arm, b) the possibility
to actively handling occlusions and facilitating tracking
of task-relevant features and also ¢) the adaptive multi-
resolution for perception and projection features.

For demonstrating the feasibility of the proposed
architecture, the development of the core framework
with an experimental setup are also shown. The goal
of the experiment, is to make the robot project an im-
age (depicting a user interface) onto a planar surface
in a desired position by following the user’s guidance.
It consists of two steps. In the first phase, the user’s
body is detected while he/she is pointing towards the
desired plane in which the projected interface has to
be shown. In the second phase, the image is projected
at the basis of the pointed region taking into account
the user’s head position, to guarantee that the inter-
face is oriented towards him. This setup contains the
core features to accomplish the next scenarios that we
envisaged for future work involving the proposed ar-
chitecture. Since no robot learning is implemented at
this stage of the development of the interface, in order
to give a more practical view of the paper, we present
possible scenarios where the system can be applied, by
describing what kind of interaction and information is
related to a particular skill transfer.

Proposed Interface

Teacher Learner

Operating Space

Fig. 2 Architecture overview of a typical learning scenario,
in which the Robot/Learner and the User/Teacher interact
with each other in the same Operating Space.

The remainder of the paper is organized as follows.
In Section 2, we focus on the role of user interfaces in the
learning contexts and we outline our motivation in de-
signing a robot interface in the context of robot L{D. In
Section 3, we review recent works in Human-Computer
Interaction (HCI), Human-Robot Interaction (HRI) and
robot learning that go along this line of research. We
also give an overview of techniques such as Tangible In-
terfaces, Mixed Reality and Spatial Augmented Reality
by focusing on the learning aspect. The details on the
architecture and the technology adopted, as well as the
conducted experiment is described in Sections 4 and 5.
In Section 6, we highlight possible scenarios where the
proposed interface can be employed. Possible extensions
to some existing works are also presented. Lastly, con-
clusions and future works are presented in Section 7.

2 Motivations

For learning processes that require natural human in-
teraction for transferring skills to robots, the design and
development of interfaces between the teacher and the
learner play a key role. In LfD strategies, expertise in
robotics should not be expected of the final user. This
makes it necessary to develop a shared communica-
tion protocol for transferring skills from humans to ma-
chines. Although several studies have investigated the
social and technological aspects of the Human-Robot
Interaction, many issues remain largely unexplored.
From the social point of view, transferring skills
is more complex than a one-way step process, as the
learner usually requires feedback from the instructor
after the demonstrations and reproduction attempts.
A good instructor maintains a mental model of the
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learner’s state in order to support the learner’s need
and use different teaching methods such as demonstra-
tions, verbal instructions, attention cues and gestures
[16]. Alternatively, the teacher may provide additional
demonstrations useful for task generalization.

We emphasize in in [4] emphasize the importance
of providing an active role to the human-teacher in the
learning process. The effectiveness and the generaliza-
tion of the acquired skill do not depend only on the
number of demonstrations but mostly on the pedagog-
ical quality of these. The way to transfer a skill may be
affected by the different nature of the learner and the
teacher involved in the interaction and by several psy-
chological factors related to the user during the teach-
ing process. In the Human-Robot Interaction learning
process, the way of giving several demonstrations of
the task and the way of refining the learned skill by ob-
serving new reproduction attempts are often considered
separately. We propose in [4] a learning paradigm to al-
low the user-teacher to incrementally see the results of
demonstrations. This attempts to establish a two-ways
interaction during the teaching process and to allow the
user to feel involved in the task acquisition process.

In the past decades, research studies have focused
on the critical task of finding an approach to enable
communication between humans and robots by com-
mon natural methods that people use when teaching
each other. Natural human-robot interaction means can
extend the use of robots to cooperative tasks. In [41],
Thomaz and Breazeal highlight the fact that in an ef-
ficient teacher-learner interaction, the two partners co-
operate to simplify each other’s role. While the teacher
maintains a mental model of the learner’s current un-
derstanding of the task to appropriately support the
learner’s needs, the learner helps the teacher by mak-
ing the skill acquisition process transparent (e.g., by
communicating its internal state, by revealing the level
of knowledge, or by demonstrating the current mastery
of the skill). In other terms, the teacher and learner
cooperate with reciprocal roles: the user guides the in-
teraction through a scaffolding process including feed-
back, structuring successive experiences, regulating the
complexity of information, and guiding the learner’s ex-
ploration, while the robot helps the user by improving
the learning experience through transparency [41]. In-
deed, natural methods for teaching offer an increasing
range of possible interactions that come along with the
development of new interfacing capabilities.

Humans and Robots should be able to communicate
with a shared protocol, to share a common description
of the task and to give/receive feedback through com-
mon cues, made accessible by both partners in an ap-
propriate visualization format.

The above considerations have been the starting
point of our research, by exploring novel methods that
encapsulate hardware and software components in an
interface designed for efficient interaction in robot skill
acquisition.

3 Related Work

In order to automatically design a robot controller, a
robot learning algorithm is required for reproducing a
specific task, demonstrated by humans, and for gen-
eralizing it in new conditions. In the learning phase,
the task model is acquired by decoding inputs from the
robot’s perception senses and by finding relationships
with a set of relevant task features. Then, in the re-
production phase, the robot needs to make decisions
and generalize the acquired skill to new situations by
transforming the learned task to appropriate actions.

3.1 Learning from Demonstration (L{D)

In the last thirty years, different learning techniques for
robotics applications have been studied. Learning from
Demonstration (LfD), Programming-by-Demonstration
(PbD), or Imitation Learning, study how the human
demonstrations can enable the robot to reproduce the
underlying task. This skill transfer process, apparently
easy for humans, hides different key problems. One re-
search question is how humans should provide the demon-
strations to the robot to model a new skill, e.g. by
manual teleoperation [38,23], kinesthetic teaching [20,
5], vision [25,31], gestures [42] or natural language [26].
Another important research question is to find ways for
the robot to extract the task constraints and generaliz-
ing in different contexts [29,30,11].

LfD was born to meet the requirements of manufac-
turing robotics for reducing or eliminating the heavy
work of programmers who had to develop software each
time a new robot skill was required. Instead, LfD takes
the perspective that skills can be transferred by imita-
tion, and that once a skill has been correctly acquired,
the robot can adapt the learned task to different situ-
ations. Therefore, further information (input task pa-
rameters) from the teacher are often needed to accom-
plish the task. Input task parameters can be provided:
(1) directly by a single teacher in a multi-robot con-
text [7], by requesting additional information through a
query-based approach [14]; (2) indirectly through screen-
based interfaces or using Virtual Reality [2]; or (3) au-
tomatically by using machine learning techniques to ex-
tract the important features characterizing the skill [9].
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3.2 Tangible Interfaces for Learning Applications

The proposed work aims at achieving an effective and
fast skill transfer between human and robot in an incre-
mental learning context. To accomplish these require-
ments, the teacher should access the learner’s state di-
rectly on the work scene during the task’s demonstra-
tions. For this reason, we have drawn inspiration from
previous works on Tangible User Interfaces (TUIs) to
design the system architecture. A TUI establishes a
bidirectional channel of embodied interactions and per-
ceptions between the user and the environment in which
the physical interactions change its digital state [19].
While a Graphical User Interface (GUI) provides the
tools to access digital information by traditional in-
put/output devices (e.g. mouse, keyboard, display), a
TUI instead provides a close coupling between real and
virtual objects or landmarks. A practical example could
be a tangible-PC desktop represented by a real desk, in
which each real object has a digital correspondent, like
a cube for an icon or a basket for the trash. In such
a way, physical objects/surfaces can be used to visual-
ize and interact with computer-generated information.
This two-ways mapping between real and digital world
enables the user to achieve the desired effect without
interacting through computer interfaces, but directly
acting on a real object semantically related to such ef-
fect. In the previous example, the real action of throw-
ing a cube in the basket could digitally correspond to
the deletion of its corresponding element from the PC.

The social and cognitive implications resulting from
the use of these interfaces led us to apply these interac-
tion paradigms to learning processes. From the cogni-
tive point of view, less effort is required for the user to
understand how the system works, because a tangible
scenario can involve natural and intuitive interactions
[10]. The use of physical materials in a learning context,
exploiting haptic senses, could also speed-up the gained
task’s knowledge [24], rather than using virtual objects
in visual interfaces [15]. Indeed, as a consequence of
such intuitive interaction, the attention of the user can
be focused on the completion of the task. As a conse-
quence, time can be reduced by the rapid understanding
of the task space.

3.3 Mixed Reality in Human-Robot Interaction

Augment Reality (AR) enables users to see virtual graph-
ical elements superimposed on real objects. While TUIs
allow the user to see graphical elements projected on
the surrounding environment, AR, applications enable
solely the illusion to see virtual object mapped in the
real-world. This important distinction is due to the fact

that AR need a couple of computing interfaces (camera-
display) to show the user a mixed reality.

When Augmented Reality meets Tangible Interfaces,
Spatial Augmented Reality turns out. Bimber and Raskar
[3] describe the way to visualize information in the task
space by using a projective system. The recent technol-
ogy of hand-held projectors promises a rapid growth
of applications, for enabling the user to interface with
computers or robots.

In [37] and [40], the authors use pico-projectors to
visualize augmented digital information over real ob-
jects as HCI interfaces. A lightweight mobile camera
projector unit is used in [37] to augment a paper map
with additional information. This virtual map, the Map
Torchlight, is tracked over the paper map and can pre-
cisely highlight points of interest, streets, and areas to
give directions or other guidance information. In [40], a
digital pen embedded with a spatially-aware miniature
projector is used to explore the interaction design space
of a paper document, providing the user with immedi-
ate access to additional information and computational
tools. HRI interfaces with the help of hand-held pro-
jectors have also been studied, such as a robotic con-
trol interface for visualizing manipulation tasks [18], as
an interface for controlling the robot without the di-
rect manipulation by the user [21], or an alternative
to the anthropomorphic interface using a projected dis-
play to interact with the user [34]. We also took inspira-
tion from LuminAR [27], a project redefining the orig-
inal concept of a desk lamp. Combining the technology
of robotics and computer science, the authors use the
light from a pico-projector, mounted on an articulated
robotic arm, to show digital information to the user di-
rectly over the desk or any other surface. The joint use
of a camera allows the user to interact with this virtual
interface through hands motion, such as reading emails
or navigating through a website.

Recently, Vogel et al [8] tackled the safety issue in
Human-Robot collaboration task by using a projector-
based solution. The authors propose a spatial augmented
reality interface able to establish a physical safety area
in a shared workspace between users and robots, by
using a camera projector pair. The projective device
gives feedback to the user about the safe working area,
by projecting virtual barriers directly aligned with the
real portion of space. The perception device helps the
system to actively monitor the physical state of the user
and the robot within the safety area, by changing posi-
tion, shape and orientation of the projected image dy-
namically. Another recent work about projective inter-
faces in the field of wearable computing is OmniTouch
[17], in which Harrison et al suggest an innovative way
to access digital information everywhere. OmniTouch
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is a wearable device that enables the user to interact
with a GUI projected on any physical surface by us-
ing gestures. By exploiting the perception capabilities
of the rgb-depth sensor, the system is able to detect
suitable surfaces in which to project the GUI, by us-
ing a pico-projector, and to interact with fingers like a
mouse pointer.

4 Overview of the Proposed Interface

We propose a tangible interface for skill transferring
in human-robot collaboration tasks. The system uses a
structured light system which combines a pico-projector
and an rgb-depth sensor. Instead of using fixed track-
ing and traditional displays, a robot manipulator is en-
dowed with perception and projection capabilities (see
Fig. 3). We consider a compliant lightweight robotic
arm as an interface that can move, perceive and act on
its environment. Here, the aim consists of providing the
user an assistance tool during the skill transferring to
facilitate the teaching process by enhancing the robotic
tool with augmented reality capabilities. The system is
designed to be able of sharing a common understand-
ing of the task between the teacher and the learner, by
establishing a bidirectional interaction during the skill
transferring. In one direction, the interface provides
outputs by projecting information, for visually enrich-
ing the environment with virtual features according to
the task to transfer. The projective device is thought to
highlight objects of interest for the task or to visualize
guidance for the user, such as trajectories or landmarks
directly in the surrounding work space. While this issue
has been studied in the context of mobile robotic plat-
forms, it presents new challenges in the context of ma-
nipulation and human-robot collaborative skills learn-
ing. In the other direction, the feature of perceiving
RGB and depth information, make it able to acquire
inputs from the objects in the scene and from human’s
guidance. State-of-the-art computer vision techniques
can be used for human and object detection and track-
ing, although the paper does not provide new contribu-
tion in this direction. We will exploit for this issue the
very active development of state-of-the-art algorithms
and software (see e.g. Point Cloud Library [36]) enacted
by the spread of devices such as the Microsoft Kinect.
Such devices can track on-line both color and distance
information, and are small enough to be mounted on
the robot’s end-effector.

The combination of these devices in a mobile robot
configuration brings a few key features to light. While a
fixed camera system has a static field of view, a robotic
setup, such as that proposed, can project/detect at var-
ious places and under various angles. In other, the capa-

bility of detecting the human body by using the Kinect,
would allow the robot to actively handle occlusions. In
such case, the user would not need to care of being in
the field of view, nor to place the camera and projec-
tor in the workspace prior to the experiment. Finally
such configuration also offers adaptive multi-resolution
tracking and projection features. Indeed, the human de-
tection needs different field of views than the object de-
tection. For example if one wants to project on a large
surface (e.g. to have an overview of the objects involved
in an assembly task), the robot can move back to in-
crease its field of view. Then, if a more precise infor-
mation on a particular object is needed (e.g. projecting
information on the position of screws and threads), the
robot can move closer to the object of interest.

For designing a learning scenario, the complete sys-
tem takes into account the following entities: the User
(human teacher), the Robot (machine learner) and the
Operating Space (see Fig. 2). In a typical Robot Learn-
ing from Demonstration context, the User /Teacher needs
to transfer a particular skill to a Robot/Learner by pro-
viding several examples of the task. The place where
the interaction is accomplished is the Operating Space,
which includes also the other physical parts of the envi-
ronment perceived by the sensors and reachable by the
robot hands.

5 Experimental Setup

In this section we describe the implementation of the
core components of the tangible interface, without fo-
cusing on a particular learning scenario.

The experiment consists of two phases. The first,
that we call User Pose Detection (Mode 1), has the
purpose of finding the human pose in the Operating
Space. In this phase, we move the robot while gravity-
compensated, by exploiting its compliant control capa-
bilities (the robot is physically moved as if it had no
weight and no motor in its articulations), until a hu-
man pose is detected. The second phase, that we call
Adaptive Projection (Mode 2), consists of projecting a
user-interface (represented here as a colored box) on a
suitable surface. In order to make the projected infor-
mation easy to read, the geometric perspective of the
surface being used is also considered.

For our experimental setup, instead of a fixed setup,
we follow a similar approach to Alenya et al in [1]. They
conducted an experiment of plants monitoring in or-
der to extract visual features from leaves for indicat-
ing the state of the plant. The authors exploit the use
of a color and time-of-flight cameras as perceptual de-
vices rigidly mounted at the end-effector of a robotic
arm. The controlled robot enables the development of
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Fig. 3 A laser pico-projector and an rgh-depth sensor are
mounted on the Barrett WAM arm robot.

an autonomous procedure to extract a 3D model of the
leaves, by mixing the color and the depth information
from the different cameras. While Omnitouch [17] and
LuminAR [27] are HCIs used to display information
in the environment, one of the novelty brought by the
plant monitoring application of Alenya [1] consists of a
motorized vision system. These three works are specifi-
cally designed for short projecting distances, while one
of the proposed features of the proposed interface con-
sists of an adaptive multi-resolution for perception and
projection, as previously explained in the Section 4.

5.1 Hardware

As shown in Fig. 3, our experiment is implemented with
a 7-DOFs Barrett WAM robot manipulator, a laser
AAXA L1V2 pico-projector, and the Microsoft Kinect
as rgb-depth sensor. The arm robot is mounted on a
wheeled table, that we use as flat surface for project-
ing information. On the end-effector of the robot, we
mounted a rigid tool for holding the Kinect and the
pico-projector. Such a support tool has been built with
a 3D printer to meet the requirement of low-weight and
rigidity. As shown in Fig. 5, the support tool is fixed to
the metallic plate of the Barrett WAM. A calibration
process is required prior to the experiment, as we dis-
cuss in Section 5.2. Since the human has a fundamental
role in the interaction that we consider, a reliable algo-
rithm for human tracking is required. Nowadays the Mi-
crosoft Kinect presents advantages to accomplish this
task in a robust way and at low cost [39]. Even if the
Kinect was not specifically designed for human-robot
interaction tasks, in the last years, several works have
successfully contributed to research in HRI and HCI

fields. The Kinect device has brought a huge amount
of open-source developments, making it possible to ac-
cess state-of-the-art computer vision algorithms, such
as detection and tracking (see e.g. PCL [36]). The in-
terest shown from the scientific community, mostly in
HCI, Computer Vision and Robotics, has significantly
increased in a short period of time, due to the fact that
it introduced a non expensive solution to replace pre-
viously available range sensors. Thanks to the infrared
sensors, used by the depth estimation method, the de-
vice can be used even in low light conditions. Such fea-
ture is very important in our setup because the current
technology of pico-projectors requires a usage in low
light conditions for better results. Another advantage,
that will be exploited in the next works, is the possi-
bility to collect 3D mesh data of the surrounding en-
vironment. The current state-of-the-art pico-projector
we have selected has a small size (4.2” x 2.1” x 1.27, for
a weight of 170 grams). An important hardware feature
that is relevant in our application is the use of the laser
technology, which enables auto-focus. In these condi-
tions, it is possible to project information on surfaces
at any distance, without taking into account focal ad-
justment.

(a) (b)

Fig. 4 The support tool mounted on the end-effector plate
of the Barrett WAM. The CAD model in (a), and the real
support in (b).

5.2 Calibration
5.2.1 Kinect Calibration

The Microsoft Kinect consists of a structured light sys-
tem which uses dots projected patterns to estimate 3D
depth information about the scene. It is endowed with
a RGB standard camera, an infrared (IR) sensor and
an IR projector. The projector illuminates the scene
with a spotted light pattern detected by the IR sen-
sor. Depth information for each point is directly pre-
processed by the device through stereo triangulation.
A calibration process is required to reduce the inac-
curacy about the depth estimation and the correspon-
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Fig. 5 (a) The printed chessboard is inside the frustum of
both the IR sensor and the pico-projector. (b) and (c) The
four points are manually selected by the projected mouse
pointer. (d) Once the quadrilateral is defined, a projected
chessboard is projected over the printed one by using homog-
raphy transformation.

dence errors between RGB and IR sensors. For estimat-
ing the extrinsic and intrinsic parameters of the sensors,
we used a stereo based calibration procedure [32]. A
stereo calibration takes as input several couples of im-
ages from two cameras, in which a planar chessboard is
tracked /visualized by the two devices [12]. As output
of this process, intrinsic parameters for each camera or
sensor and geometric transformation (extrinsic param-
eters) between them can be estimated.

5.2.2 Kinect-Projector Calibration and Mapping

A Kinect output is the Depth Map, in the form of a
640 x 480 matrix of grayscale values, where pixels en-
code depth information. Thus, the depth value z can be
decoded for each pixel (z,y) of such matrix, therefore
a 3D point (z,y,2) in the IR frame is defined. Finally,
the correspondent RGB value of each 3D point can be
performed by the calibration parameters already esti-
mated. The same approach used for the Kinect’s cali-
bration is exploited for calibrating the pico-projector.
Instead of considering the previous procedure for cali-
brating the IR and the RGB sensor, we replace the set
of RGB images with a set of image coming from the
pico-projector. Since a projector does not get images
from its sensor, we project the same chessboard pattern
superimposed to the printed chessboard. The resulting
effect is to see a projected chessboard aligned with the
printed one (see Fig. 5(d)). The process requires the
printed chessboard to be inside the frustum of both the

IR sensor and the pico-projector (see Fig. 5(a)). The
way we collect images from the pico-projector calibra-
tion consists of two steps. Firstly, we need to select 4
points which correspond to the 4 corners of the printed
chessboard. We can achieve this easily by projecting a
mouse cursor and selecting manually the correct points
on the real chessboard (see Fig. 5(b) and 5(c)). For
each corner selected we keep track of the correspon-
dence pixel in the projected image, by obtaining as final
result a quadrilateral. We then warp the original chess-
board image (same pattern as the printed one) to the
quadrilateral through homography. We obtain as result
a virtual chessboard with the same perspective as the
real one. For each chessboard pose, we collect both IR
images and the correspondent images to project sim-
ilarly as for RGB images. Then, by giving this infor-
mation as input of the calibration algorithm used for
the Kinect, we also obtain the intrinsic parameters of
the pico-projector and the extrinsic parameters between
the IR sensor and the pico-projector. Thus, in our ex-
periment, the pico-projector sensor is calibrated with
the IR sensor of the Kinect. Therefore, we can estimate
a 3D correspondence between the two sensors by the
relation

Xp = ir2pron7lr; (]-)

by using the transformation matrix T,0pr0; defined with
the extrinsic parameters. Here, the aim is to project
light to a desired 3D world point. If X;,. is a 3D point
in the IR reference, we are looking for the correspond-
ing (up,v,) pixel coordinates of the image to project,
ie.

Xprojy fTp

u Xprojz + pxp AX—;m“ojﬂc
<Up> =  Xp = | Xproj, | - (2)
p ]
ngoﬂy Tup + pyp Xprojz

projz

The terms fz,, fyp, pTp, Dy, are referred to the intrinsic
parameters of the pico-projector.

5.2.83 End-Effector Tool Calibration

The fixed frame of reference of the Operating Space is
defined by the robot’s base. The position and orienta-
tion of the end-effector, are computed by direct kine-
matics, while we need the transformation between the
IR sensor of the Kinect and the End-Effector plate. To
do so, we collect a series of corresponding 3D points
from the two different frames of reference, (IR sensor
and End-Effector), and estimate the geometric trans-
formation, by using the Procrustes method [22], which
estimates the rotation, scaling and offset between two
sets of data points.
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Fig. 6 In (a), (b) and (c) three different robot’s poses are shown with their respective projected images in the right corners.

5.3 Robot Control

The robot is controlled by inverse dynamics solved with
a recursive Newton-Euler formulation [13]. A gravity
compensation force is added to each link, and a wrench
command in the Cartesian space is used to keep the
orientation of the end-effector towards the center of the
projection plane. The joint forces f; at each joint i €
{1,...,n} are calculated as

=1 =1+ > 6

J€c(d)

where f{ is the next force acting on link ¢, f; with
J € (i) are the forces transmitted by the child ¢(i) of
link ¢, and f{ are the external forces defined as

fie =Fr+ Fgq.

In the above equation, Fr = [0, M7]" € RS is the
vector of force and momentum requested to accomplish
the task (only applied at the end-effector, i.e. when
i = n), and Fg = [fg,0]" € R® is the gravity com-
pensation force. Tracking of the desired orientation in

Fig. 7 Control Mode 1: The system detects the pose of the
user.

Cartesian space is insured by a resolved-acceleration
control scheme [28].

5.3.1 Control Mode 1: User Pose Detection

The aim of this interaction phase is to detect the user’s
pose in the frame of the robot’s base (see Fig. 7). The
tracking and detection of the user’s upper body is based
on the state-of-the-art proprietary OpenNI framework
and NITE middleware [33,35]. The Cartesian coordi-
nates of each body part represent the position and ori-
entation of the human skeleton. The projecting space
is the planar table in which the robot is fixed. In the
current implementation, by using the gravity compen-
sation control capabilities, the robot is manipulated by
a human assistant for the user localization.

5.8.2 Control Mode 2: Adaptive Projection

Once the data about the human pose are correctly ac-
quired, an Adaptive Projection method can be applied
to localize the position and orientation of the projected
image. We call Adaptive Projection the process that
combines a control policy of the robot and capabilities
of perception and projection for adapting projected in-
formation on surfaces that are comfortable for the user,
by using both perspective transformations and robot
control. The center of the projected image is the point
resulting from the intersection of the vector d; and the
surface of interest (here the table, see Fig. 8). The d;
vector defines the direction from the elbow and the
hand, while dy defines the direction between the user’s
head and the resulting center mentioned above. The po-
sition of the projected image is estimated by the vector
d1, while its rotation is performed by ds in order to
make the interface readable by the user (see Fig. 9). As
shown in Fig. 5(a), if the quadrilateral which defines the
projecting area is fully or partially inside the frustum of
the pico-projector, the image is correctly aligned with
the chosen perspective. The robot in this mode contin-
uously modifies the orientation of the end-effector such
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Fig. 8 Estimation of position and orientation of the pro-
jected image. In the upper left corner are shown the two frame
of reference of IR sensor and the pico-projector.

that it is maintains its orientation towards the center of
the projected image. As it is shown in Fig. 6, despite the
robot moves around the space, the end-effector points
towards the projecting surface, while the projector ac-
tively changes the geometric transformation to follow
the required perspective. To demonstrate this capabil-
ity, the robot is either moved manually by the user,
while being gravity-compensated, or it can move au-
tonomously by following a desired predefined path.

6 Illustrative Scenarios

In this section we present some prototype scenarios as
future applications of the proposed system. Our aim
is to highlight the potential of the interface and the
classes of possible features, by suggesting some possible
ways of implementing the different scenarios, but by
remaining loose on the technical aspects involved by
these challenges.

6.1 The kitchen assistant

Usually, during the preparation of a recipe (see Fig 10),
the user is fully involved in the task using both hands
and eyes. He might need to go around the kitchen to
accomplish different subtasks, such as moving from the
work table to the oven or from the fridge to the stove.
According to the features of the human tracking and
the control policies described in Section 5.3, we would
like the robot is able follow the user and find automat-
ically appropriate planes to project useful information

for completing the recipe. Several issues need to be con-
sidered to accomplish this task. First, in order to take
into account the safety of the user, machine learning
techniques can be exploited for avoiding the perceived
human body (e.g. in [6]). The task of finding the best
projecting surfaces, on the basis of the user poses, can
be learned from the system as a result of a set of train-
ing with a decreasing level of user’s guidance. Third,
once the user selects a cake’s recipe, he should show
to the vision system each ingredient separately to let
it register the relevant visual features to make it able,
during the interaction, to recognize the objects from the
whole 3D scene. The user can point his arm towards the
corresponding object on the table, whenever the system
requests information about one of the ingredient of the
recipe. Then, the system should be able to establish a
relationship between a segmented point cloud and its
semantic meaning in the task, by setting a label (e.g.
"butter”, "eggs”) for each of those. As shown in Fig. 10
the system should detect objects involved in the Op-
erating Space and overlays visual recipe’s information
(such as to indicate the required amount of butter or
milk). In order to accomplish the issue of finding the
user pointed objects or surfaces, geometrical intersec-
tion between arm’s direction and segmented 3D point
cloud can be performed. The 3D point cloud libraries
available for the Kinect, like PCL [36], could for exam-
ple be used for helping to solve the tracking and de-
tection challenges by using state-of-the-art algorithms
(e.g. feature estimation, surface reconstruction and seg-
mentation). Such example shows how the system’s per-
ception could be used here to establish an input channel
that allows the user to select specific areas of the Op-

Fig. 9 Once the user pose is detected, the relative position
and orientation of the projected interface can be determined.
By pointing towards the selected surface area, the user can vi-
sualize the projected interface automatically oriented towards
him.
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Fig. 10 Illustrative scenario of a robot assistant in the
kitchen. Cooking often requires the use of both hands. With
hands in flour, the user could not use a standard external in-
terface to easily follow the recipe while doing the task. Here,
a possible implementation could be to project information on
the required amount of milk and butter and the list of ingre-
dients without interrupting the task (namely, by having the
text oriented towards his sight).

erating Space to indicate directions or to describe tra-
jectories simply using his arm or hand like a pointing
devices. Moreover, the projector could be used to su-
perimpose task information, directly on the Operating
Space, for providing the user with useful information
about the recipe to prepare and the relevance of the
objects for the task.

6.2 The pizzaiolo robot: an interactive visualization of
learned movement as 3D flow fields

A critical issue in Learning from Demonstration is to vi-
sualize the skill that the robot has learned in the robot’s
environment, prior to executing it on the real robot for
safety reasons. Virtual reality techniques and robot sim-
ulators have the drawback that the whole robot’s en-
vironment, namely the objects involved in the interac-
tions and the robot itself, need to be modeled. Accuracy
errors of the synthesized model might introduce dis-
crepancy between real and simulated movements. Physics
and dynamics of the system also have to be taken into
account to develop the simulator, which is sometimes
difficult to develop. Even if powerful frameworks and
tools are nowadays available to simulate robot envi-
ronments, physical GUI user interactions are still re-
quired. Indeed, several operations such as: zoom-in/out,
view point changes, removing occluding objects, are
performed by the user through input devices (mouse,
keyboard, touch-screen) causing interruptions during
the teaching process.

Our work in LfD takes the perspective that the de-
velopment of compliant actuators will bring gradual
changes in the way skills and motions are represented by
the algorithms in LfD. The machine learning tools that
have been developed for precise reproduction of refer-
ence trajectories need to be re-thought and adapted to
these new challenges. For planning, storing, controlling,
predicting or re-using motion data, the encoding of a
robot skill goes beyond its representation as a single
reference trajectory that needs to be tracked or set of
points that needs to be reached. Instead, other sources
of information need to be considered, such as the local
variation and correlation in the movement.

One perspective of our work is that a skill acquired
from human demonstrations can be transferable to a
robot by representing it as a combination of local flow
fields. Such representation aims at generalizing the move-
ment by computing control commands that are valid
within local regions describing the current state of the
skill. The robot can thus continue its movement without
replanning, even if it is faced with continuous sources of
perturbation. Compared to a standard reference trajec-
tory, the representation as vector field also brings new
challenges in the way the movement acquired by the
robot can be visualized and analyzed by the user (if
the user prefers to visualize it before running it on the
real robot).

The proposed system could be used in this context
to project trajectories or flow fields by using planar sur-
faces in the environment. In this way, the user can select
the surface of interest and move around the robot to see
different views while keeping his/her gaze towards the
robot’s workspace. The following scenario takes inspira-
tion from one of our recent LfD experiment in which the
robot learns to roll out a pizza dough by gradually gen-

Fig. 11 Illustrative scenario of an interactive skill analysis
process. A section of the 3D flow field related to the task
is projected on the board, while the user moves the planar
surface in the manipulator’s workspace.
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Fig. 12 Illustrative scenario of a collaborative assembly task
where the user is screwing a leg of the table and occluding
the view of the system interface. The system interface should
here react by moving sideways to avoid the user’s occlusion
while projecting information on the table top held by another
robot (a 7 DOFs Kuka Lightweight Arm).

eralizing the movement in the form of a 3D flow field.
As shown in Fig. 11 the user holds a cardboard in a de-
sired position/orientation around the manipulator, and
a section of the 3D flow fields is computed in real-time
and projected on the hand-held surface. The user can
assess the robot’s current understanding of the task by
visualizing the generalization capabilities of the robot
without having to reproduce the movement in several
initial configurations.

6.3 Collaborative Assembly Task: active projection
handling occlusion

The human presence plays a fundamental role for the
proposed interface, due to the fact that all input/output
communication channels involve the user as sender and
receiver of the different information flows. In addition,
the physical position and orientation of the user in the
Operating Space drives the modalities to project and to
capture data. To make the process transparent, learn-
ing information about the task should be presented in
an area of the workspace that is convenient for the user.
Also guidance needs to be perceived from the correct
angle of view. One example is when occlusions occur. If
the user occludes the frustum of the projective device
and make it infeasible to project information on a par-
ticular surface, the proposed system could be used to
bypass the obstacle and find an appropriate projection
posture for the current situation. To assess reproduc-
tion trials, the robot can also actively place the sensors
in order to track the important task features. If the task
requires to move a tool in a given plane, the robot arm
can move its sensors in order to track the tool’s path
along the plane that is of relevance for this specific task.

This type of scenario is highlighted in a collabora-
tion task in which the robot helps the human to coop-
eratively assemble an IKEA table. In such a scenario,
visual guidelines could for example be projected on the
table to be mounted by using the proposed interface. In
Fig. 12, the user changes his posture to assemble one
of the legs. The robot should manage the occlusion by
changing its point of view to be able to continue pro-
jecting information on the desired surface. User’s guide-
lines could also be shown as interactive explanations of
the current step of the assembly, such as highlighting
positions on the table to drill the table legs (see Fig.
12).

7 Conclusion

We presented a novel tangible interface in the context
of LfD for the assessment of the robot skills acquisition
through active sensing and interactive data visualiza-
tion. We discussed the importance of designing inter-
faces for non-expert users, who should not need to be
skilled in robotics and computer programming to so-
cially teach skills to robots. We implemented a proto-
type to demonstrate the technical feasibility of the pro-
posed interface, by combining a perceptive and a pro-
jection device mounted on an actively compliant robot
manipulator. Then, we emphasized the approach by in-
troducing a set of concept scenarios in which the pro-
posed interface may be applied. In the context of social
bidirectional teaching interactions we believe that the
proposed system can help the instructor for giving or
receiving feedbacks in a natural and intuitive manner,
helping him keep his focus of attention to the task with-
out disrupting the teaching activity. The proposed ex-
periment opens new research perspectives that will be
part of our future work. Firstly, the proposed architec-
ture needs to be tested in a realistic context, by identify-
ing and collecting the parameters to measure the qual-
ity of the teaching process and analyzing the resulting
data in user studies. Such results can be compared to
the performances obtained in the same scenario with-
out the help of the proposed active interface. By taking
insight from affective computing studies, psychological
factors may be similarly taken into account to study
the role of the device as a social actor in the teaching
interaction. Secondly, a selection of the envisaged sce-
narios will be selected for a complete implementation
of the scenario. Lastly, since only planar surfaces have
been considered, future work will consider projection
on more complex surfaces. We will study the option of
projecting instead of 2D images projected on a planar
surface, 3D textures on curve-shaped objects.
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