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Abstract— Pushing is an essential motor skill involved in
several manipulation tasks, and has been an important research
topic in robotics. Recent works have shown that Deep Q-
Networks (DQNs) can learn pushing policies (when, where
to push, and how) to solve manipulation tasks, potentially in
synergy with other skills (e.g. grasping). Nevertheless, DQNs
often assume a fixed setting and task, which may limit their
deployment in practice. Furthermore, they suffer from sparse-
gradient backpropagation when the action space is very large,
a problem exacerbated by the fact that they are trained to
predict state-action values based on a single reward function
aggregating several facets of the task, rendering the model
training challenging. To address these issues, we propose a
multi-head target-parameterized DQN to learn robotic manip-
ulation tasks, in particular pushing policies, and make the
following contributions: i) we show that learning to predict
different reward and task aspects can be beneficial compared
to predicting a single value function where reward factors are
not disentangled; ii) we study several alternatives to generalize
a policy by encoding the target parameters either into the
network layers or visually in the input; iii) we propose a
kernelized version of the loss function, allowing to obtain
better, faster and more stable training performance. Extensive
experiments on simulations validate our design choices, and
we show that our architecture learned on simulated data can
achieve high performance in a real-robot setup involving a
Franka Emika robot arm and unseen objects.

I. INTRODUCTION

Solving manipulations tasks often requires the compo-

sition of several elementary motor skills. Pushing is one

of them and plays an important role, as illustrated by the

Meta-World robotic manipulation benchmark, in which half

of the tasks involves pushing [1]. It can be used to isolate

objects [2], reorient them to improve grasping [3], bring them

closer, or put them into a container [4]. Pushing can also

aid perception by improving object segmentation [5]. Hence,

numerous works have investigated pushing tasks by creating

datasets of pushing gestures [6], studying and modeling their

dynamics [7], [8], [9], or, more recently, investigating when

to push, which push to perform, where [4], [5] and how it

can help manipulation in synergy with other skills [3].

Related work and motivation. There has been a large

amount of work addressing the learning of pushing policies

[3], [9], [4], [5], [10], [11]. In [3], a model-free deep

reinforcement learning (RL) method (DQN) was adopted, in

which images (color and depth) are mapped to a discretized

action space composed of pushing and grasping actions at
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Fig. 1. Learning to push objects into a box having an arbitrary position
around the table. We propose a deep-learning approach using as input the
depth image and the position of the box (target parameters) and predicting
the best push (position and orientation) to move objects towards the box.

different locations and orientations. Q-learning [12] is used to

compute the expected utilities of actions, relying on positive

rewards for pushes leading to further desired goals, like

moving and successfully grasping objects [3], or improving

the effectiveness of object visual segmentation to increase

their graspability [5]. However, these methods suffer from

several limitations that we address in this paper.

First, an objective when learning policies is to make them

general and versatile to allow their exploitation in more

diverse environments and situations. Such an objective can be

achieved by being more robust to changes (in object shapes,

illumination, gripper size), but also through the definition

of target parameters specifying task settings [9], [10]. For

instance, in [9], the target is defined by the region where to

push and concentrate objects (carrot pieces).

In this paper, we address this problem by investigating the

learning of target-parameterized DQN models, focusing on

the learning of pushing policies, where the parameters are

the position and possible size of the box around the table,

as shown in Fig. 1. This relates to the Goal-Conditioned RL

problem [13], [14], [15] in which the Q (or Value) function

is parametrized by a goal. However, most of the time, the

goals and states are strongly correlated (e.g. end position in

a navigation task), which differs from our situation where

the goal can be more complex (position and size) and

characterize the task rather than being a goal in itself.

One issue that arises when using a target-parameterized

Deep Neural Network (DNN) approach for manipulation

(outside the DQN context) is how to encode these parameters

in the DNN. Two main trends can be found in the literature.

In the first one, parameters are introduced after some pro-

cessing in the bottleneck part of the network. The main idea



is that the bottleneck captures the essential characteristics of

the input data (e.g. visual scene) which can then be combined

with task information to produce the desired output. Such an

approach can be found in methods that encode actions as task

parameters and measure their impact on input data [16]. A

similar method is tested in [9] for pushing but underperforms

the proposed switch-linear model, as authors observed that

their deep model was often stuck in loops, selecting actions

that do not cause any visual change. This issue is easily

solved with our approach. In [17], an equivariant network

is proposed where the state of the robot is inserted into the

bottleneck of it. The Cliport method of Shridhar et al. [18] is

another recent and impressive work exploiting this approach.

Leveraging the pretrained “Clip” DNN model connecting

text and vision [19], visual scene components are encoded

in the bottleneck and merged with the semantics arising

from the textual task description to select the relevant visual

information and decide on the task to apply.

One interesting aspect of the bottleneck approach is

that it can potentially encode any type of abstract task

information. However, when this information has a direct

visual counterpart, encoding the target parameters in the

visual domain can have several advantages. First, it can

be merged early on with scene information, avoiding the

potential loss of relevant information (esp. spatial) in the

bottleneck compression. Secondly, being visual, it avoids

the cumbersome parametric description of shape components

and can leverage pretrained deep learning visual processing

architectures. Such a visual encoding principle has been

successfully exploited with a Transporter Network [20] that

relies on a learning from demonstration paradigm and has

shown impressive results. This framework was extended for

designing Goal-Conditioned Transporter Networks solving

rearrangement tasks [21], [22], but these methods relied

on Hindsight Experience Replay or visual foresight, as

well as human demonstration. None of the above works

have investigated visual encoding in the context of RL and

target-parameterized DQNs, nor do they investigate target-

parameter encoding in the bottleneck as an alternative.

Reinforcement learning issues. DQN methods applied to

large action spaces suffer from sparse reward and gradient

backpropagation. For instance, in our case, the action space

comprises more than 800000 pushing actions (224 × 224
starting locations and 16 orientations), making learning chal-

lenging as each training experience only provides informa-

tion (a reward) for a single action (the one simulated by

the experience). However, when dealing with visual data,

it is often the case that similar actions would have similar

effects and would result in similar rewards, as illustrated in

Fig. 2. In this paper, we exploit this continuity property to

propose the use of a kernel loss that compares the Q-value

network predictions for different actions with the target value

computed from the action that has been performed, hence

resulting in better gradient computation in backpropagation.

Finally, in RL, the total reward is often the linear or

nonlinear combination of multiple individual rewards rep-

resenting different facets of the task. For instance, in [3],

Fig. 2. Kernel loss illustration for a given experience corresponding to
the displayed push (white arrow). The kernel loss assumes that pushing at
nearby locations and in the same direction would result in similar outcomes.
The Gaussian kernel displays the extent of this assumption for different
values of the standard deviation σ, with the weight value at a location
weighting the loss computed for the push starting in that location.

the same network has to predict (without distinction) the Q-

value depending on a single reward signal “triggered” either

when pushing actions alter the scene or when grasping is

successful. In this paper, we argue that such an approach

is losing information related to the reward structure. Thus,

following a multi-task paradigm [23], we propose a multi-

head architecture, presented in Fig. 3, which distinguishes

between the different aspects of the reward and implicitly

of the task, allowing to exploit informative losses and to

improve the training of the network.

Contributions. We address the task of pushing objects into

a box whose location is only known at test time (see Fig. 1).

To address it, we follow the approach of [3], [4] and extend

it in several ways, leading to the following contributions:

• We propose a target-parameterized DQN approach to learn

push-into-the-box policies that can handle the variability

in the location of the target box at test time;

• We investigate the use of a kernelized version of the typical

Q-learning loss that makes better use of each experience

and leads to less noisy and more informative gradient

computation in the backpropagation algorithm;

• We propose a multi-task learning approach, where a single

network learns to predict multiple relevant reward aspects

by minimizing the associated training losses.

We assess the validity of our design choices through

extensive experiments and ablation studies on simulated data

and real experiments with a Franka Emika robot, and show

that (i) our model can efficiently learn pushing policies

with target parameters, (ii) the different target encodings

are performing rather similarly, (iii) our kernel approach is

beneficial, and (iv) our multi-task RL approach is performing

the best compared to alternative architectures.

II. APPROACH

A. Overview

Fig. 3a shows our overall approach. The core is a multi-

head network taking as input the position of the box and a

depth image and predicting for each possible pushing action

an estimate of its state-action value Q as well as whether it is

a valid push (i.e. a push leading to an actual scene change).

These two outputs are estimated using two network heads

which are further combined using the Hadamard product to

refine Q-value pushing predictions and avoid spurious and

incorrect actions. In the test phase, the agent applies the push

that maximizes the masked Q-value predictions, producing a

new environmental state.



Fig. 3. (a) Overall scheme of the proposed multi-head network for pushing objects into a box. The inputs are the target parameters (box position) and a
depth image which is processed to produce a heightmap. The network encodes the target parameters either visually in the heightmap (VisEnc approach,
see point b), or as feature layers incorporated in the network bottleneck (BotEnc approach). The push Q-value (or reward for a discount factor γ = 0),
Q, and masks, M , are predicted by two network heads. They are combined to obtain a more accurate prediction of the Q-value, Qm. In the test phase,
the action (push position and orientation) that maximizes the masked Qm value is executed by the robot, leading to the next state. (b) The different depth
image representations (heightmaps) tested in our work. In HM1, the table and floor are set to diferent height values, having the floor a lower height than
the table. In HM2, the box is visually encoded by adding it at a depth falling in between those of the table and of the floor.

B. Modeling

Heightmap. The input depth image acquired by the depth

sensor is processed to represent the heightmap of the scene

as a 224 × 224 tensor. We consider two alternatives (see

Fig. 3b). The first heightmap (HM1) is obtained by setting

two different depth (height) values to the table and floor in

the simulator. The second heightmap (HM2) is obtained by

adding the box at its planned location pbox with an interme-

diate height (blue area). We have decided to use a heightmap

instead of a simple binary occupancy representation of the

objects because a heightmap allows for inferring the shape

of an object seen from above (e.g. triangle, half cylinder,

rectangle). In contrast, a binary occupancy representation

may represent all these objects as rectangles depending on

their orientations. Moreover, the height of each pixel is used

to determine the height of the push and is important to deal

with stacked objects, for example.

State-space. The state st = (xt, p
box
t ) of the environment

at time step t is represented by the heightmap xt and the

coordinates pbox
t = (ut, vt) of the middle point of the side

of the box in contact with the table.

Action-space. The robot can perform a pushing action of

length 10cm at any (x, y) position in the image and in any

one of 16 directions o. The action set A is thus the set of

all these possible pushes and is of size 224 × 224 × 16. In

our setup, all the pushes in the action set are feasible within

the workspace of the robot arm.

Network architecture. We follow the network proposed

in [4] based on the Hourglass architecture [24]. However,

rather than having two networks working in parallel and

trained separately, which has a large computational cost, we

propose an efficient multi-head network that is trained to

predict the Q-values and the masks.

More specifically, the network comprises an encoder,

which creates a feature representation of the depth image

in the bottleneck [25], and a decoder. The encoder applies

convolutional layers and downsampling operations resulting

in a stack of 14×14×64 feature maps in the bottleneck (prior

to the concatenation of target parameter layers, see below).

The decoder uses convolutional layers and upsampling oper-

ations to return feature maps with the same resolution as the

input (224×224). In addition, it integrates information from

all resolutions thanks to skip connections coming from the

different resolution blocks in the encoder. This allows for

combining the different semantic levels while maintaining

the localization accuracy of the network prediction. Finally,

our network comprises two heads dedicated to the prediction

of the Q-value Q and mask M tensors. They consist of

convolutional layers connected to the output of the Hourglass

network. These head outputs are merged via elementwise

multiplication to get the final ’masked’ output Qm.

Target parameters encoding. We study two different ways

of encoding the target parameters (box location), pbox
t =

(ut, vt), into the network. The first one is to encode the

parameters in the bottleneck feature layers, using a nonlinear

(BotEnc) encoding. There ut and vt are given as inputs to

a fully connected (FC) layer, whose output is reshaped to a

14× 14× 2 tensor that further goes through a convolutional

layer whose 14×14×8 tensor output is concatenated with the

bottleneck feature maps. Note that following [18], we also

concatenate this target tensor to other higher-resolution layers

through simple upsampling. When the BotEnc parameter

encoding is used, the heightmap HM1, which does not

visually represent the box, is given to the network as input.

The second target parameterization consists of a visual

encoding (VisEnc), which is simply achieved by using the

HM2 heightmap representation which by construction in-

cludes the box location information. With this approach,

target information can be combined with the visual scene

already in the early network layers.

C. Rewards

Our rewards are defined as in [4], and summarized below.

Pushing spot detection reward. This reward refers to the

premise that effective pushing actions should at least produce

changes. Hence, given the state st = (xt, p
box
t ) and the

executed action at leading to st+1, we count the amount

of local pixel changes as ct =
∑

p I|xt(p)−xt+1(p)|≥1mm,

where Iv is the indicator function, equal to 1 if v is true,

and 0 otherwise, and xt(p) refers to the height at the pixel

p. Accordingly, the PushMask change reward is given by



Rc (at, st, st+1) =

{

0 if ct < τmask

1 otherwise
, (1)

where τmask is a threshold that is set to 450 in practice.

Push-into-box reward. This reward incentivizes pushes that

move objects towards and into the box, and hence reduce

the average distance between object pixels and the box.

Accordingly, a measure of pushing effectiveness is:

∆dMt = dMt − dMt+1 with dMt =
1

|Ot|

∑

p∈Ot

dt(p), (2)

where dt(p) = ∥p − pbox
t ∥ denotes the distance between

the pixel p and the box center pbox, Ot is the set of pixels

on objects, obtained by thresholding the scene depth image,

and |Ot| denotes its cardinality. Accordingly, we define the

distance reward as Rd
t = max

(

0,∆dMt
)

, measuring how

much objects move closer to the box. Finally, denoting by

N box
t and Nfloor

t the number of objects falling into the box

or on the ground, as provided by the environment simulator,

we define the push-into box reward Rp as the sum of Rd
t

with the box reward Rbox
t = 10×N box

t , unless one or more

objects fall to the ground (Nfloor
t > 0). Formally,

Rp (at, st, st+1) =

{

0 if Nfloor
t > 0

Rd
t +Rbox

t otherwise
. (3)

D. Training protocol
In this section, we indicate the approach and losses used to

train our network. We first introduce the Q-learning training

procedure, then present our approach relying on multi-

task Reinforcement learning (RL). Finally, we formalize our

Kernel approach and show how losses can be weighted by

a Gaussian kernel to speed up the training and improve the

accuracy of the predictions under continuity assumptions.

RL Q-Learning. In simulation, a set of B experiences

ei, which can be expressed as triplets ei = (sit, a
i
t, s

i
t+1),

is generated through exploration. Accordingly, the network

learns to minimize the discrepancy between the state-action

value Q(sit, a
i
t) predicted by the network and the target value:

y (ei) = Rp (ei) + γQ

(

sit+1, argmax
a′

Q
(

a′, sit+1

)

)

, (4)

which can be computed from the definition of the reward and

the optimal action in the next state (argmax
a′

Q
(

a′, sit+1

)

).

In Deep Q-Networks (DQNs) [26], this latter term can be

estimated by applying the target network to the state sit+1 of

the current experience. More precisely, the discrepancy can

be formalized as the loss:

LQ(ei) = Lmse(Q
(

sit, a
i
t

)

, y (ei)), (5)

where Lmse denotes the mean squared error. Such a loss can

be computed over mini-batches and used to learn the network

weight via SGD algorithms and backpropagation.

Multi-Task RL. In [4], two networks, PushReward and

PushMask were trained independently and their output com-

bined. Each of them had a specific loss function, but there

was no loss for the final result, although this is our target.

In this paper, we propose to rely on a single network trained

with a multi-task loss comprising partial losses for the two

heads (the Q-value and the mask) and a loss related to the

final prediction (masked Q-values). The motivations are to

allow sharing parameters involved in predicting the mask

and Q-value, which results in a simpler and more efficient

architecture, and provide more supervision (more losses).

Accordingly, we define the loss for the Mask head as:

LM (ei) = Lbce

(

M
(

sit, a
i
t

)

, Rc
(

ait, s
i
t, s

i
t+1

))

(6)

where M refers to the outcome of the mask head and Lbce is

the binary-cross entropy loss. Similarly to Eq. 5, we define

a loss for the masked Q-values Qm (see Fig. 3) as:

LQm
(ei) = Lmse(Qm

(

sit, a
i
t

)

, y (ei)). (7)

Finally, the total loss is a linear combination of the three

different losses

L(ei) = w1LQ(ei) + w2LQm
(ei) + w3LM (ei), (8)

where w1 = 1, w2 = 1, and w3 = 100 are the weights

associated to the partial losses, which were chosen to make

the terms in Eq. 8 lie in the same range.

Kernel loss. In the above, each experience ei provides only

gradient feedback for the action ait actually performed in that

experience. This is highly inefficient and leads to high noise

during training, even with large batch sizes. As motivated

earlier, to improve training, we assume that for a given

experience ei, an action a close to ait would most likely

produce a state similar to the next state sit+1, and hence

would produce a similar target value y (ei). Accordingly, we

can compare the network prediction for that action a with

y (ei), and define the following action loss:

lK(ei, a) = Lmse(Q
(

sit, a
)

, y (ei)). (9)

The losses associated to all actions can then be combined to

define the loss associated to a given experience as follows:

LK(ei) =

∑

a w(a, ei)lK(ei, a)
∑

a w(a, ei)
, (10)

where w(a, ei) is a weighting factor giving more importance

to actions close to ait. In practice, we use a Gaussian kernel

centered at the experienced action start position pai

t

, i.e., w

is 0 for actions a whose pushing direction is different from

the one of ait, and equal to N (pa; pai

t

,Σ) otherwise.

III. EXPERIMENTS

A. Network Training

To conduct experiments, we relied on an offline RL ap-

proach [27] in which we first collected a dataset Doff of

experiences and used this fixed dataset to learn the different

models. The dataset has been collected using CoppeliaSim

[28]. The objects used in our simulations are the same as

in [3]. Although suboptimal, as applying online RL and col-

lecting data according to the learned policy would probably

result in better performance, we preferred this option as it

allowed to have better control of the learning conditions and

to achieve a fairer comparison of the different alternatives.

Hence, for the experiments we have used a discount factor γ



TABLE I

DATASET DOFF

Total number of pushes 82458
- leading to changes 51189 (62.1%)
- where at least one object fell to the ground 8232 (10.0%)
- where at least one object fell into the box 969 (1.2%)

equal to zero. In the future, we will address other tasks and

investigate further the choice of the discount factor.

Experience dataset. To obtain our dataset Doff, pushes

have been sequentially performed in scenarios generated

by tossing five randomly selected objects onto the table.

Approximately 50% of these pushes were sampled uniformly

at random from the set of all possible pushes, while the

other 50% pushes were sampled to likely produce changes

based on Canny edge detection heuristics [29]. By sampling

pushes in these two manners, we aimed at obtaining a more

informative dataset than through pure random sampling.

Table I summarizes the resulting statistics. Note in particular

that the number of actual objects falling in the box is very

low, making the task challenging.

Training protocol. We train our networks from scratch

using the dataset Doff. Our models have been trained for 30

epochs using Adam optimizer and early-stopping criterion to

avoid overfitting. The training data comprises 85% of Doff,

while 15% has been used for validation. Models minimizing

the best validation loss have been used for the subsequent

evaluations. If not stated otherwise, the Gaussian kernel loss

for training has a standard deviation σ = 5.

B. Experimental protocol

Evaluation procedure. We created a dataset of 300 random

scenarios with exactly five objects each. For each model

under evaluation, we applied the corresponding policy until

either there was no more objects on the table, or the policy

did not produce any change five times in a row.

Evaluation metrics. The performance is measured by the

average numbers of (i) objects successfully pushed into the

box (NObjB) (ii) objects that fell on the ground (NObjG)

(iii) objects left on the table (NObjT) and (iv) pushes (NAct)

needed to process each scenario, providing some measure of

the efficiency of pushes.

Tested models. To evaluate the benefits of our framework

and compare to the state-of-the-art, we considered the models

below. Note that the same HourGlass-based architecture as

in Fig. 3 is used (to the exception of the stated modeling

aspects) to allow a fair comparison.

• SHead. This is the single head approach in DQNs, in which

a single network is used to predict the Q-value [3]. We use

the same architecture as in Fig. 3, keeping only the Head 1

and the associated reward loss LQ. This network represents

the state-of-the-art [3]. Note that in [3] a DenseNet back-

bone was used, but was shown to underperform w.r.t. our

HourGlass-based architecture [4].

• TNets. It corresponds to the approach proposed in [4]

(but generalized to allow for target parameters), in which

two networks are trained separately: one to predict the

push reward, the other to predict changes. The outputs of

TABLE II

COMPARISON OF NETWORKS AND TARGET-PARAMETERS ENCODINGS.

OUR PROPOSED NETWORK IS IN LIGHTGRAY.

Model Encoding NObjB (%) NObjG (%) NObjT (%) NAct

SHead [3] BotEnc 4.05 (81.0) 0.62 (12.4) 0.34 (6.8) 11.7
SHead [3] VisEnc 4.21 (84.2) 0.58 (11.6) 0.21 (4.2) 10.3

TNets [4] BotEnc 4.30 (86.0) 0.67 (13.4) 0.03 (0.0) 11.1
TNets [4] VisEnc 4.39 (87.8) 0.53 (10.6) 0.09 (0.2) 9.7

MHead BotEnc 4.47 (89.3) 0.52 (10.5) 0.01 (0.2) 10.1
MHead VisEnc 4.50 (90.1) 0.47 (9.3) 0.03 (0.6) 16.8

MHead Combined 4.47 (89.4) 0.53 (10.6) 0.00 (0.0) 9.8

both networks are elementwise multiplied at test time to

produce masked push reward predictions. In practice, the

architecture of Fig. 3 is repeated twice, using the relevant

prediction head and training losses for each network (so

LQ and LM ).,

• MHead. It corresponds to our multi-head network trained

by minimizing the loss defined in Eq. 8;

C. Results

Network architecture. Table II provides our results. We

can first notice that whatever the target encoding, SHead [3]

performs worse than both TNets and MHead, which both

predict a mask to filter out spurious predictions provided by

the reward head through the Hadamard product. This aspect

can be observed by the fact that the number of objects left

on the table NObjT in SHead is reduced significantly, and is

illustrated in Fig. 4 where the robot with SHead selects a

push on the table border with no object.

Comparing TNets and MHead, the latter performs better

and obtains the best performance with VisEnc (NObjB =

4.50 (90.1%)). It shows that training a single network for

multiple tasks is beneficial, which is particularly interesting

since MHead is also significantly (twice) more efficient

computationally as it uses one network instead of two.

Target-parameter encoding. First, we can notice that al-

though visual encoding VisEnc produces the best results, the

bottleneck encoding BotEnc results are competitive. It shows

that even in the absence of a visual representation of the box

position, the network can learn relevant features to succeed

in the pushing task. Such an encoding can be desirable when

it is cumbersome to visually encode all relevant features for

the task at hand; for instance, to push objects close to a

certain point irrespective of any occlusions of the target. The

bottleneck encoding BotEnc could in principle also be used

to tackle different tasks. For example, one could consider

giving additional parameter values as input to the BotEnc

module in order to determine if the robot should push only

objects of a certain color (if RGBD images were given as

input to the network) or shape into the box or sort different

objects into different boxes.

Secondly, the inspection of the results and pushing simu-

lations shows that the two encodings produce two different

policy behaviors, as illustrated in Fig. 6. With the BotEnc

encoding, the policy is more direct: it tends to group objects

and then push them jointly towards the box, as this way

of doing maximizes the reward at each step, based on the

scene configuration. Although this behavior seems correct,



Fig. 4.Left: best push (white arrow) selected by the SHead network (using
visual encoding), shown on the heatmap of pushes with high probability for
the selected direction. Middle and right: heatmaps for the same direction
as on the left (with arrows corresponding to the max for these heatmaps)
for the TNets and MHead, showing that having a mask allows to filter out
spurious predictions as the one shown in SHead.

TABLE III

IMPACT OF THE KERNEL SIZE AND LOSSES DURING TRAINING. THE

DEFAULT CONFIGURATION (σ = 5, ALL LOSSES IN EQ. 8, I.E. LQm
,

LQ , AND LM ) IS SHOWN IN LIGHT GRAY.

Kernel Encoding NObjB (%) NObjG (%) NObjT (%) NAct

None BotEnc 4.26 (85.2) 0.74 (14.8) 0.00 (0.0) 9.7
None VisEnc 4.41 (88.1) 0.59 (11.8) 0.01 (0.1) 14.8

σ = 5 BotEnc 4.47 (89.3) 0.52 (10.5) 0.01 (0.2) 10.1
σ = 5 VisEnc 4.50 (90.1) 0.47 (9.3) 0.03 (0.6) 16.8

σ = 10 BotEnc 4.45 (89.0) 0.54 (10.9) 0.01 (0.1) 10.2
σ = 10 VisEnc 4.63 (92.7) 0.32 (6.5) 0.04 (0.9) 18.8

σ = 20 BotEnc 3.93 (78.6) 0.50 (10.1) 0.56 (11.3) 13.9
σ = 20 VisEnc 4.01 (80.2) 0.43 (8.7) 0.56 (11.1) 21.7

Losses

LQm
BotEnc 4.32 (86.4) 0.67 (13.5) 0.01 (0.1) 9.4

LQm
VisEnc 4.39 (87.8) 0.55 (11.0) 0.06 (1.1) 17.5

LQ, LM BotEnc 4.37 (87.3) 0.63 (12.7) 0.00 (0.0) 9.9
LQ, LM VisEnc 4.45 (89.0) 0.47 (9.33) 0.08 (1.6) 16.5

it is prone to pushing objects on the ground, resulting in a

larger NObjG. On the other hand, with VisEnc the network

adopts a more conservative behavior. While it also starts to

pushes the objects farthest away from the box, it also tends to

relocate them more often towards the table center or in front

of the box until it is more confident to push them safely into

the box. This is confirmed by Table II and Table III which

show that VisEnc requires more actions to process a scene.

This might be due to the visual representation of the box

which includes both position and width, and may influence

the learning, while with BotEnc, only the box position is

specified. Further investigations and analysis are needed to

corroborate these observations.

Kernel. Table III shows the performance of our MHead

network in function of the kernel size used during training.

We see that larger kernels lead to better performance (es-

pecially with the BotEnc encoding) until σ = 20, which is

too large and breaks the underlying continuity assumption of

the approach. The impact of the kernel size can be further

assessed by looking at the validation loss1 as shown in Fig. 5.

We see that a much faster convergence can be achieved in

the first epochs as more gradients are backpropagated, and

that smaller validation loss can be obtained in the long run

for a given network. Note that the validation loss is larger

without the kernel, and shows faster overfitting (training is

interrupted by the early-stopping criteria).

Finally, it is interesting to see that although the VisEnc

encoding provides better task performance, it leads to worse

validation losses than with BotEnc. This highlights the slight

1Note that to the contrary of the training loss, the validation loss is only
evaluated at the performed action, so losses are comparable across models.

Fig. 5. Validation losses during the network training for the visual VisEnc

and bottleneck BotEnc encodings and for different Gaussian kernel sizes.

Fig. 6. Pushes done by MHead using BotEnc (Top) and VisEnc (bottom)
for 4 testing scenarios. The numbers of pushes to complete the task are
shown in yellow, while the number of objects pushed in the box or on the
floor are shown in green. In the BotEnc case, the box position is indicated
with a blue circle. Black arrows refers to pushes made at the beginning of
the experiment, and red ones to those done at the end. The image behind
corresponds to the initial layout of objects (first frame).

discrepancy between the reward and the actual task, esp. as

offline RL training is used.

Loss definition. Table III further shows the results of the

MHead network trained with only a subset of the losses. We

see that using only the loss LQm
on the target Q-value (the

masked Q-values) as done traditionally, or using only the

losses on the two heads (LQ, LM ), as implicitly done in [4],

provides worse results than using all the three losses defined

in Eq. 8, showing that more supervision is beneficial.

Real robot experiments. We tested on a real robot a policy

learned in simulation (see Fig. 7). In contrast to the simulated

setup, we deployed an eye-in-hand configuration of the vision

system. To execute a push with the robot, we use a task-

space trajectory tracking controller with inverse dynamics in

the configuration space [30]. The pushing motion is designed

to be similar to the behavior in the simulation while being

dynamically feasible for the real robot.

We tested the performance of the learned policy in 6

different scenarios with 3 different box positions. We used

4 YCB objects [31] with shapes unseen during training and

arbitrarily scattered on the tabletop in each scenario. In 4

scenarios, the robot managed to clean the table properly (all

objects fell into the box). In the 2 others, the robot pushed

3 objects into the box, while the last one remained on the

tabletop. In those cases, the robot got stuck in repeating a

pushing action that did not move the remaining object, which

could be caused by a mismatch between the objects used in

the training and the real ones, or by the limitations of the

dataset used for training, which did not have so many cases

of objects falling into the box or to the ground.



Fig. 7. Experimental setup with the Franka Emika robot arm. The objective
of the robot is to push all objects on the tabletop into a box located at
arbitrary positions around the table.

IV. CONCLUSION AND FUTURE WORK

We have proposed an efficient target-parameterized multi-

head network architecture for pushing objects into a box

whose location can change at test time. We have shown

that both a visual encoding as well as bottleneck layer

encoding of the target parameters (box location) can lead

to good performance, although the learned policies exhibit

different behaviors. In addition, a kernelized version of the

conventional Q-learning loss was proposed. It led to better,

faster and more stable training thanks to a better use of

each experience, resulting in less noisy and more informative

gradient computation in the backpropagation algorithm. This

approach is generic and can be applied for other robotics

manipulation tasks. In the future, we want to explore tasks

with sparser rewards and more challenging tasks such as

sorting objects according to their shape or color. There it will

be important to explore discount factors greater than zero

to achieve policies that can consider future rewards when

choosing their actions. In theses tasks, we expect that the

faster learning of the kernel approach could be beneficial.
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