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Abstract
Task space mapping approaches for bilateral teleoperation, namely object-centered ones, have yielded the most promising
results. In this paper, we propose an invertible mapping approach to realize teleoperation through online motion mapping by
taking into account the locations of objects or tools in manipulation skills. It is applied to bilateral teleoperation, with the goal
of handling different object/tool/landmark locations in the user and robot workspaces while the remote objects are moving
online. The proposed approach can generate trajectories in an online manner to adapt to moving objects, where impedance
controllers allow the user to exploit the haptic feedback to teleoperate the robot. Teleoperation experiments of pick-and-place
tasks and valve turning tasks are carried out with two 7-axis torque-controlled Panda robots. Our approach shows higher
efficiency and adaptability compared with traditional mappings.

Keywords Bilateral teleoperation · Motion mapping · Invertible mapping · Impedance control

Introduction

Teleoperation is widely used in hazardous environments,
such as outer space [1], deep sea [2], and nuclear indus-
try. Since its inception [3], the field has witnessed great
progress, owing to novel control paradigms (e.g. torque
control), new haptic interfaces and the increase in sensor
modalities and perception technologies. The advent of the
latter, while allowing to operate in more and more complex
environments, has given rise to new problems. Traditional
direct control architectures rely on the user’s skills to con-
trol all slave motion, which leads to big mental workload.
Supervisory control is developed to reduce workload, as the
user can teleoperate the slave robot by high-level commands,
rather than low-level motions. However, it it complicated to
apply strong autonomy on the slave robot in complex envi-
ronments. Shared control locates between direct control and
supervisory control. The slave robot is controlled by both
direct control and remote autonomy.

B Xiaohui Xiao
xhxiao@whu.edu.cn

1 Hubei Key Laboratory of Waterjet Theory and New
Technology, Wuhan University, Wuhan, China

2 Idiap Research Institute, Martigny, Switzerland

3 National Key Laboratory of Human Factors Engineering,
China Astronauts Research and Training Center, Beijing,
China

Various teleoperation modalities exist, with limitations
appearing as the complexity of the task context grows. For
example, a user needs to teleoperate an underwater remote
operated vehicle (ROV) to pick some objects or turn sev-
eral valves. Based on 2D video streaming, the user controls
the ROV by a haptic device to approach one and pick it.
Then press a button to suspend the teleoperation and relo-
cate the haptic device for the next subtask. If the objects to
be manipulated are pushed by the water flow, the user must
adjust the ROV to a new location and perform the task care-
fully. Specifically, as shown in Fig. 1, when the remote robot
needs to operate objects which are placed differently from
the local workspace, mapping the motions of the two robots
is not straightforward.

To address the problems of discrepancies between local
and remote spaces and teleoperation for moving objects, we
consider mappings that locally reshape the robot task space
in a way that ensures successful manipulation on the remote
side. Particularly, we consider the location of objects on both
local and remote sides and propose a locally linear mapping
approach to build a mapping between the two operational
spaces. Thus, the user can focus on only the task on his/her
side by kinesthetically moving the local robot end-effector.
The mapping will generate the desired pose online and the
remote side will perform the same task with different loca-
tion setups, whichmakes the teleoperationmore intuitive and
efficient. And this mapping is an object-adaptive one, which
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Fig. 1 A schematic of bilateral teleoperation for multiple objects. Left:
Local workspace. Right: remote workspace. Colored squares represent
the objects to be manipulated. Our approach builds an online mapping
between the local and remote workspace based on object positions

means it can be updated online and adapt to moving objects.
To validate the approach, we propose robot experiments in
three scenarios where bilateral teleoperation is exploited.
Experiments for collect moving objects are designed to show
the online adaptability of the mapping, along with groups of
trials to highlight the efficiency in comparison to traditional
teleoperation mappings.

This paper is organized as follows. We discuss previ-
ous research in “Related work”. “Object-adaptive mapping”
describes our object-adaptive mapping algorithm. “Experi-
ments” shows the real robot experiments, including pick-and-
place ball tasks, collectingmoving objects and valves-turning
tasks. We discuss the limitations in “Discussion”. “Conclu-
sion” concludes the paper.

Related work

Bilateral teleoperation allows the user to give motion com-
mands to the slave by guiding a local joystick or robot, while
the user can feel the slave interaction force. In this paper, we
focus on how to map robot actions between the master and
slave sides in Fig. 1.

Mimicking the joint configurations of the master is likely
the most straightforward way of teleoperation [4–7]. Limita-
tions of this approach are evident:when the device being used
on themaster side has a different kinematic structure than the
robot being controlled, themapping is not intuitive (e.g. from
linear motions of a joystick to rotations of revolute joints).
This typically results in increased cognitive load for the user,
which in turn leads to suboptimal performance [8,9]. Suc-
cessful teleoperation in these scenarios often relies strongly
on the expertise of experienced users, who endured time-
consuming training [6,8]. Finding appropriate subspaces to
represent the joint mappings has received attention, not only
in the context of manipulators but also in grasping [7].

Reformulating joint space approaches into the robot task
space has been shown to improve performance and user expe-
rience [4,8,9]. Indeed, most modern approaches rely on this
paradigm. Starting from the original work of Goertz [3],
where the 6-DOF of the master handle are mechanically
linked to those of the slave hand, to more recent approaches
considering virtual fixtures [10–13], task space represen-
tations have become ubiquitous in teleoperation. Among
these approaches, the object-centered ones are typically the
most successful. Abi-Faraj et al. [14] rely on a camera to
autonomously control some of the slave robot’s degrees of
freedom, given detected object poses in a shared control sce-
nario.

However, common approaches require clutching phases
when the robots in the local and remote sides are discon-
nected. The goal is to adjust the offsets between two robots, as
the two sides might be different. In general, several clutching
phases exist for teleoperating one objects. In teleoperation for
multiple objects, it will be too time-consuming.

Semi-autonomous teleoperation has been widely used
to reduce mental workload. Learning from demonstration
approaches are introduced to reproduce skills given human
motion examples [15]. In [16], a framework is presented
with task-parametrized representation in a mixed teleoper-
ation setting, which can resolve differences between local
and remote environment configurations to improve trans-
parency in a subtask.However, teleoperating the remote robot
to manipulate several objects is still discontinuous due to the
clutching phases, which leads to low transparency and effi-
ciency. For complex scenarios where the decision-making
of commands is very difficult or changed rapidly, we may
have to rely on ourselves to send realtime commands. In our
previous work [17], two motion mapping methods were pro-
posed for continuously bilateral teleoperation.However, both
methods cannot adapt to moving objects online, as they take
long time for re-training. Thus it is impossible for the user to
teleoperate a moving object.

With respect to the aforementioned, our approach ensures
an invertible mapping between the two workspaces. It can
bring better transparency and efficiency in bilateral teleoper-
ation formultiple objects. It also adapts to scenarios of online
moving objects.

Object-adaptivemapping

Given the specified one-to-one corresponding points, with
the 3D position of objects X = {xi }Ni=1 and Y =
{ yi }Ni=1(N ≥ 4) in the local and remote workspaces respec-
tively, our goal is to build a realtime bijective mapping Φ

between X andY , by taking into account typical paths formed
when moving from one location to another. We exploit here
the prior knowledge that a motion from one location to

123



Complex & Intelligent Systems

Fig. 2 Left: Left task space. Right: Right task space. Points with pro-
jection are sorted by angles of atan2 function. And the points of x̃d and
x̃c are found with θc ≤ atan2(x̃) < θd . Thus, x is represented by the
four points of xn1, xn2, xc, xd . And the mapping point y is generated
in the same region

another will mainly form a straight line in Cartesian space,
for an environment without obstacle and for regions in the
workspace that are easily reachable.

One potentially promising solution is to use a diffeomor-
phicmapping tominimize the distance betweenΦ(X) andY .
Perrin et al. [18] adopted a locally weighted translation with
many Gaussian Radial Basis Functions (RBF) by iteration
method, and received a bijective and differentiable map-
ping function. However, the time cost both for learning and
backward evaluation is high, which may cause long delays,
lowering the transparency in bilateral teleoperation.

We propose a locally linear mapping algorithm based on
the locally coordinate representation, which is much faster
for realtime teleoperation and can meet the requirement of
moving in straight lines between points of interest. The map-
ping is described in Cartesian space for the poses of robot
end-effectors, so that the local robot motion can be mapped
to and from the remote side.

Locally linear mapping

Assumed that there is an initial point x of the end-effector on
the local task space, initiallywe choose the nearest pointn1 =
argmin
i∈[1,...,N ]

(||{xi }Ni=1−x||) as initial mapping center point. The

algorithm is described as follows:

1. Check the nearest distance between x and {xi }Ni=1. If it is
less than a threshold, update n1 as that point index.

2. Start a loop to choose n2 ∈ N as a second point for the
ordered basis. Then select n3 ∈ N (n3 �= n1, n2)

3. Build projection function. First,we build aCartesian coor-
dinate system with xn1 for center and xn2 − xn1 for z axis,
and get x axis by making a projection of xn3 − xn1 on the
vertical plane around the z axis.

4. Get the 2D projection points as X̃, x̃, Ỹ from new the xy
plane (see Fig. 2).

(a) Mapping by the locally linear mapping

(b) Mapping by the diffeomorphic mapping

Fig. 3 Reshaped robot task spaces in ROS Rviz visualizer. Colored
points refer to the objects to be manipulated. Left: Local workspace
with a Panda robot as master. Right: Remote workspace with a robot as
slave

5. Calculate the angle lists.We sort the points by atan2 func-
tion and get the index lists a, b and angle lists θ ,ϑ . a
should be equal to b, otherwise continue the For loop.

6. Decide which region x̃ is in. As the return value of atan2
function is in (−π, π ], we can clearly know that atan2(x̃)

is between θc and θd , shown in Fig. 2.
7. Choose the best n2. We define a distortion function:

ρ = ∑
exp(| ln(Δθ/Δϑ)|) and assign to n2 to get the

minimum value of ρ.
8. Compute the output. We receive the ordered basis α =

[xn2 − xn1, xn3 − xn1, xn4 − xn1] for x and β = [ yn2 −
yn1, yn3 − yn1, yn4 − yn1] for y. The representation of x
with respect of α is λ = α−1(x − xn1). x and y are set
as the same coordinates under the corresponding ordered
basis. The output of the algorithm is y = βλ + yn1 , ẏ =
βα−1 ẋ.

Notice that there is input–output symmetry to guarantee
bilateral teleoperation. The algorithm decides which region
x is in and chooses nearby vectors for the ordered basis and
generates a corresponding point with the same coordinates
on the other side. The main idea of the algorithm is to select
an ordered basis as representation of points. Coordinates are
transferred to the other side to rebuild the points. Thus, a
linear mapping is built in each region.
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Algorithm 1 shows the pseudocode of the proposed
approach.

Algorithm 1: Locally linear mapping
Input: x :current position (local side)

ẋ: current velocity (remote side)
X : position of specified points (local side)
Y : position of specified points (remote side)

Output: y: mapping position (remote side)
ẏ: mapping velocity (remote side)

1 Initialize n1 = argmin
i∈[1,...,N ]

(||xi − x||)

2 Function Main(x, ẋ, X,Y , n1):
3 if min

i∈[1,...,N ](||xi − x||) < threshold then

n1 = argmin
i∈[1,...,N ]

(||xi − x||) ;
4 for n2 = 1 to N and n2 �= n1 do
5 n3 ∈ [1, N ](n3 �= n1, n2)

[X̃, x̃] = Projection([X, x], n1, n2, n3)
Ỹ = Projection(Y, n1, n2, n3)
[a, θ ] = sort(atan2(X̃))

[b,ϑ] = sort(atan2(Ỹ))

if a �= b then continue;
6 for i = [a1, a2, ..., aN ] do
7 if atan2(x̃) ≥ θiand atan2(Qx) < `i+1 then return

c = ai , d = ai+1 ;
8 end
9 end

10 α = [xn2 − xn1 , xc − xn1 , xd − xn1 ]
β = [ yn2 − yn1 , yc − yn1 , yd − yn1 ]
y = βα−1(x − xn1 ) + yn1
ẏ = βα−1 ẋ

11 return y, ẏ
12 Function Projection(X, n1, n2, n3):
13 p1 = xn3 − xn1

nz = (xn2 − xn1 )/||xn2 − xn1 ||
nx = ( p1 − pT1 nz)/|| p1 − pT1 nz ||
ny = nz × nx
R = [nx , ny, nz]

14 return R−1(X − xn1 )

Comparison in simulation

In this part, we compare the proposed locally linear mapping
and a diffeomorphic mapping [18] in simulation, with five
different points set in both robots’ task spaces. For diffeo-
morphic mapping, one point is chosen as the center point
and connected with other points by straight lines. 200 evenly

spaced samples on these lines are set for generating the map-
ping. We adopt the algorithm in [18] for the diffeomorphic
mapping.

Simulation results are shown in Fig. 3. On the left side,
the equal-spaced grid lines are plotted to show the local
worspace. The remote workspace is deformed by the map-
ping on the right side.

The space of Fig. 3a is divided by regions with the order of
angle in Algorithm 1. Then in each region a linear mapping is
applied. The diffeomorphic mapping transforms the sample
points on the gray lines. And it shows a smooth distortion
in Fig. 3b. In Table 1, the characteristics of the two map-
ping methods are compared. In this case, the diffeomorphic
mapping would cost 558ms for learning themapping by iter-
ative approximation (iteration number = 200), with a mean
error of 2.7 mm. And in the backward evaluation, nonlinear
equations should be solved to calculate the corresponding
point from the right side to the left side of Fig. 3b, which
takes 25 ms. For the locally linear mapping, there is no need
for learning and have a fast computation time without error,
which is better for realtime control (we further discuss these
aspects in Sect. 5).

Experiments

To validate the proposed locally linear mapping algorithm,
three sets of experiments were conducted with bilateral tele-
operation, including pick-and-place static objects, collecting
moving objects and turning valves, as shown in Fig. 4. We
consider the direct position mapping [19] and the diffeomor-
phic mapping [18] as baselines to evaluate our method.

Controller

The two robots used in the experiments are torque-controlled,
where impedance controllers are adopted to allow the oper-
ator to guide the local robot and teleoperate the remote one
in Fig. 4. The control law is designed for both robots as:

τ = M(q)q̈ + g(q) + c(q, q̇) + J(q)T f , (1)

with

f =
[

kp(xd − x) + kv(ẋd − ẋ)

kpr log(Rd RT ) + kvr (ωd − ω)

]

, (2)

Table 1 Comparison of
simulation results

Locally linear Diffeomorphism

Learning time 0 558 ms

Forward evaluation: time cost of Φ(X) 1 ms 3 ms

Backward evaluation: time cost of Φ−1(Y) 1 ms 25 ms

Mean error: dis(Φ(X) − Y ) 0 2.7 mm
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(a) Pick-and-place balls (b) Collecting moving objects (c) Valve turning

Fig. 4 Three scenarios of teleoperation experiments. (a) Experimental
setup of pick-and-place balls. (b) Collecting four balls into a container.
(c) Turning valves by 90◦. The user side of each subfigure refers to local
workspace for human guidance, and the other side for remote robot

manipulation. The goal is to manipulate the remote objects in sequence
by teleoperation. A vertical board prevents the user from relying on
visual feedback to complete the task, emulating the realistic teleopera-
tion of a remote robot

(a) Scenario 1: pick-and-place balls

(b) Scenario 2: collecting moving objects

(c) Scenario 3: valve turning

Fig. 5 Snapshots of teleoperation experiments by the locally linear
mapping in three scenarios. (a) The user guides the right robot to pick
the red ball, pass by the gray cup and place it on the pink cup. (b) The

user (left side) guides the robot to collect four balls into the cylindrical
container, while the balls on the remote side may move arbitrarily. (c)
The user teleoperates the robot to turn the valves in sequence

where q ∈ R
7 denotes joint position, M(q) ∈ R

7×7 is the
mass matrix, c(q, q̇) ∈ R

7 is the Coriolis and centrifu-
gal torque J(q) ∈ R

6×7 is the Jacobian matrix, and τ ,

g(q) ∈ R
7 are respectively control and gravitational joint

torques. f ∈ R
6 is the output of the impedance controller.

x, ẋ ∈ R
3 are the Cartesian position and velocity. R is the
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(a) Locally linear mapping
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(c) Locally linear mapping
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(d) Direct mapping
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(e) Locally linear mapping
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Fig. 6 Robot trajectories. First to third rows: the corresponding three
scenarios. 1st and 3rd columns: the local workspace. 2nd and 4th
columns: the remote workspace. b–d: baselines for our method. Robot

trajectories are displayed in black. And the red ones in d and f refer to
the trajectories when the teleoperation is suspended due to the direct
mapping. Colored points refers to the objects to be manipulated

3 × 3 orientation matrix and ω ∈ R
6 the angular velocity

of the end-effector. Here the logarithmic function of a rota-
tionmatrix is adopted for the difference between two rotation
matrices. (.)d denotes the desired value, and k(.) represents
stiffness and damping gains (for position and orientation) of
the Cartesian impedance controller.

To perform the teteoperation task with different point
locations on two sides, we use the mapping function Φ in
Algorithm 1 of Sect. 3 to generatemotion online. The desired
value (reference trajectories) in Eq. 2 is set as :

xrd , ẋ
r
d = Φ(xl , ẋl), Rr

d = Rl , ωr
d = ωl , (3a)

xld , ẋ
l
d = Φ−1(xr , ẋr ), Rl

d = Rr , ωl
d = ωr , (3b)

where (.)r and (.)l mean the state of the right robot and the
left robot respectively. Therefore, each robot is controlled
to track a reference position, generated by the mapping
function that takes the other robot’s position as input. In
this case, only position and velocity are considered in the
mapping, while desired orientation and angular velocity
are copied from the other robot. Gain matrices are set as
kp = 300I3×3, kv = 10I3×3, kpr = 15I3×3, kvr = 2I3×3,
where I3×3 is the three-order identitymatrix. This implemen-
tation therefore corresponds to position-position (as opposed
to e.g. position-force) architecture where both sides run an
impedance controller to track a reference trajectory which is
generated by the motion mapping algorithm.
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Robot experiments

The three sets of experiments are shown in Fig. 4a–c. In each
scenario, there are several corresponding objects to bemanip-
ulated in the local and remote sides, with different locations
for each pair of objects. As illustrated in Fig. 4a, there are five
colored cups on both sides to represent the objects of interest,
and a red ball to be grasped and placed. The grasping posi-
tion of the red ball on each cup is previously recorded. In the
second and third scenarios, a camera (RealSense D435) is
mounted on the table to locate the boards, and consequently
the objects, by using Aruco makers. The transformations
between the balls and the markers, as well as between the
camera and the robots, are calibrated in advance. In scenario
1, we adopt the locally linear mapping and the diffeomorphic
mapping for the teleoperation mapping. In scenario 2 and 3,
we adopt the locally linear mapping and the direct position
mapping [19], which only copies the relative pose of the local
robot and sends to the remote robot. The vertical board are
removed when using the direct position mapping, so that the
user can watch the remote workspace directly, which emu-
lates the realistic teleoperation by video streaming feedback.

A video1 accompanying this paper shows the results of the
experiments. Figure 5a–c show the snapshots in the three sce-
narios by the locally linear mapping. Figure 3 shows how the
robot operational spaces were distorted by the locally linear
mapping and the diffeomorphic mapping. Robot trajectories
of the end-effector on both sides are displayed in Fig. 6. From
the results, all methods fully completed the task.

In the execution of scenario 1, the locally linear mapping
and diffeomorphic mapping methods bring similar trajecto-
ries. Both of them can deal with the discrepancies of location
of objects on two sides. And a continuous teleoperation for
multiple objects is achieved. In Fig. 6d,f, the trajectories
in red mean that the user suspended the teleoperation and
adjusted the local robot to a new location, while the teleoper-
ation by our locally linearmapping did not require this phase.
The trajectories (Fig. 6a,c,e) are continuous for manipulating
multiple objects.

Besides, the locally linear mapping can adapt to online
movement of remote objects. In Fig. 5b for scenario 2, the
human on the right side was applying randommovement to a
ball, while the user can still teleoperate the robot to collect the
moving ball. Note that the diffeomorphic mapping required
re-training for moving objects. Thus, in case the points of
interest change locations during the execution, our approach
can generate newmappings onlinewithout increasing delays.

In Fig. 7, we compare the task duration of the three map-
ping methods in five different settings. The results show that
the locally linear mapping takes less time than the others,
which means better efficiency. As our method does not sus-

1 The video is also available online at https://youtu.be/iS9bykV5jJM.
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Fig. 7 Comparisons of task duration by different methods. A: scenario
1. B: scenario 2. C1-C3: scenario 3 with three different position set-
tings of valves. Each setting includes 20 trials. The error bar shows the
standard deviation

pend the teleoperation, the user can focus on the local side
and complete subtasks continuously. Mostly the direct map-
ping has bigger standard deviation. One possible reason is
that sometimes the user needs more or clutching phases due
to physical constraints.

Discussion

We compared our proposed mapping with the one from [18]
and the direct mapping [19]. In our chosen setup, the objects
of interestwere in different locations between theworkspaces
of the two robots and some of themwere moving online. The
taskwas successfully executed by all three approaches. How-
ever, our approach took less time to accomplish the task and
less time cost of realtime computation, which makes it more
suitable for bilateral teleoperation as they are directly linked
to both teleoperation efficiency and transparency,where com-
putational times should be kept as low as possible due to the
constraint of operating in real time.

Some limitations are, nonetheless, worth mentioning.
First, our approach requires that objects are placed in the
same order in both workspaces. When this is not verified,
the mapping could result in distortions that map otherwise
reachable points outside theworkspace of the robots. Second,
our mapping is continuous but not differentiable at the plane
switch (see Sect. 3). The diffeomorphic approach [17,18],
contrarily, can build functions with higher orders of conti-
nuity and only distort the neighbouring space of the points.
However, this comes at the cost of high training and eval-
uation times, which are often prohibitive in teleoperation,
especially in the bilateral case. Finally, it is worthmentioning
that our approach shows more promise for dynamic scenar-
ios,where objects aremoving in either one of theworkspaces.
This is because it does not require learning time (see Table 1),
hence the mapping can be quickly updated as opposed to
other alternatives like [17] and [18], where recomputation
takes a considerable amount of learning time.
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Conclusion

In this paper, we propose a locally linear mapping algorithm
to map points between two robot workspaces, in bilat-
eral teleoperation scenarios. Considering objects in different
locations and the requirement of adaptability to moving
objects, this algorithm can distort the space in different
regions and generate an object-centered mapping. This map-
ping can also be updated online when the objects are moving.
We validated the algorithmwith experiments of three scenar-
ios, and contrasted it with a diffeomorphic mapping and the
direct mapping.While we showed that both algorithms allow
for successfully completing the task, our approach stands
out due to lower computational time and faster task comple-
tion, which are reflected in higher teleoperation efficiency. In
future work, we plan to use more elaborated visual feedback
to incorporate moving objects, investigate the consideration
of obstacles in the mapping [20] and study techniques for
motion prediction that can facilitate the teleoperation when
objects move.
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