Supervisory teleoperation with online learning and optimal control

Toannis Havoutis™? and Sylvain Calinon®

Abstract— We present a general approach for online learning
and optimal control of manipulation tasks in a supervisory
teleoperation context, targeted to underwater remotely operated
vehicles (ROVs). We use an online Bayesian nonparametric
learning algorithm to build models of manipulation motions
as task-parametrized hidden semi-Markov models (TP-HSMM)
that capture the spatiotemporal characteristics of demonstrated
motions in a probabilistic representation. Motions are then
executed autonomously using an optimal controller, namely
a model predictive control (MPC) approach in a receding
horizon fashion. This way the remote system locally closes a
high-frequency control loop that robustly handles noise and
dynamically changing environments. Our system automates
common and recurring tasks, allowing the operator to focus
only on the tasks that genuinely require human intervention.
We demonstrate how our solution can be used for a hot-stabbing
motion in an underwater teleoperation scenario. We evaluate
the performance of the system over multiple trials and compare
with a state-of-the-art approach. We report that our approach
generalizes well with only a few demonstrations, accurately
performs the learned task and adapts online to dynamically
changing task conditions.

I. INTRODUCTION

Many useful robotics applications require performing tasks
in environments that are not accessible to humans. One
typical example is underwater activities, ranging from in-
spection and maintenance of underwater cables and pipelines,
to underwater archeology and marine biology. To this end
there has been a boom in underwater remotely operated
vehicles (ROVs) over the past few years. Nonetheless the cost
of using ROVs is still prohibitively high for wider adoption,
as currently ROV usage still requires substantial off-shore
support.

One of the main limiting factors is that a large off-
shore crew is required to supervise and teleoperate the ROV
directly from the support vessel. This is mainly due to
the need of online teleoperation, i.e. the operator receives
visual feedback from an array of cameras on the ROV and
accordingly uses a set of buttons, knobs and joysticks to
guide the motion of all degrees-of-freedom (DoF) of the
ROV, including body and arm(s). This cost can be reduced
by moving the support and teleoperation team to an on-shore
facility and communicating with the ROV remotely. Such a
change introduces delays to the teleoperation control, making
direct control less efficient and increasing the cognitive load
on the operator.

1diap Research Institute, Martigny, Switzerland. {ioannis.havoutis, syl-
vain.calinon} @idiap.ch

20xford Robotics Institute, Department of Engineering Science, Univer-
sity of Oxford, United Kingdom. ihavoutis@robots.ox.ac.uk

This work was in part supported by the DexROV project through the EC
Horizon 2020 programme (Grant #635491).

Execution

Learning Transfer

0]

Remote

Fig. 1. Overview of supervisory teleoperation within our approach. Top:
Local system where a teleoperator is using an exoskeleton to demonstrate
motions to the system and to perform direct teleoperation whenever neces-
sary. Bottom: Remote side where a robotic manipulator receives a learned
model of the task at hand and can then execute the task autonomously
using local feedback. During autonomous execution, the overall system is
clutched, i.e. the state of the local system does not affect the state evolution
on the remote side.

Within the DexROV project [1], we are developing a novel
teleoperation paradigm where the operator can shift between
direct teleoperation of the ROV manipulator arms (when
unstructured interactions with the environment are required)
and supervisory control (for the ROV to autonomously
perform common and recurring tasks). In our approach,
such tasks are learned by demonstration directly from the
operator’s input. This way, our system can build up a library
of tasks over a number of missions, that is in turn exploited
to automate the ROV tasks.

In this paper, we are interested in incrementally build-
ing such models from demonstrated motions as task-
parametrized hidden semi-Markov models (TP-HSMM), us-
ing an online Bayesian nonparametric learning algorithm [2].
This model is then transferred to the remote system and used
to perform the task autonomously, using local feedback, with
an optimal control method, model predictive control (MPC),
that is robust to noise and perturbations.

The contributions of this paper are: (i) a method for
online, incremental learning of tasks from demonstrations in
a probabilistic, non-parametric manner; (ii) an MPC-based
controller robust to noise and perturbations that generates
control commands online based on learned task models; (iif)
a system of supervisory teleoperation that uses previously
learned task models to autonomously complete tasks; (iv) a
learning by demonstration approach in the context of tele-
operation with supervisory control, targeted to underwater

ROVs.

With our approach we are able to incrementally learn mo-
tions in a piecewise fashion, without the need to re-train the
model in batch or to set the number of components by hand.
Consequently we do not need to keep any demonstration data
(datapoints are discarded after observation) while the model
automatically grows as needed. We show how ROV skills can
be learned on the local side (the operator’s site), and how
this model is then used to autonomously execute the task
on the remote side (ROV/robot’s side). With our approach,
the model parameters need to be communicated from the
operator’s side to the teleoperated system, while all feedback
relevant to task execution is local to the remote side. This
makes the overall method robust to noise and perturbations,
while significantly reducing the workload of the operator.

II. MOTIVATION & RELATED WORK

Teleoperation is one of the earliest applications of robotics
as it allows human operators to reach and interact with
environments that are inaccessible or potentially dangerous.
Teleoperation approaches fall under three broad categories;
direct control, shared control and supervisory control. Within
a direct control approach, all aspects of the remote system
are controlled by the human operator, i.e. the remote system
needs no intelligence and no autonomy.

Shared control approaches seek to offload part of the
control effort to the remote system. These approaches have a
broad application domain ranging from medical robotics [3]
to factory floor automation [4]. In many applications, shared
control is most encountered as virtual fixtures [5]. These are
virtual elements that model knowledge about some aspect of
the task and are used to guide, limit, or assist the operator
when performing the task [6], [7]. Recently [8] demonstrated
how virtual fixtures can be learned from data and how new
fixtures can be added to the system so that it can adapt to new
manipulation examples. In our recent work in shared control
[9], we showed how a teleoperation system can be designed
to rely on learned probabilistic models of manipulation tasks
in combination with online operator’s input.

Supervisory control approaches imply that the remote
system possesses some degree of intelligence and can op-
erate autonomously to a given extent. Supervisory control
was introduced in [10] and was initially developed for
space robotics where the communication delay could exceed
several minutes [11]. Ideally within a supervisory control
framework the operator needs only to provide high-level task
goals to the remote system, which in turn uses local sensory
feedback directly and closes local control loops to achieve
the commanded task.

Our system is a combination of direct control, where
the operator assumes complete command to handle un-
known tasks, and supervisory control, where the system
can autonomously execute tasks that have been previously
learned, relying on local sensory feedback and automatically
compensating for possible noise and perturbations.

For the encoding and retrieval of movements, Hidden
Markov Models (HMMs) are often used but are limited
by the simplistic state duration modeling that they provide.

Other signal processing related disciplines, such as speech
synthesis, have developed a number of models that seek
to model state duration information more explicitly (for an
overview see [13]). One such model is the Hidden Semi-
Markov Models (HSMM) [14]. Recently we experimented
with the use of HSMM in robot applications, by contrasting
it to a set of different graphical model based approaches [15].
HSMMs are relevant for robot motion generation because
they model transitions and durations of states, providing
a relative time instead of a global time representation. In
[16], we exploited this local duration representation for
autonomously learning and reproducing the tasks of opening
a valve and avoiding obstacles.

The approach that we propose in this paper for online
HSMM estimation draws parallels to the DP-means exten-
sion of HMM presented in [17]. There the authors present
a small-variance asymptotic analysis of the HMM and its
infinite-state Bayesian nonparametric extension. Our solution
is based on [2] and a small-variance asymptotic analysis of
the Dirichlet Process clustering algorithm, that leads to very
efficient online model learning.

An alternative learning from demonstration (LfD) ap-
proach is to use Probabilistic Movement Primitives (ProMP)
[12], that we will use in our experiments for comparison.
ProMP uses a model-free approach to encode a distribution
over trajectories and analytically derive a stochastic feedback
controller to reproduce the given trajectory distribution. This
allows for flexibility over the possible motion generation
such as spatial and temporal rescaling, combination and
blending of the modeled motion primitives (MPs).

III. APPROACH

Here we present the online TP-HSMM formulation used
throughout this work. This model leverages the spatial
representation that the TP-GMM [18] provides, combined
with an HSMM that captures the temporal evolution of
the motion. Our model can natively handle changing task
parametrizations and is trained online and incrementally from
demonstration data.

The task parameters can be regarded as candidate coor-
dinate systems that are relevant to the task at hand. For
example, consider the task of reaching for a handle with a
robotic manipulator. One task parameter can be the pose of
the manipulator base, while a second task parameter can be
the pose of the handle. Varying the pose of the handle and/or
the pose of the base of the manipulator require adaptation
of the motion to reach the handle. Task parameters in our
model are represented by P candidate coordinate systems,
defined at time step ¢ by {b;;, Ay ;}i_,, representing an
affine transformation for each frame of reference.

Each demonstration datapoint {£; € RP} is observed from
the perspective of each of the different frames, resulting in P
samples that can be collected from each frame individually
or computed with

9= A& — buy). (1)

For example, a demonstrated motion is provided in a global
coordinate system and is simultaneously projected to the

local coordinate systems of the manipulator base and the
handle. Note that Eq. (1) can handle both positions and orien-
tations, see [19] where Riemannian manifolds are exploited
in task-parametrized models.

The parameters of a TP-HSMM with K components are

. . K
0= {ﬂ-h {ai,l}{ila {IJ’E])7 27(;])};’):17 l’L’L‘D’ E?}i:17

where 7; are the initial state distributions, p{”) and X7
are the center and covariance matrix of the ¢-th Gaussian
component in frame j, p7 and X7 are univariate Gaussian
distributions that model the duration of each state, and a;
the transition probabilities between states.

A. Online model learning

Learning of the TP-HSMM parameters is performed incre-
mentally and online. The advantages of our method are: (a)
it does not require an initialization step (typical of EM ap-
proaches), (b) the number of components grows as new data
is available and does not need an explicit definition of K, (c)
the model is trained online with piecewise demonstrations,
allowing incremental additions, adaptations and refinements.

To learn the model online we use a variant of Dirichlet
Process clustering called DP-means [2]. Dirichlet Process is
a well known Bayesian non-parametric approach to cluster
data that automatically estimates the number of components
required for the model. This process uses Gibbs sampling
so it cannot be generally used to learn a model online.
The DP-Means variant of Dirichlet process that we use
was introduced to simplify the learning process by making
a parallel with the K-Means algorithm by small variance
asymptotics analysis. The idea is to avoid Gibbs sampling
by substituting the evaluation of the posterior probabilities
of each component with the distance of datapoints from the
center of each component. This can be done by specifying
a maximum distance between two components determining
when to add a new component to the model.

From a current TP-HSMM configuration with K compo-
nents, each point &; is assigned to the nearest component.
If the distance from any component is higher than the
maximum distance A, then the point is assigned to a new
component with p; = & and X; = 3, a preassigned fixed
covariance (at start-up, the first demonstration datapoint is
used to initialize the model). If the datapoint is added to an
existing component, then p; and X; are updated according to
the MAP estimate [20], taking the previous values of center
and covariance as priors. This results in a very fast clustering
algorithm, that only requires a maximum distance A and a
minimum covariance 3 (Algorithm 1).

For the duration aspect of the online-TP-HSMM, we need
to estimate the center and covariance for each state duration
as a distribution with parameters {u?, P }K | as well as the
transition probabilities a;; that can be arranged as a K x K
transition probability matrix, where each element represents
the probability to move to state ¢;, while currently being in
state ;. For all demonstrations, given the spatial model that
was learned above, we can compute the state probabilities
of every datapoint. This way, for each datapoint &; we can

Algorithm 1 Online TP-HSMM model learning, using the DP-
means algorithm. Note, superscript (j) for each frame is dropped
for readability. Superscript (o) stands for old value.

Input: max distance A, min. covariance s,

Input: &; datapoint at time ¢ .
Initialize K = 1, N = 1(#datapoints), p1 = €0, 31 =X
while &; do

for j =1 to P do

dtﬂ' = ”Et — ,u1-||2, 1=1 ...I(7] =1...P
if min(d;,;) > A then

K=K+1, g =1, px =&, T =3
else

gt = argmin; dq ;

=5 tTq, Tq = %1

-1 (o) | &t
Hq: = W(”Qt"‘(’qg + N()) (®)
T
Mg = %(?q&*‘ (P'q(t] - qu,)(ll'qj — pq)")
+m(2 + (& — pa,) (&t — NQt)T)

end if
if gt = q¢—1 then #(t>1)
d=d+1
else
Cq—1,qt = Cqp_1,q¢ T 1K
Aqy_1,at = Cqp_1,at/ Dk=1 Car_1.,k
D _ Dp® (d—#q’éfl)
Ha_1 = Hgp_q Ng,
(o)
e=e+(d—pg_) d—pug_,)
D _
Y1 = (qu—l) # (Ng, > 1)
(o)
d=0, Ng =Ng +1, pg , =pg_,
end if
end for
N=N-+1
end while

i

return 0* = {Tm {(li,l}{ip {N(']) Ez('])}f:l’ /‘?7 EiD}izl

estimate the state ¢; and the previous state g;. To build up the
transition probabilities a; ;, we keep a trace of ¢; ; € REXK
counting the number of state transitions that are not self-
transitory, by performing a pass through each demonstration.

When computing the transition probabilities we only need
to keep track of the non self-transitory instances as we are
modeling the relative time during which the system will stay
in each state. We used here a univariate Gaussian distribution
N (p?,X?) to model this duration, but other distributions
are possible, including lognormal and gamma distributions.
Hence, we bypass the computationally expensive HSMM
batch training procedure and replace it with an iterative
approach keeping statistics over the state transitions. This
way, as we add each datapoint, we keep track of each state
duration and accordingly update the statistics at each state.
This is done using a running statistics method to compute the
mean and variance for each state duration. This requires that
we only keep track of the total number of samples (V) while
we incrementally add new datapoints. Our online learning
algorithm is summarized in Algorithm 1.

B. Reproduction

We use a model predictive controller (MPC) to compute
control commands, based on the current state of the system
and the learned TP-HSMM model. MPC uses a model of
the system and computes control commands based on the
predicted state evolution, allowing the controller to anticipate

future events. We use a linear unconstrained MPC formula-
tion, using a discrete unit mass double integrator system as
the system model. Accordingly the system dynamics have
the form

&iy1 = A& + Buy, x = C§;,)

where A, B and C are the system dynamics, input and
output matrices, respectively. Given the linear system above,
N, state predictions &, with r € {t+1,...,t+ N,} are
generated, given the current state &; (position and velocity)
and N, control commands w, with r € {t,...,t+N.—1}.
The state predictions can be written in matrix-vector form as

A B 0 _x 0 an
A AB B .- 0 U
5 A3 £t A2 B AB s 0 U2

)

AN»—N.

N, AN p—1 B ANp—Q B cB Uy N1
—— A —
Sé Su u
3
x = (In, ® C)(5%¢; + S“u))
where & [5{-&-1’5;-2, a€f+N] > & =

[mI+1,mI+2,...,wI+Np]T, Iy, is an N, x N, identity
matrix and ® is the Kronecker product.

We compute the control command w; at time t, by
minimizing a quadratic cost function over the prediction
horizon. The cost function has the form

t+Np . . . t+N.—1
J = Z (ET - 57) Qr(é'r‘ - 51") + Z u:Rrura (5)
r=t+1 r=t

where é,. and &, are the desired and the current state of the
system. @, is the tracking cost matrix and R, is the control
cost matrix. The same cost function rewritten in batch form
is
~ T ~
J=(€-¢ QE—§ +u'Ru, (6)

where @ = blockdiag(Q41, Qt42, ..., Qiyn,) and R =
blockdiag(R;, Rit1, ..., RitN.—1)-

We compute the vector of control commands u by substi-
tuting (3) into (6) and minimizing with respect to wu,

u=(S*"QS*+ R)"'8*TQ(£ — S%¢,). (7

State sequence: The learned TP-HSMM model is used to
generate a state sequence given the current set of coordinate
systems {b; ;, Am}P First we generate a GMM with

parameters {7;, fi; ;, pIN Z} * , where

N(,at,i,it,i) HN(NW £17)), with

Awu(”ert , B9 =A, 2047 ®

where the result of the Gaussian product is given by

P
1\—1 ~ N
(§) =S Y S0
=1

.)

Next we generate the state sequence by recursively com-
puting the probability of the datapoint &; to be in state 4

at time step t, given the partial observation {&1,&s, ..., &},
using the forward variable a“SMM as in [13] with
K gmax :
af™M = Z Z oy ag N H Nsi, where
j=1 d=1 s=t—d+1

NP =N(d|pP, £P) and Ny ; = N (& fus,i, i),
that is computed with an iterative procedure. This generative
process can be constructed by setting equal observation prob-
ability N ; = 1 Vi. This yields a step-wise state reference
wiht labels s = {s1,..., sy, }, that we use as control targets
ér and cost matrices Q- in the MPC formulation described
earlier.

IV. PLANAR EXAMPLE

We use a planar example to illustrate the steps of our
approach. The task is to reach the “U” shape, drawn in
Fig. 2(a) at the bottom right corners of both the local and
remote sides. The operator uses a mouse cursor to interact
with the local side and provide motion demonstrations.
Snapshots are presented in Fig. 2 and in the accompanying
video.

We begin by learning the task in the local side, where
the operator demonstrates a number of motions that are
encoded online. In the example of Fig. 2(a), 3 motions
are demonstrated incrementally, resulting in a model with
6 Gaussian components. Note that components are added to
the model as motions are being demonstrated. Fig. 3 shows
the transition matrix and duration probabilities of the learned
motion model. Note that the 3 demonstrations resulted in 3
paths as shown by the graph connectivity.

In Fig. 2(b) the learned model is transferred to the remote
side. In practice, we do this step either once the operator
is satisfied with the learned model or just whenever the
model changes. For an ROV mission targeting multiple tasks,
the transfer of a general model —or task library— can be
performed at the start of each mission, while after an initial
learning period most task models would already belong to
the learned task library.

Now the remote side can autonomously execute the motion
that the operator has demonstrated. Note here that the oper-
ator can directly teleoperate the system when the controller
is not active, but once the MPC controller initializes the
state evolution of the remote side is decoupled from the
operator’s input, i.e. the system is clutched. Execution of
the motion begins with a command from the operator’s side.
The controller generates control commands according to the
learned task model and the current task parameters that are
local to the remote system Fig. 2(c). This way the position
of the U-shaped reference that this motion is reaching can
change at each time step, while the controller continuously
adjusts to this dynamically changing environment. In our
example we use a simple oscillation around the position of
the target shape to show how the controller adapts to this
changing task parametrization (see accompanying video).

Remote

(a) Learning

Fig. 2.

(b) Transfer

(c) Execution

Planar example of learning and control with the TP-HSMM. Note that in each plot the left panel represents the local system (operator’s side)

while the right panel represents the remote system (robot’s side). See Sec. IV for a detailed explanation.

Ty, T2

Ty, Ta,

Fig. 3. (Left:) Graphical representation of the transition matrix and duration
probabilities for each state. Note the three paths formed according to our 3
demonstrations in (Fig. 2(a)). (Right:) Executed motion on the remote side,
using the learned TP-HSMM and the MPC controller.

V. EXPERIMENTAL SETUP

We use the two-armed Baxter robot as a working example
of a teleoperation system. Each of Baxter’s arms has 7 DoFs,
actuated by series-elastic actuators, enabling force/torque
control of the joints. We use the left arm as the local
system (operator’s side) and the right arm as the remote
system (robot’s side). The left arm is used for kinesthetic
demonstrations of the motion in the local environment of
the operator, by using a controller compensating the effect
of gravity on the arm. We use markers and an RGB-D sensor
to track task-relative reference frames both in the local and
the remote systems. Fig. 5 provides an overview of the
experimental setup.

This setup is used as a running mock-up platform within
the DexROV project, where the remote system will later in
the project be replaced by the underwater ROV manipulator,
and the local system will be replaced by an arm exoskeleton
worn by the operator.

To demonstrate our ap-
proach, we chose one of
the most frequently exe-
cuted tasks in underwater
ROVs [22]. This is the task
of inserting a hot-stab plug
into a hot-stab receptacle
(Fig. 4), which is used to provide hydraulic actuation to
most of the tools employed in underwater facilities. Hot-
stabbing also shares similarities with the standard peg-in-
the-hole task in robotics applications (see Fig. 5 for our hot-
stabbing mock-up).

Fig. 4. Example of a standardised
hot-stab and receptacle [21].

VI. EVALUATION

We begin with the kinesthetic demonstration of the hot-
stabbing task. The operator uses the arm to perform the mo-
tion targeting a reference in his environment. This reference
provides the task parameters for projecting the demonstrated
data to the task-local frame of reference. In this example
we use one task-parametrized frame (P = 1), attached
to the hot-stab receptacle. The TP-HSMM is being built
online and incrementally, adding Gaussian components as
needed. A short comparison between an online and a batch
learned TP-HSMM is available in [23]. In our examples
we train a model with 5 demonstrations. Note that the TP-
HSMM is learned online and does not need any record of
previous demonstration data (we keep here the data only
for visualization and subsequent comparison). Fig. 6 (left)
Shows the demonstrated end-effector motions to the local
reference, while Fig. 6 (middle) shows the demonstrations
projected to the task-local frame (Eq. (1)). Fig. 6 (right)
shows the resulting TP-HSMM. Note the paths that evolve
from the start of the motions and how these converge to the
hot-stab receptacle reference. Datapoints that are added away
from the existing model are modeled by distinct Gaussians,
while in areas where the trajectories converge, i.e. at the
final approach towards the receptacle, components are shared
among datapoints. In this example we used a distance A of
10cm. In setting A, one needs to take into consideration the
size of the workspace and the accuracy needed for the task
at hand. Intuitively, setting a large A results in a system with
fewer Gaussians and smoother response, while a smaller A
results in a system with more components and a closer fit of
the demonstrated motions.

Fig. 7 (left) presents 5 examples of generated motions

Robot

Rohot
(remote) (.

(remote)

-

=
™\ hot:stab
receptacle

4—.@»

hot-stab
‘ plug)

4

Fig. 5. Experimental setup of teleoperation mock-up with the Baxter
robot. The operator uses the left arm to provide demonstrations and directly
teleoperate the remote (right) arm. Once the TP-HSMM model is learned,
the remote side (robot) can autonomously execute the hot-stabbing motion,
successfully adapting to changing receptacle locations.

Fig. 6.

Left: Demonstrations of the motion in the global frame. Middle:
The motions projected to the task-parametrized frame of the receptacle.
Right: The TP-HSMM model learned online from the demonstrations in the
task-parametrized frame of the receptacle.

on the remote side, from random starting points to random
targets. Here the starting position is the current end-effector
position of the robot arm as directly teleoperated. Once the
motion generation begins, the local and remote systems are
clutched (states can evolve separately) and the robot executes
the task autonomously. Our approach generalizes well even
when starting at points far away from the learned model.
Typical behavior of the system is to first reach the closest
component and then continue through the path outlined by
the model. In this aspect the behavior of the system closely
resembles that of a virtual fixture/guide. The demonstrations
and generated motions are very close from spatial and
temporal perspective. Note how the system always keeps a
steady vertical/perpendicular approach to the receptacle, as
demonstrated. Quantitatively, comparing the system output
to the operator’s demonstrations resulted to an RMSE of
1.2 £ 0.2cm while the overall success rate of autonomously
performing the hot-stabbing motion was 87% over 15 trials.
We believe that the unsuccessful trials can be attributed
to noise in the marker tracking process (calibration and
estimation).

One thing to highlight is that the remote system (robot
side) performs the task autonomously. The remote system
relies on local feedback and keeps track of the task-relevant
variables. This way when the receptacle is moved the system
can adapt online to the environment change and successfully
execute the task. An example of this scenario is shown in
Fig. 7 (right). In the context of the underwater ROV, this
could correspond to noise in the position of the ROV or
sudden sways due to currents or other dynamically changing
conditions.

A. Comparison with ProMP

We compare the behavior of our approach with ProMP
[12] by analyzing the generated motions in terms of gener-
alization capability, and suitability of generated motions in
static and changing conditions. We use the 5 demonstrated
motions collected in our trials to train a ProMP for the hot-
stabbing task. Training the ProMP model is done in a batch
fashion and involves dynamic-time-warping (DTW) of the
demonstration and the setting of a regularization term (when
estimating 3,,) that was empirically set to 10~ for our trials
to obtain the best performance. The number of the basis
functions used to represent the trajectory distribution was

Fig. 7. Left: 5 examples of generated motions from our system. Red
squares are random starting states and red triangles are random target states.
Right: Example of generated motions where the target is moved while the
motion is performed. Our approach (in blue) can smoothly adapt to the
change of target. The ProMP generated motion (in purple) also reaches the
set target but with an incorrect approach path.

set to 15 components (equal to the number of components
of the TP-HSMM for fairness of comparison).

We compare the generated motions against the 5 col-
lected demonstrations, performing the regression step con-
ditioned on the given start and target points. This is shown
in Fig. 8(leff) where we see that the generated motions
closely follow the demonstrations, resulting in an RMSE of
1.1 £ 0.3cm. Next, we test the ProMP model against the
predictions of our approach, i.e., performing the regression
conditioned on the same starting and target points as for
the situations generated with our framework. We observe
that the resulting motions are not as smooth as that of our
method (spurious motions sometimes appearing in the start
or end of the generated trajectories), which is principally
due to the small number of demonstrations used to estimate
the ProMP parameters (an inverse Wishart distribution was
employed here as prior for better performance). More im-
portantly, we can observe that samples from the ProMP do
not exhibit the final approach phase behavior that existed
in the demonstrated motions, i.e. the motions reach the
target from different —not perpendicular— directions, a crucial
step in successfully executing the hot-stabbing motion. The
overall impression from the performance of ProMP is that it
would require more demonstrations to generalize better as the
generated motions degraded substantially when tested further
away from the training data. It is important to highlight here
that Gaussian conditioning fulfils its role, by starting and
ending at the desired position with a continuous transition,
but that the adaptation is not well adapted to the changing
task requirements, sometimes resulting in an inappropriate
approaching phase to the target and an incorrect insertion of
the hot-stab. In contrast, the task-parameterized formulation
shows better extrapolation behaviors.

Last, we compare the behavior of the ProMP with our
approach when the target changes during execution. Our
approach can —by design— smoothly handle dynamically
changing task parameters, while for ProMP this would
amount to changing the target on which the regression is
conditioned as the motion is being generated. Fig. 7 (right)
shows an example of this comparison. Both methods reach
the target point, but ProMP reaches the target in a manner
that does not result in a successful trial. Indeed, the hot-stab

Fig. 8. Left: Demonstrations (in grey) used to learn the ProMP model along
with reproductions (in purple) using ProMP on the start and target points
taken from the demonstrations. The red dotted line represents the mean of
the trajectory distribution. Right: Motions generated with our system (in
blue) and with the ProMP method (in purple), based on the same start and
target points.

is not aligned with the receptacle during the later part of the
motion.

B. Discussion

The difficulties that we encountered with the ProMP ap-
proach is common to all regression-based approaches and not
specific to ProMP. By using a probabilistic task-parametrized
formulation, our method leverages significant generalization
benefits, as learning is performed in a task-local manner,
resulting to more efficient use of the demonstration data-
points for generalization. Another benefit of our approach is
that it learns online and allows incremental learning of tasks
in piecewise steps. This results in a minimal set of model
parameters needing to be set in advance, only 2 — the max
distance A and the minimum variance X, that are intuitive
to set. In addition, no record of data needs to be kept as
model building and all estimations are performed online.
This makes the proposed approach flexible and suitable
for building up a task library during multiple missions. In
practice, every time a task is performed by the operator, the
task library can be growing and/or refining the ROV skill
repertoire.

VII. CONCLUSION

We presented a general approach for online learning
and optimal control of manipulation tasks in a supervisory
teleoperation context. We used an online Bayesian nonpara-
metric learning algorithm to build models of manipulation
motions encoded as TP-HSMMs that accurately capture the
spatiotemporal characteristics of demonstrated motions. We
showed how the probabilistic representation can be combined
with an MPC controller to generate online control commands
in a receding horizon manner that is both robust to noise and
changes in the environment. We presented how this frame-
work can be used to automate common and recurring tasks,
allowing the operator to focus only on the aspects of the tasks
that genuinely require human intervention. We compared
against a state-of-the-art approach and demonstrated how
our method leverages the task-parametrized formulation to
increase generalization, both in terms of extrapolation and
online adaptability.

[1]

[3]

[4]

[5]

[6]

[7]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

J. Gancet, P. Weiss, G. Antonelli, M. F. Pfingsthorn, S. Calinon,
A. Turetta, C. Walen, D. Urbina, S. Govindaraj, P. Letier, X. Martinez,
J. Salini, B. Chemisky, G. Indiveri, G. Casalino, P. Di Lillo, E. Simetti,
D. De Palma, A. Birk, A. Tanwani, I. Havoutis, A. Caffaz, and
L. Guilpain, “Dexterous undersea interventions with far distance on-
shore supervision: the DexROV project,” in IFAC CAMS, Trondheim,
Norway, September 2016, pp. 414—419.

B. Kulis and M. I. Jordan, “Revisiting k-means: New algorithms via
Bayesian nonparametrics,” in Proc. ICML, Edinburgh, Scotland, UK,
2012, pp. 1-8.

S. Park, R. D. Howe, and D. F. Torchiana, “Virtual fixtures for robotic
cardiac surgery,” in Proc. MICCAI, W. J. Niessen and M. A. Viergever,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1419—
1420.

L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic
manipulation,” in Proc. IEEE VRAIS, Sep 1993, pp. 76-82.

J. J. Abbott, P. Marayong, and A. M. Okamura, “Haptic virtual fixtures
for robot-assisted manipulation,” in Proc. ISRR. Springer Berlin
Heidelberg, 2007, pp. 49-64.

F. Rydn, A. Stewart, and H. J. Chizeck, “Advanced telerobotic un-
derwater manipulation using virtual fixtures and haptic rendering,” in
2013 OCEANS - San Diego, Sept 2013, pp. 1-8.

J. Bohren, C. Paxton, R. Howarth, G. D. Hager, and L. L. Whitcomb,
“Semi-autonomous telerobotic assembly over high-latency networks,”
in Proc. ACM/IEEE HRI, March 2016, pp. 149-156.

G. Raiola, X. Lamy, and F. Stulp, “Co-manipulation with multiple
probabilistic virtual guides,” in Proc. IEEE/RSJ IROS, Sept 2015, pp.
7-13.

I. Havoutis and S. Calinon, “Learning assistive teleoperation behaviors
from demonstration,” in Proc. IEEE SSRR, Lausanne, Switzerland,
October 2016.

W. R. Ferrell and T. B. Sheridan, “Supervisory control of remote
manipulation,” IEEE Spectrum, vol. 4, no. 10, pp. 81-88, Oct 1967.

G. Hirzinger, J. Heindl, K. Landzettel, and B. Brunner, “Multisensory
shared autonomy - a key issue in the space robot technology experi-
ment rotex,” in Proc. IEEE/RSJ IROS, vol. 1, Jul 1992, pp. 221-230.
L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77:2, pp. 257—
285, February 1989.

S.-Z. Yu and H. Kobayashi, “Practical implementation of an efficient
forward-backward algorithm for an explicit-duration hidden Markov
model,” IEEE Trans. on Signal Processing, vol. 54, no. 5, pp. 1947—
1951, 2006.

S. Calinon, A. Pistillo, and D. G. Caldwell, “Encoding the time and
space constraints of a task in explicit-duration hidden Markov model,”
in Proc. IEEE/RSJ IROS, San Francisco, CA, USA, September 2011,
pp. 3413-3418.

A. Tanwani and S. Calinon, “Learning robot manipulation tasks with
task-parameterized semitied hidden semi-Markov model,” IEEE RA-L,
vol. 1, no. 1, pp. 235-242, Jan 2016.

A. Roychowdhury, K. Jiang, and B. Kulis, “Small-variance asymp-
totics for hidden Markov models,” in Proc. NIPS, 2013, pp. 2103-
2111.

A. Paraschos, C. Daniel, J. Peters, and G. Neumann, ‘“Probabilistic
movement primitives,” in Proc. NIPS. Curran Associates, Inc., 2013,
pp. 2616-2624.

S. Calinon, “Robot learning with task-parameterized generative mod-
els,” in Proc. ISRR, 2015.

M. J. A. Zeestraten, 1. Havoutis, J. Silvério, S. Calinon, and D. G.
Caldwell, “An approach for imitation learning on Riemannian mani-
folds,” IEEE RA-L, 2017.

J. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate gaussian mixture observations of Markov chains,” IEEE
Transactions on Speech and Audio Processing, vol. 2, no. 2, pp. 291—
298, Apr 1994.

Total Marine Technology, Website, 2015. [On-
line]. Available: http://www.tmtrov.com.au/tooling/standard-tooling/
tmt-single-port-high-flow-hot-stab

A. Bleicher, “Gulf spill one year later: Lessons for robotics,”
Website, 2015. [Online]. Available: http://spectrum.ieee.org/robotics/
industrial-robots/gulf-spill-one- year-later-lessons- for-robotics#

1. Havoutis, A. Tanwani, and S. Calinon, “Online incremental learn-
ing of manipulation tasks for semi-autonomous teleoperation,” in
IEEE/RSJ IROS 2016, Workshop on Closed-loop Grasping and Ma-
nipulation: Challenges and Progress, October 2016.

http://www.tmtrov.com.au/tooling/standard-tooling/tmt-single-port-high-flow-hot-stab
http://www.tmtrov.com.au/tooling/standard-tooling/tmt-single-port-high-flow-hot-stab
http://spectrum.ieee.org/robotics/industrial-robots/gulf-spill-one-year-later-lessons-for-robotics#
http://spectrum.ieee.org/robotics/industrial-robots/gulf-spill-one-year-later-lessons-for-robotics#

	Introduction
	Motivation & Related work
	Approach
	Online model learning
	Reproduction

	Planar example
	Experimental Setup
	Evaluation
	Comparison with ProMP
	Discussion

	Conclusion
	References

