
VP-STO: Via-point-based Stochastic Trajectory Optimization for
Reactive Robot Behavior

Julius Jankowski∗ 1,2, Lara Brudermüller∗ 3, Nick Hawes3 and Sylvain Calinon1,2

Abstract— Achieving reactive robot behavior in complex
dynamic environments is still challenging as it relies on being
able to solve trajectory optimization problems quickly enough,
such that we can replan the future motion at frequencies
which are sufficiently high for the task at hand. We argue that
current limitations in Model Predictive Control (MPC) for robot
manipulators arise from inefficient, high-dimensional trajectory
representations and the negligence of time-optimality in the
trajectory optimization process. Therefore, we propose a motion
optimization framework that optimizes jointly over space and
time, generating smooth and timing-optimal robot trajectories
in joint-space. While being task-agnostic, our formulation
can incorporate additional task-specific requirements, such as
collision avoidance, and yet maintain real-time control rates,
demonstrated in simulation and real-world robot experiments
on closed-loop manipulation. For additional material, please
visit https://sites.google.com/oxfordrobotics.institute/vp-sto.

I. INTRODUCTION

In this paper we consider the problem of generating
continuous, timing-optimal and smooth trajectories for robots
operating in dynamic environments. Such task settings re-
quire the robot to be reactive to unforeseen changes in
the environment, e.g., due to dynamic obstacles, as well
as to be robust and compliant when operating alongside
or together with humans. However, generating this kind
of reactive and yet efficient robot behavior within a high-
dimensional configuration space is significantly challenging.
This is especially the case in robot manipulation scenarios
with many degrees of freedom (DoFs) as the resulting
high-dimensional and multi-objective optimization problems
are difficult to solve on-the-fly. A widespread approach in
robotics is to formulate the task of motion generation as
an optimization problem. Such trajectory-optimization based
methods aim at finding a trajectory that minimizes a cost
function, e.g., motion smoothness, subject to constraints,
e.g., collision avoidance. Solution strategies can either be
gradient-based or sampling-based. Approaches falling in the
former category, e.g., CHOMP [1] and TrajOpt [2], typically
employ second-order iterative methods to find locally optimal
solutions. However, they require the cost function to be
once or even twice-differentiable, which constitutes a major
limitation for manipulation tasks as they usually involve

*Authors contributed equally.
JJ and SC were supported by the Swiss National Science Foundation

(SNSF) through the CODIMAN project. LB was supported by an Amazon
Web Services Lighthouse scholarship. NH received EPSRC funding via the
“From Sensing to Collaboration” programme grant [EP/V000748/1].

1Idiap Research Institute, Martigny, CH; name.surname@idiap.ch
2Ecole Polytechnique Fédérale de Lausanne (EPFL), CH
3Oxford Robotics Institute, University of Oxford, UK; {larab,

nickh}@robots.ox.ac.uk.

Fig. 1. Experiment settings. Left: Pick-and-place scenario, where the task
is to grasp a bowling pin that is arbitrarily handed over to the robot and to
place it upright in the middle of the table. Right: Pushing scenario, where
the robot has to push the center of the green coffee packet to a moving
target location indicated by the tip of the metal stick.

many complex, discontinuous cost terms and constraints. In
contrast, sampling-based methods [3], [4] can operate on
discontinuous costs by sampling candidate trajectories from a
proposal distribution, evaluating them on the objective, and
updating the proposal distribution according to their rela-
tive performance. Compared to gradient-based optimization,
stochastic approaches typically also achieve higher robust-
ness to difficult reward landscapes due to their exploratory
properties [5]. Yet, achieving reactive robot behavior is
challenging as it requires solving trajectory optimization
problems at frequencies which are sufficiently high for the
task at hand. This issue can be alleviated in Model Predic-
tive Control (MPC) settings by optimizing over a shorter
receding time-horizon. Stochastic, gradient-free trajectory
optimization, such as Model-Predictive Path Integral (MPPI)
control [6] and the Cross-Entropy-Method (CEM) [4], com-
bined with MPC, also known as sampling-based MPC, has
proven state-of-the-art real-time performance on real robotic
systems in challenging and dynamic environments [7], [8],
[9]. However, these works still suffer from limited long-term
anticipation, e.g., getting stuck in front of obstacles, due to
the optimization over a short receding horizon.

Motivated by the above, we propose Via-Point-based
Stochastic Trajectory Optimization (VP-STO), a framework
that introduces the following contributions

1) A low-dimensional, time-continuous representation of
trajectories in joint-space based on via-points that by-
design respect kinodynamic constraints of the robot.

2) Stochastic via-point optimization, based on an evo-
lutionary strategy, aiming at minimizing movement
duration and task-related cost terms.

3) An MPC algorithm optimizing over the full horizon
for real-time application in complex high-dimensional
task settings, such as closed-loop object manipulation.

ar
X

iv
:2

21
0.

04
06

7v
2

 [
cs

.R
O

]
 1

4
M

ar
 2

02
3

https://sites.google.com/oxfordrobotics.institute/vp-sto

II. RELATED WORK

In the context of closed-loop object manipulation with
MPC, successful approaches to producing reactive robot
behavior typically optimize in joint-space subject to kinody-
namic constraints. While Fishman et al. use gradient-based
MPC in order to find trajectories for human-robot handovers
[10], a very recent approach named STORM [9] employed
sampling-based MPC on robotic manipulation tasks. It is able
to generate particularly smooth trajectories via low discrep-
ancy action sampling, smooth interpolation and careful cost
function design. Moreover, the parallelizability of sampling-
based MPC is exploited by deploying the stochastic tensor
optimization framework on a GPU. However, in contrast to
our work, the approach relies on optimizing over a short
receding horizon.

In the realm of time-parametrization of trajectories, most
existing approaches fix the overall motion duration or do not
specify it at all. For instance, the majority of MPC-based
approaches only handle time implicitly via kinodynamic
constraints. While the works of [11], [12] progress the state
of the art in time-optimal MPC, their applicability to high-
dimensional robotic systems yet is limited. In the context
of motion planning, T-CHOMP [13] jointly optimizes a
trajectory and the corresponding via-point timings. Yet, the
total execution time is still fixed in advance. The way we
approach the minimization of the movement duration is most
similar to the work of [14]. However, in contrast to our
work, their approach optimizes via-points and their timing
separately.

III. PRELIMINARIES: TRAJECTORY REPRESENTATION

The way we represent trajectories is based on previous
work showing that the closed-form solution to the following
optimization problem

min
∫ 1

0

q′′(s)>q′′(s)ds

s.t. q(sn) = qn, n = 1, ..., N

q(0) = q0, q
′(0) = q′0, q(1) = qT , q

′(1) = q′T

(1)

is given by cubic splines [15] and that it can be formulated
as a weighted superposition of basis functions [16]. Hence,
the robot’s configuration is defined as q(s) = Φ(s)w ∈ RD,
with D being the number of degrees of freedom. The matrix
Φ(s) contains the basis functions which are weighted by
the vector w1. The trajectory is defined on the interval S =
[0, 1], while the time t maps to the phase variable s = t

T ∈ S
with T being the total duration of the trajectory. Conse-
quently, joint velocities and accelerations along the trajectory
are given by q̇(s) = 1

T Φ′(s)w and q̈(s) = 1
T 2 Φ′′(s)w,

respectively2. The basis function weights w include the
trajectory constraints consisting of the boundary condition
parameters wbc = [q>

0 , q
′>
0 , q

>
T , q

′>
T]

> and N via-points the

1A more detailed explanation of the basis functions and their derivation
can be found in the appendix of [16].

2We use the notation f ′(s) for derivatives w.r.t. s and the notation ḟ(s)
for derivatives w.r.t. t.

trajectory has to pass through qvia = [q>
1 , . . . , q

>
N]

> ∈ RDN ,
such that w = [q>

via,w
>
bc]

>. Throughout this paper, the via-
point timings sn are assumed to be uniformly distributed in
S. Note that boundary velocities map to boundary deriva-
tives w.r.t. s by multiplying them with the total duration
T , i.e., q′0 = T q̇0 and q′T = T q̇T . Furthermore, the
optimization problem in Eq. (1) minimizes not only the
objective q′′(s), but also the integral over accelerations, since
q′′(s) = T 2q̈(s) and thus the objective

∫ 1

0
q̈(s)>q̈(s)ds

directly maps to 1
T 4

∫ 1

0
q′′(s)>q′′(s)ds, corresponding to the

control effort. It is minimal iff the objective in Eq. (1) is
minimal. As a result, this trajectory representation provides
a linear mapping from via points, boundary conditions and
the movement duration to a time-continuous and smooth
trajectory.

In the remainder of the paper, we exploit this explicit
parameterization with via-points and boundary conditions by
optimizing only the via-points while keeping the predefined
boundary condition parameters fixed. Thus, we write the
computation of the trajectory as a superposition of a via-
point term and a boundary constraints term, i.e., q(s) =
Φvia(s)qvia + Φbc(s)wbc. The matrices Φvia(s) and Φbc(s)
are extracted from the basis function matrix Φ(s).

IV. VP-STO: VIA-POINT-BASED STOCHASTIC
TRAJECTORY OPTIMIZATION

In the following, we introduce our stochastic trajectory
optimization framework. The core idea is to find via-points
qvia such that the synthesized trajectory minimizes a task-
related objective, i.e.,

min
qvia

c [q(s), q̇(s), q̈(s), T] . (2)

Based on these via-points, we efficiently synthesize
high-quality trajectories, i.e., qvia → ξ with ξ =
{q(s), q̇(s), q̈(s), T}. We aim at synthesizing trajectories
that by-design minimize task-agnostic objectives, i.e., min-
imum time and smoothness, and satisfy task-agnostic con-
straints, i.e., equality constraints on the initial and final
state and inequality constraints on joint-space velocities and
accelerations. We employ stochastic black-box optimization,
namely Covariance Matrix Adaptation (CMA-ES) [5] to op-
timize for the via-points. As each trajectory constructed from
the sampled via-points already provides the optimal solution
to the optimization problem given in Eq. 1, the CMA-
ES optimization in the low-dimensional via-point space is
particularly fast, evaluating only high-quality trajectories.
Moreover, with CMA-ES we are not only able to quickly
converge to a local minimum, but to also leverage the
exploration aspect of the evolutionary strategy (ES). In
more detail, this nested optimization process, which is also
illustrated in Fig. 2, comprises the following steps. First,
a new population of M via-points qvia is sampled from a
Gaussian distribution N (µvia,Σvia). As qvia is a vector of
the stacked via-points, note that µvia ∈ RDN and Σvia ∈
RDN×DN . By taking M samples in this higher-dimensional
space, instead of M ·N samples for all via points separately

Fig. 2. An illustration of the via-point-based stochastic trajectory optimization loop. First, a new population of M via-points qvia is sampled from a
Gaussian distribution N (µvia,Σvia). Then, the sampled via-points are transformed into a population of candidate trajectories subject to kinodynamic limits.
Next, the resulting trajectories are ranked according to their cost evaluations. Last, the parameters of the Gaussian sampling distribution are updated via
CMA-ES using the cost rankings and the via-point sets themselves.

in the configuration space, we are able to sample M sets of
correlated via-points. Then, as described in detail in Sec. IV-
A, the sampled via-points are transformed into a population
of candidate trajectories that are evaluated according to cost
terms as outlined in Sec. IV-B. Finally, we use CMA-ES
in order to update the parameters µvia,Σvia of the Gaussian
distribution of via-points. This optimization setup enables us
to find a valid local minimum or even the global minimum
at rates sufficient for reactive robot behavior in closed-loop
manipulation tasks, as we demonstrate in our experiments
outlined in Section VI.

A. Synthesis of Kinodynamically Admissible Trajectories

In this section, we show how we translate the sampled
via-points qvia into kinodynamically admissible trajectories.
So far, the trajectory is implicitly given in phase space as
described in Sec. III. Given the via-points and the boundary
conditions q0, q̇0, qT , q̇T , the computation of the explicit
continuous trajectory only depends on the total movement
duration T . It is determined by the dynamic limits on
velocity q̇min, q̇max and acceleration q̈min, q̈max and is thus
given as the minimum positive duration such that the re-
sulting velocity and acceleration profiles satisfy the limits.
We find a sufficient approximation for T by solving the
above problem over a discrete set of K evaluation points
{sk}Kk=0, uniformly distributed in the continuous phase space
S. For each evaluation point there exists a closed-form
solution Tk(qvia) that is computationally cheap to evaluate.
We then pick the most conservative duration among the K
solutions for T , i.e., T (qvia) = maxk Tk(qvia), in order to
make sure that the velocity and acceleration constraints are
satisfied at all evaluation points. This procedure will result
in trajectories where either the velocity or the acceleration
profile reaches the limit in at least one evaluation point.
Finally, having determined T , we are able to explicitly
compute the kinodynamically admissible trajectory ξ.

B. Cost Evaluation

Given the sampled and synthesized population of trajec-
tories, we evaluate the performance, i.e., the cost c of each
trajectory, independently. The gradient-free optimizer allows
for sharp cost function profiles, e.g., trajectory constraints ex-
pressed through discontinuous barrier functions (cf. Sec. VI

for examples). We approximate c(ξ) by sampling the given
trajectory with a predefined resolution ∆s in the phase space
S and accumulating the costs at these K evaluation points.
In the time domain this can still map to varying resolutions
of individual trajectories, as ∆t = T∆s. Note that the
evaluation points at sk are not equivalent to the via-points at
sn, as depicted in Fig. 2. The resolution of sk can be higher
than that of sn in order to have a better approximation of the
trajectory cost while keeping the actual optimization variable
qvia low-dimensional.

V. ONLINE VP-STO (MPC)
In order to perform closed-loop control via continuous on-

line re-optimization, we embed the VP-STO framework into
an MPC algorithm. In this online setting, the main focus lies
on rapidly finding valid movements connecting the current
robot state q, q̇ with a goal state qT , q̇T and re-optimizing
them at a sufficient rate fmpc = 1

∆tmpc
. Algorithm 1 outlines a

single MPC step that, given the current robot state, attempts
to find an optimal full-horizon trajectory and to extract
a short-horizon reference to be tracked by a lower-level
impedance controller. The details of the algorithm will be
outlined in the remainder of this section.

In the online setting the number of via-points N used to
parameterize the trajectory plays an important role. A large
number of via-points can capture highly complex movements
and may find more optimal solutions. However, it also
implies a higher-dimensional decision space which increases
the computational complexity of the optimization loop. Con-
sequently, a particular focus within the MPC algorithm lies
on the selection of N .

A. No-Via-Point Trajectory for Stopping Behavior

VP-STO is based on optimizing the locations of a given
number of via-points. However, the trajectory synthesis,
described in Sec. IV-A, also works without any via-points,
i.e., N=0. The resulting trajectory connects the current robot
state and the desired state by a third-order polynomial that
minimizes the smoothness objective in Eq. (1) and satisfies
the kinodynamic limits. As this no-via-point trajectory is a
unique solution, it can not account for any other movement
objectives, e.g., to avoid collisions. Yet, the advantage is a
cheap-to-construct trajectory that has no stochasticity, which

Algorithm 1: Online VP-STO: i-th MPC Step
Input: q, q̇, qT , q̇T , q̇min, q̇max, q̈min, q̈max, ∆tmpc, Tstop
Output: Short-horizon reference qd(t), q̇d(t), q̈d(t)
toptimize ← 0
q0, q̇0 ← q, q̇
ξdirect ← synthesize() // V-A

if ξdirect is valid and ξdirect is shorter than Tstop then
ξ∗i ← ξdirect

else
if ξ∗i−1 is valid then

0µvia,
0Σvia, N ← warmStart

(
ξ∗i−1

)
// V-B

else
0µvia,

0Σvia, N ← exploreInit() // V-B

end
j ← 0
while toptimize < ∆tmpc do
{qvia}Mm=1 ← sample

(
jµvia,

jΣvia
)

// V-C

{ξ}Mm=1 ← synthesize
(
{qvia}Mm=1

)
// IV-A

{c}Mm=1 ← evaluate
(
{ξ}Mm=1

)
// IV-B

µj+1
via ,Σj+1

via ← sep-CMA-ES
(
{qvia, c}Mm=1

)
j ← j + 1

end
ξ∗i ← synthesize

(
µj

via

)
end
qd(t), q̇d(t), q̈d(t)← shortHorizon(ξ∗i) // V-D

is useful for driving the robot to the target configuration
and stopping with zero velocity. Therefore, at the beginning
of each optimization cycle, we first check if this simple
direct trajectory is valid, e.g., collision-free, and if the
corresponding duration of the movement is below the user-
defined threshold Tstop. By setting the threshold rather small,
we let the mechanism take over towards the final part of
the total trajectory to achieve robust stopping behavior for
reaching the goal. If the direct solution is not used, we
perform a VP-STO optimization cycle.

B. Initialization: Exploration vs. Warm-Starting

The use of an evolutionary optimization strategy, such as
CMA-ES, allows us to initialize the optimization not only
with an initial guess of the via-points µvia, but also to set
the corresponding initial variance Σvia as an estimate of how
certain we are about the initial solution. The initial variance
can thus be interpreted as an exploration parameter influenc-
ing how the very first population of candidate trajectories
will be sampled. Therefore, in each MPC step we use two
possible modes on how to initialize these parameters. The
effects of each mode on the resulting candidate trajectories
are shown in Fig. 3.

Exploration. If a MPC step was not successful in finding
a valid trajectory, the successive MPC step will be used
to explore a larger area of the trajectory space to ideally
discover a valid solution, as can be seen from the sampled
trajectories in the left of Fig. 3. We initialize the mean
solution µvia with a naive straight-line guess with high

Fig. 3. An illustration of the stochastic optimization process within the
proposed MPC algorithm. Left: In the exploration mode, trajectories are
sampled and synthesized with a large initial variance in order to discover
valid solutions. Right: If a valid solution is available from the previous MPC
step, we warm-start the optimization by shifting the solution and sampling
from a lower-variance initial distribution. All sampled trajectories are shown
in red. The initial guesses 0µvia of an MPC step are depicted by the black
solid lines, while the blue trajectories illustrate the mean solution 20µvia
after 20 optimization iterations.

uncertainty, i.e., large diagonal values of Σvia. The number
of via-points used to parameterize the trajectory is set to
N = Nmax. Nmax needs to be specified by the user and
depends on the complexity of the task, as well as on the
available computational resources.

Warm-Starting. If a valid solution was found in a MPC step,
we shift the solution forward in time and use it to warm-start
the mean µvia in the successive MPC step, potentially further
improving the current solution. In this case, we initialize
the covariance matrix Σvia with low values on the diagonal
as we are more certain about the proximity of the current
solution to a valid local minimum, as can be seen on the
right of Fig. 3. In order to determine the number of via-
points N for the successive MPC step, we use the movement
duration of the current solution as a proxy for how complex
the remainder of the movement will be. We therefore set N =
max(1,min(dαT e, Nmax)), where T is the total duration of
the current solution and α a user-defined scaling parameter.

C. Efficient Gaussian Sampling of Smooth Trajectories
through Covariance Matrix Decomposition

For the sake of computational efficiency and linear scal-
ability to high-DoF systems in our MPC solver, we use
a variant of CMA-ES that iterates on diagonal covariance
matrices instead of full covariance matrices, namely sep-
CMA-ES [17]. However, a diagonal covariance matrix does
not capture the correlations between the sampled via-points
that are important for sampling smooth trajectories. We
counteract this disadvantage by using a Cholesky factoriza-
tion of the covariance matrix, such that Σvia = LDL>,
where the diagonal matrix D = diag(σvia) is subject to
iterative optimization through sep-CMA-ES. This renders our
algorithm to a computational complexity of O(ND), with
N being the number of via-points and D the DoF of the
robot, instead of O((ND)2) in the case of the full covariance
matrix. The lower triangular matrix L is computed offline as
the Cholesky decomposition of a constant covariance matrix

Σsmooth = LL> =

(∫ 1

0

Φ′′via(s)
>Φ′′via(s)ds

)−1

, (3)

that is derived from a probability distribution of smooth
trajectories, i.e., psmooth(qvia,wbc) ∝ exp (−ceffort), with
ceffort = 1

2

∫ 1

0
q′′(s)>q′′(s)ds.

D. Impedance Control

At a lower control level, we deploy an impedance con-
troller that runs at a control rate of 1 kHz, which requires
a finely sampled reference trajectory. Due to our time-
continuous representation of the optimized trajectory, we can
sample configurations from it with arbitrarily small temporal
resolution. Each MPC step yields an optimized trajectory ξ∗i ,
from which we extract a position-, velocity- and acceleration-
reference enabling the robot to track the current movement
plan.

VI. EXPERIMENTS

We evaluate the effectiveness and performance of the
VP-STO framework in simulation, as well as in real-world
experiments with a Franka Emika robot arm.

A. Simulation

We begin by evaluating our framework in an offline
planning setting for a 2D point mass in a cluttered toy
environment adopted from [9]. In this experiment, we run
VP-STO (cf. Sec. IV) for 100 times with a straight-line
initialization. The left plot in Fig. 4 shows the resulting
100 trajectories after convergence. The majority of the found
solutions converged to 3 valid local optima, i.e., 28 solutions
to the red, 69 to the blue and one to the green trajectory. Only
2 runs produce a non-valid solution, shown in yellow. We
note here that gradient-based trajectory optimization methods
given the straight-line initial guess in such a challenging
environment would only converge to this non-valid local
optimum. Moreover, this also shows that the choice of
CMA-ES as a solver for our framework helps to converge
to the present local optima with negligible error, despite
the stochasticity in the sampling of the via-points. Last, the
corresponding velocity and acceleration profiles (only shown
for the valid solutions), depicted on the right of Fig. 4, reflect
the timing-optimal property of the generated trajectories.
After applying maximum acceleration at the start of the
movement, the robot moves at maximum speed within the
limits before it again applies the maximum acceleration to
stop at the goal. This implies that our framework generates
trajectories that not only respect the given dynamic limits,
but also exploits them in the spirit of timing-optimality.

For the online setting, as described in Sec. V, we compare
VP-STO to STORM [9], which we consider as state-of-the-
art in sampling-based MPC for producing reactive robot
behavior. Again using the scenario from above, we run 5
experiments in which we deploy VP-STO within the MPC-
algorithm (cf. Alg. 1). The resulting trajectories are shown
in blue in Fig. 5 alongside the 5 solutions in red generated
by STORM. It can be seen that STORM is not able to reach
the goal. Especially, due to the short-horizon optimization
scheme, the robot first follows the path with the shortest
distance towards the goal while not being able to anticipate

Fig. 4. Offline VP-STO. Left: The resulting trajectories from 100
experiment runs when initializing with a straight-line guess between the start
position (black circle) and the target position (black asterisk). The number
of convergence indicates how often VP-STO converged to the corresponding
color-coded solution. Right: The velocity and acceleration profiles for each
degree of freedom corresponding to the valid solutions on the left.

Fig. 5. Online VP-STO (MPC). Left: The trajectories taken by the robot
when deploying VP-STO in an MPC setting (blue), as opposed to using
STORM [9] (red). Right: The velocity and acceleration profiles for each
degree of freedom corresponding to the found solutions on the left.

moving around the obstacle early enough. Therefore, it gets
stuck in front of the obstacle. In contrast, Online VP-STO
produces solutions which allow the robot to smoothly navi-
gate to the goal, while exploiting its velocity and acceleration
limits. The given setting and experiment emphasizes the
advantage of our efficient formulation which allows us to
always optimize over the full horizon.

B. Real-World Experiments

We demonstrate VP-STO on a real robot using the ma-
nipulation scenarios in Fig. 1: a pick-and-place and a box
pushing task. We increase the complexity of both scenarios
by disturbing the robot and the target objects. This requires
a fast feedback loop provided by Online VP-STO.

Setup. Both experiments are performed on a Franka Emika
robot arm. The framework was run on Ubuntu 20.04 with
an Intel Core i7-8700 CPU@3.2GHz and 16GB of RAM.
The poses of the objects were tracked with a Vicon motion
capture system and post-processed with an extended Kalman
filter. The MPC steps are executed at a fixed control rate
(specified below). In a single MPC step, we run optimization
iterations until the next MPC step starts.

a) Pick-and-Place: First, we consider a pick-and-place
scenario under human intervention. The robot’s task is to
grasp a pin, i.e., the picking phase, and to place it in an up-
right position in a given target location in the workspace, i.e.,
the placing phase. In the picking phase, the pin can be either
handed over to the robot in arbitrary poses or the robot needs
to pick it up from the table. This phase requires real-time
collision avoidance in narrow configuration passages, i.e., the
robot has to avoid collisions between its hand, including the

fingers, and the pin while reaching a configuration where the
hand encloses the pin. For the grasp pose, we run a separate
pose optimization process in parallel to VP-STO, providing
the final robot configuration qT . After a successful grasp, the
robot continues with the placing phase. The challenge here
is that the pin might still move within the gripper due to its
own weight or due to interference from a user. Consequently,
feedback of the current pin pose is needed to avoid collisions
between the pin and the environment and to correctly place
the pin. We parameterize the sampled trajectories with a
maximum number of via-points Nmax=4 and α=2. VP-STO
replans with a rate of 12.5 Hz.

b) Box Pushing: In the second scenario, we address
the task of planning and control through physical contacts,
i.e., the robot is supposed to push a box towards a moving
target position. Such a task requires the robot to deliberately
make and break contacts, which is subject to discontinuous
cost-landscapes. Here, we exploit the presented trajectory
parameterization by setting the final robot configuration qT
of each MPC step such that the end-effector moves towards
the center of the box. This enforces all sampled candidate
trajectories to make contact with the box. The point of
contact and the resulting dynamics of the box depends on
the location of the via-points which are subject to minimizing
the distance between the box position and the target.For the
sake of fast simulations of the contact dynamics, we use a
quasi-dynamic model for the box dynamics parallel to the
table surface. VP-STO is executed with a constant number
of via-points N=3 at a control rate of 20 Hz.

Cost Terms. We begin with the task-agnostic terms and
conclude with more task-specific terms.

Movement Duration: The movement duration is used
explicitly as part of the cost function in order to minimize
the time needed for the remaining robot movement.

Smoothness: In order to optimize not only for fast,
but also efficient movements, we use the same metric as
in Eq. (1) as the smoothness cost term.

Joint Limit Avoidance: For keeping the robot configura-
tion inside the joint angle limits, we deploy a discontinuous
metric that accounts for joint limit violations, i.e.,

cjla(q) =

1 + q − qmax, if q ≥ qmax

1 + qmin − q, if q ≤ qmin

0, otherwise
. (4)

We consider a trajectory to be invalid if it results in a joint
limit violation, i.e., q ≥ qmax or q ≤ qmin.

Collision Avoidance: In order to efficiently evaluate the
validity of a trajectory regarding collisions between the robot
and the environment, we perform binary collision checks
for each configuration evaluated along the trajectory, instead
of computing a distance between two geometries. Thus, the
collision cost for a single trajectory is equal to the number of
evaluation points that are in collision. Similarly to the joint
limit avoidance cost, we consider a trajectory to be invalid
if it results in a collision.

Pushing Progress: In the case of a pushing task, we
further require a cost term that rewards trajectories which
let the robot move the box closer to the current desired
target xdes

box. We evaluate the pushing progress of a single
trajectory by first simulating the contact dynamics that result
in a trajectory of the box xbox(t); and then computing the box
position error at the beginning ebox,0 = ||xbox(0) − xdes

box||22
and at the end ebox,T = ||xbox(T) − xdes

box||22 of the robot
movement. The final pushing progress cost is given by
cpush(ξ) = exp(ebox,T − ebox,0). Additionally, we consider
trajectories that move the box away from the target, i.e.,
ebox,T ≥ ebox,0, to be invalid. In that case, the exploration
mode in the next MPC step (cf. Sec. V-B) is triggered.

Results. First, we note that throughout the experiments, the
robot did not collide with any objects in the workspace and
did not violate the joint limits. When the experimenter per-
turbs the robot, i.e., disturbing it through physical interaction
or pulling the pin out of the gripper, the robot is compliant
and adapts its motion. In the pick-and-place scenario, it
robustly picked up the pin from various locations in the
workspace, including handovers by the experimenter; and
placed it at the desired target location in all runs. In the
box pushing scenario, the robot manages to find pushing
motions from arbitrary configurations and box locations and
to eventually push the box into the target. We note, however,
that some changes of the target location resulted in the robot
not finding a valid pushing motion quickly enough, which in
turn made the robot push the box out of the workspace. This
could only be recovered by the experimenter. Recordings of
the experiments and additional material can be found in the
accompanying video to this paper and on the dedicated web-
site https://sites.google.com/oxfordrobotics.institute/vp-sto.

VII. CONCLUSION

We presented a motion optimization framework that is able
to generate reactive and yet smooth and efficient robot be-
havior for complex high-dimensional robot tasks. In contrast
to standard trajectory optimization techniques, sampling-
based and gradient-based, our framework outputs trajectories
which not only optimize over space but also time. Moreover,
due to the full-horizon optimization in an MPC-setting, it
is particularly suitable for closed-loop manipulation tasks
that demand for continuous re-planning and feedback. We
successfully demonstrate this in two real-world experiments
on a Franka Emika robot arm, i.e., a pick-and-place and a
box-pushing scenario.

We wish to extend and improve our work by considering
the following points. First, the number via-points to sample
yet is subject to heuristic tuning. In general, with increasing
movement complexity more via-points are needed at the
cost of higher computational complexity. Future work should
make the selection of this hyper-parameter more intuitive.
And second, we would like to further increase the robustness
of VP-STO by considering uncertainties in the interaction
between the robot and its environment. This includes to
explore stochastic roll-outs in the cost evaluation.

https://sites.google.com/oxfordrobotics.institute/vp-sto

REFERENCES

[1] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[2] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[3] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2011, pp. 4569–4574.

[4] R. Y. Rubinstein, “The Cross-Entropy Method for Combinatorial and
Continuous Optimization,” Methodology and Computing in Applied
Probability, vol. 1, no. 2, pp. 127–190, 1999.

[5] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[6] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017.

[7] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1433–1440.

[8] M. Bangura and R. Mahony, “Real-time Model Predictive Control for
Quadrotors,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11 773–
11 780, 2014.

[9] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. Ratliff, D. Fox,
F. Ramos, and B. Boots, “STORM: An Integrated Framework for Fast
Joint-Space Model-Predictive Control for Reactive Manipulation,” in
Conference on Robot Learning (CoRL), 2022, pp. 750–759.

[10] A. Fishman, C. Paxton, W. Yang, D. Fox, B. Boots, and N. Ratliff,
“Collaborative interaction models for optimized human-robot team-
work,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 11 221–11 228.

[11] L. Van den Broeck, M. Diehl, and J. Swevers, “Model predictive con-
trol for time-optimal point-to-point motion control,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 2458–2463, 2011.

[12] C. Rosmann, A. Makarow, F. Hoffmann, and T. Bertram, “Time-
Optimal nonlinear model predictive control with minimal control
interventions,” in Proc. IEEE Conference on Control Technology and
Applications (CCTA), 2017, pp. 19–24.

[13] A. Byravan, B. Boots, S. S. Srinivasa, and D. Fox, “Space-time
functional gradient optimization for motion planning,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), 2014,
pp. 6499–6506.

[14] M. Toussaint, J. Harris, J.-S. Ha, D. Driess, and W. Hönig, “Sequence-
of-Constraints MPC: Reactive Timing-Optimal Control of Sequential
Manipulation,” arXiv preprint arXiv:2203.05390, 2022.

[15] Z. Zhang, J. Tomlinson, and C. Martin, “Splines and linear control
theory,” Acta Math. Appl, vol. 49, pp. 1–34, 1997.

[16] J. Jankowski, M. Racca, and S. Calinon, “From Key Positions to
Optimal Basis Functions for Probabilistic Adaptive Control,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 3242–3249, 2022.

[17] R. Ros and N. Hansen, “A simple modification in cma-es achieving
linear time and space complexity,” in International conference on
parallel problem solving from nature. Springer, 2008, pp. 296–305.

APPENDIX

A. Efficient Gaussian Sampling of Smooth Trajectories
through Covariance Matrix Decomposition (Extended)

In the proposed MPC algorithm, the number of optimiza-
tion iterations ran in a single step is limited by the desired
control rate and the computational resources. We have identi-
fied two modifications of the algorithm that drastically reduce
the cost of the mean trajectory after a given optimization time
budget.

First, we replace the standard CMA-ES optimization by
sep-CMA-ES, a variant that iterates only on diagonal co-
variance matrices. This improves the computational com-
plexity from O(N2D2) (CMA-ES) to O(ND) (sep-CMA-
ES), meaning that the computational load of sampling from
and updating the covariance matrix scale linearly with the
number of via-points N and the DoF D of the robot.

Second, instead of initializing the covariance matrix Σvia

with an identity matrix scaled by a single scalar, we start the
optimization with a covariance matrix that captures smooth-
ness correlations between via-points. This modification can
be justified by a probabilistic view on stochastic optimiza-
tion problems, i.e., rather than minimizing the expected
cost c(qvia) as in (2), we aim at maximizing a probability
p(qvia) ∝ e−c(qvia). It is easy to show that both optimization
problems have equivalent optima. In fact, CMA-ES attempts
to locally approximate the generally intractable probability
distribution p(qvia) by a Gaussian distribution in each iter-
ation. If the trajectory cost is given as a sum of multiple
objectives, i.e., c(qvia) =

∑
i ci(qvia), the corresponding

probability distribution can be written as a product of mul-
tiple probability distributions, i.e., p(qvia) ∝

∏
i e
−ci(qvia). A

smoothness metric is typically part of the cost function, in
our case we use

csmooth(qvia) =
1

2

∫ 1

0

q′′(s)>q′′(s)ds

=
1

2
w>

∫ 1

0

Φ′′(s)>Φ′′(s)dsw.

(5)

Since w = [q>
via,w

>
bc]

>, the smoothness cost term can be
exactly represented by a Gaussian distribution, i.e.,

psmooth(qvia,wbc) = N
(

0,

∫ 1

0

Φ′′(s)>Φ′′(s)ds

)
. (6)

We condition the joint distribution on the given bound-
ary constraints to obtain the corresponding distribution of
the via-points psmooth(qvia|wbc) = N (µvia, smooth,Σvia, smooth)
with

µvia, smooth = Σvia, smooth

∫ 1

0

Φ′′via(s)
>Φ′′bc(s)ds wbc

Σvia, smooth =

(∫ 1

0

Φ′′via(s)
>Φ′′via(s)ds

)−1

.

(7)

By initializing the covariance matrix with Σvia, smooth, the
very first population of via-points that is evaluated in an
optimization loop is consequently sampled from psmooth. This

can be interpreted as an informed warm-starting of the
covariance matrix in a CMA-ES loop.

In order to integrate the off-diagonal structure of
Σvia, smooth with the diagonal covariance matrix diag(σvia)
that is updated by sep-CMA-ES, we assemble the final
covariance matrix by a Cholesky factorization, i.e., Σvia =
Ldiag(σvia)L>. The off-diagonal structure is imposed by
the lower triangular matrix L that is given by the Cholesky
decomposition of the smoothness covariance, such that
Σvia, smooth = LL>.

B. Ablation Studies

In the paper, we present design choices that we want to
further justify via ablation studies.

1) Impact of the Number of Via-points: In this ablation
study, we investigate the impact of the number of via-points
used to represent the robot movement. This hyper-parameter
has a high impact on the overall framework performance.
On one hand, it directly sets the dimensionality of the
optimization problem to solve; on the other hand, it directly
spans the space of movements that can be synthesized. From
an optimization perspective, tuning the number of via-points
gives us an intuitive way of increasing/decreasing resources
on an optimization result with a decreasing/increasing cost.
We illustrate this relationship in Fig. 6, where we let a 1D
double-integrator move from q0 = 0.0, q̇0 = 0.0 to qT = 1.0,
q̇T = 0.0 in minimal time, subject to a maximum velocity
|q̇| < 0.1 and an acceleration limit |q̈| < 0.2; with a varying
number of via-points. This time-optimal control problem is
known to be solved by a bang-bang acceleration profile,
such that we know the analytic limit of the minimal time
to be cbang-bang = Tbang-bang = 10.5, which is depicted as
dashed black line in the upper-left plot. We observe that
the solution cost exponentially converges to cbang-bang as we
increase the number of via-points. The lower-left plot shows
the number of CMA-ES-iterations required to converge as
a function of the number of via-points. Here, we detect
convergence if |ck − ck−1| < 10−6 in the k-th iteration.
Interestingly, the number of iterations grows linearly with
the number of via-points. Note that this does not mean that
the computational cost grows linearly with the number of
via-points, since the computational cost for a single iteration
is either linear (sep-CMA-ES) or quadratic (CMA-ES) in the
number of via-points. Nevertheless, those results motivate to
use a low number of via-points as with a growing number
of via-points, the benefit of adding a via-point is not worth
the extra computational cost.

2) Impact of the Cholesky Factorization of the Covariance
Matrix: In this ablation study, we look at a 2D minimal-
time planning problem including an obstacle that is to be
avoided. We fix the number of via-points to N = 6 and
set up four different optimization loops that are supposed
to solve the same problem. Each setup uses either CMA-
ES or sep-CMA-ES and runs with or without the Cholesky
factorization of the covariance matrix as described in Sec. V-
C. For comparison, we look at the cost evolution over the
number of iterations. The dashed black line in all plots

Fig. 6. A study of the impact of the number of via-points in a 1D time-optimization problem. Top-Left: Impact on the resulting movement duration. The
dotted black line illustrates the duration of the optimal bang-bang solution. Bottom-Left: Impact on the number of iterations required until convergence.
Right: Velocity and acceleration profiles for evaluated numbers of via-points.

Fig. 7. A study of the impact of the Cholesky factorization of the Covariance Matrix Σvia in a 2D time-optimization problem with obstacle avoidance.
Left: The configuration space including the obstacle in gray, the initial guess as dashed line, and the optimal solution around the obstacle as solid line
together with the corresponding via-points as circles. Center: The via-point covariance matrix is explicitly updated, i.e., Σvia = ΣCMA. Right: The
via-point covariance matrix is updated through a Cholesky factorization, i.e., Σvia = LΣCMAL

>. Top: sep-CMA-ES iterates on diagonal covariance
matrices only, i.e., ΣCMA = diag(σCMA), with linear computational complexity O (ND). Bottom: CMA-ES iterates on full covariance matrices ΣCMA

with quadratic computational complexity O
(
N2D2

)
.

(except for the left-hand plot) indicates the minimum cost
measured in any experiment. Note also the jump in all the
cost profiles from ≈ 103 − 104 to ≈ 100 − 101, which
reflects if the updated solution is collision-free. We observe
that the choice of CMA-ES vs. sep-CMA-ES does not have
a substantial impact on the cost evolution for this particular
problem, indicating that it is justified to use sep-CMA-ES
with linear complexity. However, we observe a substantial
impact when using the presented Cholesky factorization,
imposing smoothness on the candidate trajectories. In all
experiments using the Cholesky factorization, it converged
to a collision-free solution after 3 iterations at maximum.
This is an especially important result justifying the use of
the Cholesky factorization inside the MPC loop, as the real-
time requirements limit the number of iterations.

	I Introduction
	II Related Work
	III Preliminaries: Trajectory Representation
	IV VP-Sto: Via-Point-based Stochastic Trajectory Optimization
	IV-A Synthesis of Kinodynamically Admissible Trajectories
	IV-B Cost Evaluation

	V Online VP-STO (MPC)
	V-A No-Via-Point Trajectory for Stopping Behavior
	V-B Initialization: Exploration vs. Warm-Starting
	V-C Efficient Gaussian Sampling of Smooth Trajectories through Covariance Matrix Decomposition
	V-D Impedance Control

	VI Experiments
	VI-A Simulation
	VI-B Real-World Experiments

	VII Conclusion
	References
	VII-A Efficient Gaussian Sampling of Smooth Trajectories through Covariance Matrix Decomposition (Extended)
	VII-B Ablation Studies
	VII-B.1 Impact of the Number of Via-points
	VII-B.2 Impact of the Cholesky Factorization of the Covariance Matrix

