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Probabilistic Adaptive Control for
Robust Behavior Imitation

Julius Jankowski, Hakan Girgin and Sylvain Calinon

Abstract—In the context of learning from demonstration (LfD),
trajectory policy representations such as probabilistic movement
primitives (ProMPs) allow for rich modeling of demonstrated
skills. To reproduce a learned skill with a real robot, a feedback
controller is required to cope with perturbations and to react
to dynamic changes in the environment. In this paper, we
propose a generalized probabilistic control approach that merges
the probabilistic modeling of the demonstrated movements and
the feedback control action for reproducing the demonstrated
behavior. We show that our controller can be easily employed,
outperforming both original controller and a controller with
constant feedback gains. Furthermore, we show that the pro-
posed approach is able to solve dynamically changing tasks by
modeling the demonstrated behavior as Gaussian mixtures and
by introducing context variables. We demonstrate the capability
of the approach with experiments in simulation and by teaching
a 7-axis Franka Emika Panda robot to drop a ball into a moving
box with only few demonstrations.

Index Terms—Imitation Learning; Machine Learning for
Robot Control; Robust/Adaptive Control

I. INTRODUCTION

TRADITIONAL methods in robot programming require
significant engineering expertise. Learning from demon-

stration (LfD) is a research field that overcomes these difficul-
ties by teaching adaptive behaviors to robots via demonstra-
tions. As a broad view, LfD approaches use demonstrations
to learn the underlying control objectives (known as inverse
optimal control (IOC)) or directly learn the policies that imitate
the demonstrated behaviors. Although IOC methods are, in
theory, able to achieve a more generalized reproduction of the
demonstrations, in practice, they are most often limited by
the reparametrization of the objective function and the time
required for learning these parameters. For this reason, in LfD,
learning the control/trajectory policies is often investigated as
they are more flexible and easy to learn [1].

The objective of policy learning algorithms is to capture im-
portant characteristics of the demonstrations such as variations
and multimodality in order to robustly reproduce the learned
skill in novel environments. For that, demonstrated skills can
be represented as a probability distribution in the state space
[2], [3] and additionally in task-parameterized state spaces [4].
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Fig. 1. The considered task for the robot is to drop a ball into a moving box
using LfD. The robot starts from the pose illustrated by the picture in the
lower-left corner.

To capture correlations along the time horizon, [5] proposes
to represent skills as a distribution in the parameter space of
parameterized trajectories. To avoid the necessity of a known
dynamic model of the robot, [6] proposes to additionally
include the control action that has been applied during the
demonstration. In [7], demonstrated skills are modeled as the
result of linear second-order dynamics. These approaches have
later been extended to multimodality [8]–[11] and the realtime
adaptation to context variables [12], [13].

In this paper, we propose a probabilistic control approach
based on trajectory distributions. The proposed approach is
tested with ProMPs, but it also extends to other forms of
trajectory distributions if there is a linear relation between
the corresponding latent space and the trajectory space, see
[14] for a review. We show that the probabilistic control
formulation encodes a compromise between a robust trajectory
tracking controller and an imitation controller that adapts its
gains to the demonstrated variations of the movement. Our
contributions are three-fold:
• We propose a controller that outperforms the controller

presented in [5] in terms of robustness, which is necessary
for practical applications, while preserving the ability to
reproduce the demonstrated variations;

• We show that the approach can readily be extended to
exploit multiple modes in realtime;

• We develop a control formulation that can feed back
general context variables in realtime.

The structure of the paper is as follows. In Section II, we
review state-of-the-art work on controller design in ProMPs.
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In Section III, we present our control approach by deriving
control policies for the single-mode case III-B, the multimodal
case III-C, and for context adaptation III-D. In Section IV, we
compare the results to the controller in [5] and evaluate the
practical use of the presented approach in an experiment with
a 7-axis Franka Emika Panda robot. We conclude the paper
and discuss further work in Section V.

II. RELATED WORK

Paraschos et al. introduced the use of ProMPs to model
demonstrated trajectories in a compact and probabilistic way
[5]. The key characteristic of ProMPs is the parameterized
representation of trajectories by separating time-dependent
features Φ(t) and parameters w. For a given time t, the
corresponding position q(t) and velocity q̇(t) is encoded as

q(t) = Φ(t)w, q̇(t) = Φ̇(t)w. (1)

To track the trajectory distribution encoded by the learned
probabilistic model p(w) ∼ N (µw,Σw), Paraschos et al.
derive a time-varying feedback controller by matching the
rolled-out closed-loop system dynamics with the robot state
distribution of the ProMP model. Therefore, the system dy-
namics are linearized, while assuming perfect knowledge of
the system dynamics. Thus, unmodeled perturbations may lead
to strong deviations from the expected behavior. Furthermore,
they do not show how their controller can be extended to the
multimodal case or to dynamically changing context variables.
In the following, we refer to their controller as original
controller, which is used as a baseline to benchmark our
proposed controller.

More recently, Paraschos et al. proposed to learn a joint
distribution of the motion trajectory and the recorded control
action along the trajectory [6]. The controller is derived by
conditioning the control action distribution on the current robot
position and velocity to obtain a control policy distribution.
They propose to stabilize the controlled system by adding
linear feedback terms to let the robot converge back to the
mean of the trajectory distribution only if the robot is ’far’
from the demonstrated region in the state space. This approach
does not require the knowledge of the system dynamics.
However, it is limited to the collection of demonstrations
only through teleoperation, e.g. by capturing the motion of
a human demonstrator and executing the motion on the robot
in realtime, to be able to record the control actions.

Ewerton et al. [8] propose to model multiple modes for a
single task or multiple tasks by using a mixture of ProMP
models. They propose to select a particular mode in advance
of the execution based on the context of the task. This strategy
does not allow the robot to adapt to changes in the environment
and to choose another mode on-the-fly.

Ewerton et al. [12] tackle the problem of dynamic environ-
ment states, e.g. moving obstacle, by learning the parameters
of a Gaussian process that outputs a ProMP distribution in
realtime based on the current state of the environment. The
underlying robot controller tracks the mean of the resulting
ProMP distribution with constant feedback gains. To achieve
a good extrapolation of ProMP distribution parameters with
the Gaussian process, they pre-solve the task in simulation

by designing objective functions and optimizing a trajectory
for several random environment states. Although they show a
successful realtime adaptation to dynamic environments, their
approach requires the design of an objective function that
encodes the solution of the task.

III. CONTROL FORMULATION AND ANALYSIS

The rigid-body dynamics of a robot manipulator with n
degrees of freedom is described as

M(q)q̈ +C(q, q̇)q̇ + g(q) = u+ τext, (2)

where q, q̇, q̈ are the joint positions, velocities and accel-
erations, respectively. The inertia matrix M(q) ∈ Rn×n,
the Coriolis and centrifugal matrix C(q, q̇) ∈ Rn×n and
the gravitational term g(q) ∈ Rn are the state-dependent
parameters of the dynamics model, with state represented by
y=[q>, q̇>]

>. The torque-control action u ∈ Rn and the
external torques τext ∈ Rn acting on the robot form the input
to the intrinsic robot dynamics.

The objective of this section is to find a time-dependent
feedback controller u, that enables the closed-loop system
to robustly and reactively imitate demonstrated behavior at
a kinematic level. Each demonstration k contains the robot’s
position and velocity trajectories {qkt , q̇kt }Tt=1 with a time
horizon T , and some optional context variables sk describing
the information that affects the whole trajectory, such as
environment properties (e.g. size of objects). We denote the
demonstration set as D =

{
{qkt , q̇kt }Tt=1, sk

}K
k=1

where K
denotes the number of demonstrations.

Oftentimes, demonstrated tasks can be captured more ef-
ficiently by recording the Cartesian space trajectories of the
end-effector of a manipulator instead of the joint space trajec-
tories. This requires the formulation of the controller in the
corresponding space. Since the mathematical structure of the
system dynamics in the Cartesian space is similar to the joint
space formulation, the following derivations and analyses are
also applicable to the Cartesian case. We provide the Cartesian
space dynamics in the Appendix.

We denote w as the weight vectors whose elements can be
interpreted as activations of time-dependent trajectory features
Φ(t). These trajectory features are often designed as radial
basis functions with centers equally distributed in time and
bandwidth selected manually to capture the demonstration
data. Other forms of basis functions such as Bernstein poly-
nomials or Fourier series can also be used within the ProMP
framework [15], [16].

In this paper, we do not set focus on the algorithms that
learn a probability distribution p(w|D) for the weight vectors
w from the demonstration data D. Instead, we refer to the
previous work on ProMPs [5], [17] where these algorithms
have been presented.

Next, we derive the proposed controller in Section III-A,
that we present for a single mode (Section III-B), for multiple
modes (Section III-C), and for multiple modes with a context
variable (Section III-D). Each case can be considered a more
general representation of the previous ones, with the context-
based multimodal case representing the main result of this
paper.
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In all sections, we compare in simulated experiments the
proposed controller with the original controller and a controller
with constant feedback gains. Therefore, we measure the Effort
during a rollout as Cu =

∫
u>u dt and we measure the

Tracking Error as Ce = −
∫
log(p(q, q̇|D, s)dt.

A. Formulation of the Controller

As an underlying control structure, we propose to use a
compliant controller

u = −K(q − qd)−D(q̇ − q̇d) +Mq̈d +Cq̇d + g, (3)

that enables a robot with the dynamics in (2) to track a ref-
erence trajectory {qd=Φ(t)w, q̇d=Φ̇(t)w, q̈d=Φ̈(t)w}Tt=1

with the user-defined positive definite feedback gains K,D ∈
Rn×n. Note that for a stationary w, the closed-loop system
controlled by this controller is known to be asymptotically
stable as pointed out in III-B1. The resulting closed-loop
dynamics are linear in the trajectory weightsw, which can also
be interpreted as a latent auxiliary control input. In contrast to
the original control formulation, this avoids the necessity of
linearizing the passive system dynamics in (2) and introduces
a stabilizing feedback structure.

As in [5], we model the weight vector w as a random
variable that correlates with the demonstrations D and the
current robot state y. Thus, we find a probabilistic imitation
controller by marginalizing over the weight vectors with

p(u|y,D) =

∫
w

p(u|y,w)p(w|y,D)dw. (4)

Paraschos et al. derive their controller in a similar fashion
[6], however, we propose to exploit the compliant control
structure in (3) instead of learning a joint distribution of
robot states and control actions. The probability distribution
p(u|y,w) focuses all the probability mass at the deterministic
controller given in (3). Hence, the probability distribution can
be written as a Dirac function, such that

p(u|y,w) = δ(Aw + b), (5)

with A =KΦ + (C +D)Φ̇ +MΦ̈,

b = −Kq −Dq̇ + g.

It can be seen that the nonlinear feedback controller is linear
w.r.t. the weight vector w, which results in tractable control
distributions.

The conditional distribution p(w|y,D) of the weight vec-
tors can be reformulated by Bayes’ theorem

p(w|y,D) ∝ p(y|w)p(w|D), (6)

such that the learned ProMP model p(w|D) evolves from
the formulation of a probabilistic imitation controller. We
complete the probabilistic model in (6) by letting the robot
state y be correlated with the current weight vector by using
a linear Gaussian model p(y|w)=N (Φw,Σq)N (Φ̇w,Σq̇).
Here, the covariance matrices Σq and Σq̇ can be understood
as a tracking tolerance for the controller w.r.t. a given weight
vector w. Within the following section, we show that the
design of these tolerances plays an important role in finding a
compromise between a robust controller and a controller with

time-varying feedback gains that imitates the variations of the
motion.

B. Single Mode

For simple tasks, e.g. reaching tasks in non-cluttered envi-
ronments, it is sufficient to learn a single Gaussian distribution
of weight vectors w to model the demonstrated movement.
In these cases, as also investigated in the original work
[5], the learned distribution of weight vectors is given by
p(w|D) = N (µw,Σw). As a result, the distribution in (6)
can be computed closed-form as

p(w|y,D) = N (µw|y,Σw|y), (7)

where the conditional mean µw|y depends on time and the
robot state.

Since the result is a Gaussian distribution, the solution of the
integral in (4) becomes analytically tractable. Hence, we obtain
a state and time-dependent Gaussian distribution of feedback
control actions that are conditioned on the demonstrations,
namely

p(u|y,D) = N (Aµw|y + b, AΣw|yA
>), (8)

with A and b given by (5). Obtaining a Gaussian distribution
of control actions can be exploited by a product of experts
scheme in order to blend multiple complementary probabilistic
controllers, as shown in [18], [19]. However, in this paper,
we focus on the imitation performance when using the most
likely control action that is given by the mean of the control
distribution

µu = −K̃(q −Φµw)− D̃(q̇ − Φ̇µw)+

MΦ̈µw +CΦ̇µw + g. (9)

The feedback gain matrices are given by

K̃ =K −AΣw|yΦ>Σ−1q ,

D̃ =D −AΣw|yΦ̇>Σ−1q̇ .
(10)

This shows that the resulting controller has time-varying
feedback gains that depend on the variations of the demonstra-
tions. To understand the behavior of the closed-loop system
controlled by the proposed controller, we analyze two limit
cases of designing the tracking tolerances Σq and Σq̇ . The
first case in Section III-B1 shows that setting infinitely large
tolerances corresponds to a provably asymptotically stable
controller that tracks the mean of the demonstrated trajectories.
The second case in Section III-B2 shows that setting close to
zero tolerances corresponds to a reproduction of the demon-
strated variations of the trajectory distribution in the absence
of perturbations.

1) Infinitely Large Tolerance - Asymptotic Stability: In
the limit case of infinitely high eigenvalues for the tracking
tolerances Σq and Σq̇ , the feedback gains in (10) become
equal to K and D, respectively. As a result, the controller
tracks the mean of the demonstrated movements with constant



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

feedback gains. It can be shown that the corresponding closed-
loop system is asymptotically stable by proving that the
candidate Lyapunov function

S = 1
2 (q −Φµw)>K(q −Φµw)+

1
2 (q̇ − Φ̇µw)>M(q̇ − Φ̇µw) (11)

satisfies the necessary conditions {S ≥ 0, Ṡ ≤ 0, ∀y}.
However, it can be seen that the resulting controller does not
depend on the learned weight vector covariance Σw, which
encodes the variations of the demonstrated behavior. Thus,
this controller is neither able to reproduce nor exploit these
variations.

2) Infinitely Small Tolerance - Matching the Distribution:
In the other limit case of close to zero eigenvalues for the
tracking tolerances Σq and Σq̇ , we observe that the proposed
controller becomes similar to the controller that was proposed
in [5]. Note that this analysis only holds for linear system
dynamics, e.g. a virtual point mass, where M does not depend
on the system state,C=0 and g=0. For this case, the proposed
controller simplifies to

µu =MΦ̈ΣwΨ>(ΨΣwΨ>)−1(y −Ψµw) +MΦ̈µw,
(12)

where Ψ=[Φ>, Φ̇>]
>

is the stacked feature matrix. It can be
observed that the proportional and differential feedback terms
including K and D vanished from the proposed controller
because of Φµw|y=q and Φ̇µw|y=q̇ in the case of infinitely
small tolerance eigenvalues. The vanishing of those feedback
terms is expected to reduce the robustness of the closed-loop
system against perturbations. The derivation of this result is
given in the appendix.

The controller in [5] has been derived by matching the
closed-loop system dynamics with the learned evolution of
the demonstrated movements. For the case of a virtual point
mass with a force-control interface, it is given by

µu,orig =MΦ̈ΣwΨ>(ΨΣwΨ>)−1(y−Ψµw)+MΦ̈µw

− 1

2
[0,M ]Σs(ΨΣwΨ>)−1(y −Ψµw), (13)

where the first two terms are equal to the proposed controller in
(12). We assume that the eigenvalues of the matrix Σs, which
is derived from the cross-correlation between two consecutive
time steps, converge to zero as the duration of the time
step tends towards zero. Thus, we assume that the third
term is negligible for standard control frequencies of 1 kHz.
Consequently, for infinitely small tolerance eigenvalues, we
find µu ≈ µu,orig.

The analysis of the two limit cases shows that the proposed
controller encodes a compromise between a robust tracking
of the demonstrated mean trajectory and a reproduction of
the demonstrated variations. This compromise is designed by
selecting the tracking tolerances Σq and Σq̇ .

We validate our analysis and the underlying assumptions
in Fig. 2 by simulating the proposed controller, the original
formulation and a controller with constant feedback gains as
in III-B1 (Stiff ) in a single-mode drawing task. The left plot
shows that the proposed controller with close-to-zero toler-
ances and the original controller result in a similar behavior

Fig. 2. Drawing task for a 2D point mass. The parameters of the proposed
controller are set to Σq=σqI , Σq̇=σq̇I , K=500I and D=3

√
500I . The

original controller and the proposed controller produce the same behavior
if the tolerance of tracking the probabilistic model is set close to zero (left
plot). For the tolerances σq=10−5 and σq̇=10−3, the proposed controller
adds stabilizing feedback terms. This results in a probabilistic feedback control
that is robust to perturbations (right plot).

TABLE I
METRIC-BASED COMPARISON FOR THE DRAWING TASK (FIG. 2).

Method and Scenario Effort Tracking Error KL-Div.
Original, no pert. 5.5 0.91 85.0
Proposed (a), no pert. 5.5 0.91 85.1
Proposed (b), no pert.1 4.35 0.75 197.6
Stiff, no pert.1 3.52 0.72 770.2
Original, perturbed 17.9 6.39 40.4
Proposed (a), perturbed1 17.9 6.39 40.4
Proposed (b), perturbed 5.99 1.25 40.2
Stiff, perturbed1 4.23 1.09 270.5

as derived in III-B2. The plot on the right side illustrates the
trajectories when there is a random force τext ∼ N (0, 10I)
perturbing the system and the tolerances are set to σq=10−5

and σq̇=10−3. The proposed controller shows higher robust-
ness to the perturbations than the original controller. Table I
shows the evaluated controller metrics for the perturbed and
unperturbed case. The proposed controller is evaluated using
two instances with tolerances set to σq=10−9, σq̇=10−9 (a)
and σq=10−5, σq̇=10−3 (b), respectively. In terms of the
effort and the tracking error, the stiff controller shows the
best performance for this single-mode tracking task. However,
the evaluation of the Kullback-Leibler divergence between
the demonstrations and each set of rollouts reflects that the
stiff controller does not take the stochastic distribution of the
demonstrations into account.

C. Multiple Modes

For more complicated tasks, it can be desirable to use a
more expressive model for the distribution of trajectory weight
vectors in order to capture multiple modes. One way to do so
is to use a mixture of Gaussians that is a weighted sum of N
Gaussian components

p(w|D) =

N∑
n=1

πnN (µnw,Σ
n
w), (14)

where πn is the mixing coefficient.The conditional distribution
of a Gaussian mixture model is itself a Gaussian mixture
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Fig. 3. Multiple-mode navigation task for a 2D point mass. The parameters
of the proposed controller are set to Σq=10−5I , Σq̇=10−3I , K=100I
and D=3

√
100I . The dashed trajectories show the behavior of the original

controller (red) and the proposed controller (blue) without perturbations. The
solid trajectories show the result of all controllers under the impact of an
external force fext that pushes the point mass in positive q2-direction for 0.1
seconds.

model given by

p(w|y,D) =
N∑
n=1

γn(y)N (µnw|y,Σ
n
w|y), (15)

where N (µnw|y,Σ
n
w|y) is the conditional distribution of the

n-th component and is computed in the same way as (7). The
new mixing coefficients are given by

γn(y) =
πnpn(y|D)∑N
l=1 πlpl(y|D)

, (16)

with pn(y|D) = N (Ψµnw,Σy + ΨΣn
wΨ>), (17)

which can be interpreted as the belief of the robot be-
ing in mode n. Here, the feature matrix is given by
Ψ=[Φ>, Φ̇>]

>
, and the robot state covariance is given by

Σy=blockdiag(Σq,Σq̇). This results in a mixture of Gaussian
policies given by

p(u|y,D) =

N∑
n=1

γn(y)N (µnu,Σ
n
u),

with µnu = Aµnw|y + b,

Σn
u = AΣn

w|yA
>.

(18)

For the practical control of a robot, it is necessary to find the
most likely control action. However, for a Gaussian mixture
model, this corresponds to solving a non-convex optimization
problem. Due to the time constraints of a realtime control loop,
we propose to approximate the control distribution by finding
the most likely component based on its mixture coefficient.
Consequently, we use the mean control action of the selected
component as the control input to the system such that u=µn

∗

u

with γn∗(y)>γn(y), ∀n 6= n∗.
From a theoretic perspective, the resulting closed-loop

system corresponds to a hybrid system, where the function
γn(y) represents the guard which indicates the state-dependent
switching between multiple closed-loop system dynamics that
are all equivalent to the single-mode case that has been
discussed in Section III-B.

Figure 3 shows the results for a navigation task with two
modes that represent possible paths to avoid the collision

1Not visualized in the figures for better readibility.

TABLE II
METRIC-BASED COMPARISON FOR MULTIPLE MODES (FIG. 3).

Method and Scenario Effort Tracking Error
Original, no pert. 0.27 0.75
Proposed, no pert. 0.14 0.55
Stiff, no pert.1 0.18 0.55
Original, pert., top 0.45 1.38
Proposed, pert., top 0.2 0.54
Stiff, pert., top 0.26 0.55
Original, pert., bottom 1.83 4.23
Proposed, pert., bottom 0.21 0.58
Stiff, pert., bottom 0.25 0.56

with the obstacle (black circle). The synthetic demonstrations
of the two modes have been separated in advance and the
Gaussian components have been computed individually with
π1=π2=0.5. For the implementation of the original controller
and the stiff controller, we use the mixture coefficient compu-
tation of our proposed controller, given in (16), to find the most
likely mode and apply the corresponding control command
to the point mass. The dashed signals show the resulting
trajectories in the absence of disturbances when started from
the initial positions indicated by the small black circles. The
solid signals show the resulting trajectories when there is
a vertical force fext perturbing the point mass during 0.1
seconds. All controllers make use of the two modes in realtime
by switching to the upper path after the point mass has been
pushed in that direction. The original controller is not able to
recover from the short-term perturbation that is caused by the
external force and by the mode switching. The stiff controller
and the proposed controller show a low tracking error also for
the perturbed case. Table II shows that the proposed controller
requires less effort than the stiff controller for the perturbed
and unperturbed case.

D. Feedback of the Context

To encode more general and adaptive skills, it is useful to
introduce state-independent context variables that are supposed
to affect the behavior of the robot. Context variables are
also discussed in the original work of Paraschos et al. [5],
however only considering the offline adaptation of a single
ProMP distribution. Context variables can be used to encode
information about the task, e.g. the position and size of the
object to pick, but also information about the environment, e.g.
the position and size of an obstacle. Since this information
may change during the execution of a learned skill, it is
desirable to incorporate the context as another random variable
in the control policy to generate a reactive behavior. Thus,
we reformulate the controller in (4) by augmenting the set of
conditions by the context s with

p(u|y, s,D) =

∫
w

p(u|w,y)p(w|y, s,D)dw. (19)

The conditional distribution of the weight vectorsw is again
given by Bayes’ theorem

p(w|y, s,D) =
p(y|w)p(w, s|D)

p(y, s|D)
. (20)

Here, the joint probability distribution p(w, s|D) can be
learned by fitting a single Gaussian distribution as in [5] or
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Fig. 4. Target reaching task for a 2D point mass initialized at three different
positions depicted by the small black circles. The parameters of the proposed
controller are set to Σq=10−5I , Σq̇=10−3I , K=100I and D=3

√
100I .

The target, depicted by the filled black circle, jumps from the position
indicated by the grey circle in the lower right corner to the final target in
the upper right corner after 2.3 seconds. The duration of the motion is 4
seconds.

by fitting a Gaussian mixture model to the demonstrated data.
For the sake of compactness, we directly consider the case of
an arbitrary number N of Gaussian components representing
the learned joint distribution

p(w, s|D) =

N∑
n=1

π̃nN
((
µw

µs

)n
,

(
Σw Σws

Σsw Σs

)n)
.

Analogously to the multimodality case in III-C, the result
of the conditional distribution in (20) is given by a mixture of
Gaussians

p(w|y, s,D) =

N∑
n=1

γn(y, s)N (µnw|y,s,Σ
n
w|y,s), (21)

where the mean of the n-th component additionally depends on
the current context variable s. The new component coefficient
γn(y, s) can be viewed as the belief of the robot being in
mode n. It is given by

γn(y, s) =
π̃npn(y|s,D)pn(s|D)∑N
l=1 π̃lpl(y|s,D)pl(s|D)

,

with pn(y|s,D) = N (Ψµnw|s,Σy + ΨΣn
w|sΨ

>),

where the marginalized context distribution is given by
pn(s|D)=N (µns ,Σ

n
s ). Similarly to Section III-C, we propose

to approximate the Gaussian mixture distribution by the most
likely component and to use the corresponding mean control
action, such that u = Aµn

∗

w|y,s+b with γn∗(y, s) > γn(y, s),
∀n 6= n∗.

TABLE III
METRIC-BASED COMPARISON FOR A DYNAMIC CONTEXT (FIG. 4).

Method Effort Tracking Error
Original 0.25 8.93
Proposed 0.29 1.77
Stiff 0.93 1.38

Figure 4 illustrates the behavior of a 2D point mass for a
single-mode goal reaching task where the target is jumping
during the execution of the task. For the implementation of
the original controller, we used its control formulation and
replaced the stationary ProMP distribution parameters µw and
Σw by the context-conditional ProMP distribution parameters

µw|s and Σw|s. The stiff controller tracks the mean µw|s of
the conditional distribution with the constant feedback gains
K and D. In addition to the synthetic trajectory demonstra-
tions, a target position, depicted by the yellow circle, has
been recorded as a context variable s=qtarget. During the
simulation, the context changes by a jump from the gray
filled circle to the black filled circle at t=2.3s. The full
simulation duration is t=4s. The metric evaluation in Table III
indicates that, in this experiment, a stiff controller requires an
unnecessarily high effort while the original controller results
in a high tracking error. The proposed controller combines the
low effort of the original controller with the low tracking error
of the stiff controller.

IV. EXPERIMENTAL VALIDATION

We conduct the experiments using a 7-axis Franka Emika
Panda robot, by using the mathematical model of the system
dynamics in (2). As this model does not include parasitic,
nonlinear effects such as joint friction, these appear as inherent
perturbations during the execution. This is the case in many
robotic platforms and thus model-based controllers should be
able to cope with these perturbations. The objective of the ex-
periments is to show that our proposed controller can achieve
this robustness while imitating reactively the demonstrated
behavior and exploiting variations in realtime.

We consider the task of placing a ball inside a box in
a cluttered environment. The task is fulfilled if the ball
has been dropped into the box that is moving during the
execution without colliding with the environment. Figure 1
shows the experimental setup, including the initial robot pose
in the lower-left corner. The box position is detected by a
stereo vision system and is used as a context variable. We
provide 16 demonstrations of the robot end-effector trajectory
using kinesthetic teaching. In Figure 5, each demonstrated
trajectory is a solution to the task for a given context value
(box position), depicted by yellow crosses. Note that the
context values are fixed during each demonstration, such that
tracking a moving box has not been demonstrated explicitly.
We manually separate the demonstrations into two modes. The
first mode encodes solutions for situations where the box is on
the table with some variations, while the second mode encodes
solutions when the box is placed on the blocks on the left with
no variations.

We compute two individual ProMP models according to
Section III-D by using the separated demonstrations. We then
combine the individual models to obtain a Gaussian mixture
model by computing the mixture coefficients according to the
number of demonstrations provided for each mode. Each of
the two components uses 12 radial basis functions as trajectory
features. We implement the original formulation using an
inverse dynamics approach as described in [5].

The parameters of the proposed controller are selected
as Σq=10−5I , Σq̇=10−3I , K=103I and D=3

√
103I . To

resolve the kinematic redundancy of the robot for both con-
trollers, we implement a compliant regulator in the nullspace
of the end-effector task using the initial configuration as a
reference. Both approaches run at a control frequency of 1
kHz.
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Fig. 5. The Panda robot has to drop a ball into the box using the presented imitation controller (blue). The skill is demonstrated (orange trajectories) for
a given box position (orange crosses). Experiment 1 (left): The original controller (red) and the proposed controller are tested on two different static box
positions (context 1 and 2). Experiment 2 (center and right): The proposed controller is tested in a dynamic scenario, where the context variable changes
during the execution (i.e. the box is moving from position 1 to 3) such that the position reference (green) changes accordingly. The proposed controller adapts
its stiffness based on the variability of the demonstrations and based on the correlation of the trajectory phase with the context variable (indicated by the
stiffness ratio).

Figure 5 illustrates the results of the experiments (see
also the accompanying video). In the left plot, we show a
comparison between the proposed controller and the original
controller for a box position that does not change during the
execution. The dashed lines depict the behavior of the original
controller and the proposed controller for the lower box
position, while the corresponding solid lines show the behavior
for the upper left box position. We can see that both controllers
manage to generate motions without the robot colliding with
the environment. However, the original controller does not
move the robot to the required position, and the robot fails to
put the ball into the box because of the inherent perturbations
that are not part of the model that both controllers are based
on. Our proposed controller, on the other hand, manages to
move the robot to successfully drop the ball into the box, for
both box positions, as also indicated by the evaluation of the
tracking error in Table IV.

TABLE IV
METRIC-BASED COMPARISON FOR THE BALL-IN-BOX TASK (FIG. 5).

Method and Context Tracking Error
Original, Context 1 319.45
Proposed, Context 1 0.46
Original, Context 2 520.76
Proposed, Context 2 0.71

In the second experiment, we evaluate the capability of the
proposed controller to adapt robustly to dynamic changes of
the context variable, i.e. the box position. The center plot and
the right plot in Figure 5 shows the resulting end-effector
trajectory produced by the proposed controller. During the
execution of the task, the box is moved from position 1
(as labeled in Figure 5) to position 2 then 3, as depicted
by the black curve in the center plot. The corresponding
markers on the robot trajectory roughly indicate the end-
effector positions at that time. The mean of the conditioned
trajectory distribution represents the reference of the controller.
It can be seen that the movement of the box results in jerky
changes of the reference around t=4s, which would be tracked

stiffly by a controller with constant feedback gains. The plot in
the lower-right corner of Figure 5 illustrates the ratio between
the determinant of the varying stiffness gain K̃ and the tuned
constant stiffness gain K. It shows that the controller learned
to use a higher stiffness as the correlation between the context
and the trajectory phase increases. In this case, the correlation
grows towards the end of the trajectory as the context mainly
affects the final position of the end-effector. In summary,
the proposed controller solves the given task by switching
from the second mode to the first mode after moving the
box from the upper left position to a lower position. The
resulting trajectory shows that the controller produces smooth
transitions between the two modes, together with a smooth
adaptation to the changing box position by exploiting the
demonstrated variations.

V. CONCLUSION

In this paper, we derived a stochastic feedback controller by
imposing a compliant control structure on the latent trajectory
feature variable w and conditioning the control action on the
demonstrated behavior. We showed that the original controller
proposed in [5] is similar to a limit case of our proposed con-
troller. We analyzed the robustness of the closed-loop system
depending on the parameters of the proposed controller and
compared the results with the original controller. Furthermore,
we showed that our proposed controller readily extends to
multiple modes and to the adaptation to dynamic context
variables in realtime. We evaluated the theoretical hypotheses
in simulated and real-world experiments with the Franka
Emika Panda robot. We showcased in these experiments that
our proposed controller outperforms the original controller
in terms of robustness, and that this property is a key to
the successful reproduction of demonstrated movements with
robots characterized by unmodeled dynamic effects (typically,
joint friction).

In future work, we plan to investigate practical limitations of
the presented approach, e.g. finding computational bottlenecks



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

and testing tasks with more than two concurring modes. We
also plan to extend the proposed approach to the problem of
robustness to context variables that are far from the demon-
strated distribution and against intentional physical interactions
to consider human-robot interaction in a principled way (e.g. to
safely switch to a different mode by interacting with the robot).
Furthermore, we plan to investigate adaptation mechanisms for
the phase variable of the reference distribution in order to relax
the time-dependency of the proposed controller.

APPENDIX A
CARTESIAN SPACE DYNAMICS

The Cartesian space dynamics can be derived by using the
instantaneous equalities

ẋ = Jq̇, ẍ = Jq̈ + J̇ q̇,

where x ∈ R6 represents the position and orientation of the
end-effector in the Cartesian space and J is the corresponding
Jacobian matrix. Consequently, the robot dynamics can be
reformulated as

Mxẍ+Cxẋ+ fc,g = fx + fext.

with the Cartesian space dynamic parameters
Mx=(JM−1J>)−1, Cx=(J†)>CJ† − MxJ̇J

† and
fc,g=((J†)>C −MxJ̇)(I − J†J)q̇ + J†g that all depend
on the robot state.

APPENDIX B
CONTROL MEAN FOR INFINITELY SMALL TOLERANCES

In the case of a point mass, the proposed control formulation
reduces to
µu = −K(q −Φµw|y)−D(q̇ − Φ̇µw|y) +MΦ̈µw|y

= −Ky(y −Ψµw|y) +MΦ̈µw|y,

where Ky is a block diagonal matrix composed of K
and D. Following the notion using the compact robot state
y=[q>, q̇>]

>, the mean vector of the conditional weight
distribution can be written as
µw|y = µw + (Σ−1w + Ψ>Σ−1y Ψ)−1Ψ>Σ−1y (y −Ψµw)

= µw + (I + ΣwΨ>Σ−1y Ψ)−1ΣwΨ>Σ−1y (y −Ψµw),

where Σy is a block diagonal matrix composed of Σq and Σq̇ .
Next, we use the equality (I +AB)

−1
A=A (I +BA)

−1,
that can be found in [20], to rewrite the previous result as

µw|y = µw+ΣwΨ>Σ−1y (I+ΨΣwΨ>Σ−1y )−1(y−Ψµw).

In the limit case of infinitely small eigenvalues of a scaled
identity tolerance matrix Σy=σyI , the mean of the condi-
tional distribution can be written as

lim
σy→0

µw|y =

lim
σy→0

µw + ΣwΨ>(σyI + ΨΣwΨ>)−1(y −Ψµw) =

µw + ΣwΨ>(ΨΣwΨ>)−1(y −Ψµw).

By inserting this result into the controller and knowing that
limσy→0 Ψµw|y=y, we obtain the final result of the deriva-
tion

lim
σy→0

µu =MΦ̈µw+MΦ̈ΣwΨ>(ΨΣwΨ>)−1(y−Ψµw).
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