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From Key Positions to Optimal Basis Functions
for Probabilistic Adaptive Control

Julius Jankowski1,2, Mattia Racca1, and Sylvain Calinon1,2

Abstract—In the field of Learning from Demonstration (LfD),
movement primitives learned from full trajectories provide mech-
anisms to generalize a demonstrated skill to unseen situations.
Key position demonstrations, requiring the user to provide only
a sequence of via-points rather than a complete trajectory, have
been shown to be an appealing alternative. In this letter, we
investigate the synergy between learning adaptive movement
primitives and key position demonstrations. We exploit a linear
optimal control formulation to (1) recover the timing information
of the skill missing from key position demonstrations, and
to (2) infer low-effort movements on-the-fly. We evaluate the
performance of the proposed approach in a user study where
16 novice users taught a 7-DoF robot manipulator, showing
improved learning efficiency and trajectory smoothness. We
further showcase the effectiveness of the approach for tasks
that require precise demonstrations and on-the-fly movement
adaptation.

Index Terms—Learning from Demonstration; Imitation Learn-
ing; Machine Learning for Robot Control

I. INTRODUCTION

FOR robots to be widely adopted across applications and
environments, it is critical that a wide range of users can

program robots with as little effort as possible. State-of-the-art
Learning from Demonstration (LfD) techniques enable robots
to learn from demonstrations, i.e., exemplary behaviours of a
target task. Demonstrations often consist of the time-series of
relevant variables, e.g., the robot’s end-effector position or its
joint configuration. Movement primitive methods learn from
such full trajectory demonstrations, providing mechanisms to
adapt the robot’s motion to situations unseen during teaching.

Typically, methods based on movement primitives provide
little prior knowledge to the learning procedure. As a con-
sequence, the demonstrations need to teach the robot not
only the task at hand but also desirable characteristics of
the robot’s motion, such as the smoothness of the trajectory.
Even with intuitive interfaces like kinesthetic teaching, it can
be challenging for novice users to provide full trajectory
demonstrations that successfully complete the task and, simul-
taneously, convey the desired characteristics [1]–[3].
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As an alternative to full trajectories, the literature has
explored the use of key position demonstrations, requiring the
user to demonstrate only a sparse set of consecutive poses.
This alternative interface alleviates some issues of kinesthetic
teaching, chiefly the need of teachers to provide smooth
trajectories [4], letting the user focus on the task of pro-
gramming [3], [5] or teaching a successful task execution [6].
Furthermore, the teacher is not required to demonstrate with
the same pace as the desired robot executions, allowing for
e.g., more accurate placements of key positions. We expect
this aspect to facilitate in particular the kinesthetic teaching
of high-precision robot tasks such as peg-in-hole.

We propose an approach that learns adaptive movement
primitives from key position demonstrations, as illustrated
in Fig. 1. Given an ordered set of key positions, our method
fills the gaps between them by recovering the temporal in-
formation missing from the demonstrations (i.e., when to
reach the key positions) and generating a smooth-by-design
distribution of trajectories (i.e., how to reach the key posi-
tions). Similarly to other motion primitive approaches, the
learned trajectory distribution is encoded as a stochastic, linear
combination of basis functions. To learn the timing for the
robot to reach the key positions, a cascaded time-optimal
control problem is solved for each key position demonstra-
tion and a common set of basis functions that capture a
conservative timing is extracted. Furthermore, by including
information about the task context and leveraging variability
in the demonstrations, our method can adapt the generated
robot trajectories to unseen scenarios. Paired with the robot
controller presented in [7], the generated trajectories adapt
on-the-fly based on the current state of both the robot and
the environment.

To evaluate the proposed LfD pipeline, we conducted a user
study, where 16 participants provided either full trajectory or
key position demonstrations to teach a 7 DoF manipulator
a pick-and-place task. Results show that the proposed key
position method can generate trajectories as successfully (in
terms of task completion) as a Probabilistic Movement Prim-
itive (ProMP) [8] learned from full trajectories, while being
smoother. Furthermore, we showcase how our method can be
used to solve a peg-in-hole task and a pushing task purely
from key position demonstrations.

II. RELATED WORK

A. Key Position LfD

Demonstrating a motion, either by showing the full trajec-
tory or by recording a sequence of via-points, is a commonly
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Fig. 1. Teaching Phase: The user provides contextualized demonstrations as a set of ordered key positions (asterisks) and dynamic limits. Learning Phase:
Time-optimal trajectories (blue-dashed curve) are computed in order to construct an optimal basis for the stochastic key position space. Control Phase: By
computing the distribution of the key positions in the given context (red ellipses), a probability distribution of optimal trajectories (blue area) is computed
and used to efficiently infer an optimal reference trajectory (black-dashed curve) based on the current robot state yrobot.

adopted interface for programming robots [9]–[11]. Both
modalities provide the user with an intuitive programming
interface, while differing in terms of advantages and disadvan-
tages. Full trajectory demonstrations, especially when paired
with gravity compensated robots and kinesthetic teaching, are
an intuitive interface for novice users. While allowing expert
users to demonstrate the dynamics of motions, demonstrating
high quality full trajectories can be challenging, especially as
the number of degrees of freedoms raises [12]. Programming
robots with key positions can produce more readable and ed-
itable robot programs, while removing the dynamic component
from the demonstration and letting the user focus solely on the
definition of key positions [3], [4]. It has been shown however
that users find more mentally taxing to specify key positions
and to form mental models of collision avoidance, compared
to full trajectories [4].

Via-Point Movement Primitives (VMPs) [13] are an hybrid
approach that learns from full trajectories that can be later off-
set to pass through desired via-points. While allowing for skill
extrapolation, VMPs still require full trajectory demonstrations
to learn, therefore inheriting the aforementioned limitations.
Another hybrid learning approach that accepts as input both
full trajectory and key position demonstrations is proposed
in [4], [6], converting full trajectory demonstrations into a key
position representation in order to merge them.

While showing successful skill reproduction capabilities,
these approaches can not learn solely from key position
demonstrations a skill with variations. Furthermore, they lack
the capability to generalize the skill to unseen situations (e.g.,
novel starting robot configurations or target object locations),
and to adapt on-the-fly as the environment changes (lack of
adaptability).

B. Adaptive Movement Primitives

While both modalities (and their hybrids, like e.g., automatic
extraction of via-points from demonstrations [3], [14]) have
been thoroughly adopted in robot programming interfaces, the
literature on learning adaptive movement primitives has been
tightly linked to the concept of full trajectory demonstrations.

To represent a single trajectory or a distribution of trajec-
tories in a compact form, Dynamical Movement Primitives
(DMPs) [15] and ProMPs [8] rely on a predefined set of

basis functions (typically, radial basis functions with uniform
spacing and constant bandwidth). Alternatively, approaches
based on (Bayesian) Gaussian Mixture Regression (GMR) [16]
first encode the trajectories as a joint distribution of space
and time/phase variables, and then use the conditional prop-
erty of Gaussians for regression, providing an approach to
automatically estimate the number and placement of the basis
functions. As shown in [17], probabilistic trajectory learning
and adaptation can also be formulated as an optimal control
problem, by considering a standard Linear Quadratic Regulator
(LQR) with full precision matrices and a virtual system in the
form of a simple or double integrator.

In [7], a controller for ProMPs has been proposed that en-
ables online adaptation to dynamically changing task contexts.
In the following, we show how our approach learns, starting
from key position demonstrations, a probabilistic movement
primitive with optimally chosen basis functions. This allows us
to reuse the controller from [7] and obtain adaptable movement
primitives from key position demonstrations. In Section V, we
therefore compare the proposed approach against a baseline of
ProMPs learned from full trajectories.

III. LEARNING PHASE

During the learning phase, the user input is processed into a
distribution of optimal trajectories. The user provides a set of
K demonstrations D = {Dk}Kk=1, with N key positions per
demonstration, i.e., Dk = {{kyn}Nn=1, sk}. The proposed ap-
proach can be applied in the robot joint space as well as in the
the robot’s end-effector space. In the latter case, the presented
approach applies to the end-effector position only and needs to
be complemented by an additional orientation controller (see
Section IV-B). sk reflects the state of the environment during
the k-th demonstration. While the K demonstrations show
different solutions of one task, we assume that the number of
key positions is constant among all demonstrations and that
the order of the key positions is given by the user. In contrast
to learning from full trajectories, there is no information about
the timing of the demonstrated task (except for the order in
which key positions are given). We recover this information
by means of optimal control by exploiting the velocity and
acceleration limits we want to impose. These limits are given
(e.g., by the user) in the form of element-wise intervals, e.g.,
ẏi ∈ [−ẏilim, ẏilim] and ÿi ∈ [−ÿilim, ÿilim] for the i-th DoF.
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Fig. 2. Within the learning phase, we solve a cascaded optimization problem
for each key position demonstration. We exploit linear relations in the resulting
optimal trajectory by extracting basis functions Φ(t,h) for a demonstrated
skill.

The learning phase consists of (1) constructing optimal
basis functions (Section III-A) and (2) learning a distribu-
tion of optimal trajectories by learning a probability density
function of the basis function weights (Section III-B) plus
correlations with the task context (Section III-C). In our
approach, the basis function weights explicitly correspond to
the N key positions and the start and end velocities, i.e.,
w = (y>
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>
2 , . . . ,y

>
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>
T )
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A. Optimal Basis Functions

In order to construct optimal basis functions, we formulate a
cascaded time-optimal control problem. The block diagram in
Fig. 2 gives an overview of the cascaded optimization scheme.
We exploit the fact that the result of this optimization problem
is linear in w.

1) Trajectory Optimization: The inner optimal control
problem considers a linear second-order system that is con-
strained to pass through key positions yn at a given time tn
with minimal effort, i.e.,

y∗(t) = arg min
y(t)

∫ T

0

ÿ(t)>ÿ(t)dt,

s.t. y(tn) = yn, n = 1, ..., N,

ẏ(0) = ẏ1, ẏ(T ) = ẏN .

(1)

An instance of the optimal control problem in (1) can be repre-
sented by w and a corresponding timing parameter h ∈ RN−1
that encodes the time passed between two consecutive key
positions, i.e., hn = tn+1−tn. Consequently, the total duration
of the motion is given by T =

∑N−1
n=1 hn. In [18], it has been

shown that the solution of the linear optimal control problem
in (1) is a polynomial spline in time. We find that the optimal
trajectory can be expressed as a linear function of w (see
Appendix for details), i.e.,

y∗(t) = Φ(t)w. (2)

The elements of the time-dependent matrix Φ(t) can be
interpreted as optimal basis functions that, weighted by the
elements of w, retrieve an optimal trajectory for the key
positions encoded in w. Fig. 3 shows a set of basis functions
for a task instance with three key positions with a general
timing parameter h. Each colored signal represents a basis
function that corresponds either to one of the key positions or
to one of the boundary velocities.
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Fig. 3. Basis functions constructed from the optimal control problem in (1)
for a single DoF and N = 3 key positions.

2) Time Optimization: Within the outer optimization prob-
lem, we optimize the timing parameter h. Since the inner
optimization problem uniquely translates a timing parameter
h into an optimal basis Φ(t), the timing parameter can be
seen as a direct input to the optimal basis functions (i.e.,
Φ(t,h) = Φ(t)). Thus, we formulate the outer optimization
problem as

h∗ = arg min
h

T,

s.t. hn > 0,

ẏi(t) = Φ̇i(t,h)w ∈ [−ẏilim, ẏilim],

ÿi(t) = Φ̈i(t,h)w ∈ [−ÿilim, ÿilim],

(3)

with ẏi(t), ÿi(t) being the velocity and acceleration of the i-th
DoF, such that Φ̇i(t,h) and Φ̈i(t,h) are the i-th rows of Φ̇(t)
and Φ̈(t), respectively. We find a timing parameter h∗ that
locally minimizes the movement duration T while satisfying
the constraints through the sequential least squares quadratic
programming algorithm [19]. For each demonstration of key
positions Dk (setting ẏ1 = ẏN = 0), we compute the optimal
timing h∗k and select a conservative timing parameter h̄ by
selecting each element (i.e., the individual duration between
consecutive key positions) as the maximum that appeared
among all demonstrations. This conservative timing parameter
h̄ is used to compute offline the coefficients of a common set
of optimal basis functions Φ(t, h̄), simply referred to as Φ(t)
in the following sections.

B. Probability Distribution of Optimal Trajectories

The result of the previously described cascaded optimization
is a common basis Φ(t) for all demonstrated key positions.
Note that the mathematical structure of an optimal trajectory
in (2) given a set of key positions resembles the structure of a
ProMP. Unlike the hand-crafted basis functions of ProMPs, the
basis functions of our approach are implicitly learned from the
demonstrations by means of optimal control. By demonstrating
ordered key positions for a given task context, the user
provides direct samples of an underlying joint distribution
p(w, s) modelling the task through correlations between key
positions and task contexts. We assume that the provided
samples D can be modelled by a Gaussian Mixture Model
(GMM) with a finite number of components, i.e.,

w, s|D ∼
∑
c

N (cµw,s,
cΣw,s). (4)
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Each component of the GMM is translated into a controller
that is activated if the system state and the task context
can be explained through the corresponding demonstrations
of the component (see [7] for details). Thus without loss of
generality, we consider a single Gaussian distribution in the
remainder for the sake of readability.

The optimal, contextualized robot position at a given time
t can be inferred as

y(t)|s,D ∼ N
(
Φ(t)µw|s,Φ(t)Σw|sΦ

>(t)
)
, (5)

with w|s,D ∼ N (µw|s,Σw|s) being the basis function
weight distribution conditioned on the state of the environment
s. The blue area in the right-hand block in Fig. 1 depicts a
time-dependent Gaussian distribution resulting from (5).

C. Learning in Multiple Frames

The task model in (4) captures piecewise linear relations
between the key positions and the state of the environ-
ment. However, orientations of objects in the environment
can impose nonlinear relations that would require multiple
components in (4). In [17], poses of objects in the environment
are specifically handled by learning the movement statistics
in a coordinate system that is attached to the corresponding
object. The same can be applied to our approach, resulting
in multiple probability distributions of optimal trajectories,
with pM(w|s,D) = N (µMw|s,Σ

M
w|s) being the distribution

learned in a coordinate system M. Since the timing of the
task is equal in all coordinate systems, the optimal basis
functions Φ(t) remain the same in all coordinate systems. The
online fusion of multiple distributions can thus be done in the
basis function weights by computing a product of Gaussians,
after transforming all basis function weight distributions into
a world-fixed coordinate system W , as

w|s,D ∼ N (µWw|s,Σ
W
w|s)

=
∏
M
N (R̄Mµ

M
w|s + t̄M, R̄MΣMw|sR̄

>
M), (6)

where R̄M and t̄M transform a w that is expressed in frame
M into the world-fixed coordinate system W .

IV. CONTROL PHASE

During the control phase, a controller generates motor
commands allowing the robot to reproduce the learned be-
havior by feeding back the robot state as well as the state of
the environment. In Section IV-A, we recall the concept of
probabilistic adaptive control and apply it to the previously
derived movement primitive. Section IV-B provides a con-
troller design for the orientation to complete the control of the
end-effector pose. The control commands derived in different
spaces are composed in the robot’s joint space in realtime as
an information fusion problem (product of Gaussians).

A. Probabilistic Adaptive Control

In [7], we designed the controller as a force/torque control
action, which has the benefit that the time-varying feedback
gains are interpretable as mechanical compliance. However,

for composing multiple control policies as in [20], acceleration
control actions are better suited. Thus, we define a trajectory
tracking controller, i.e.,

a = −K(y −Φw)−D(ẏ − Φ̇w) + Φ̈w, (7)

that forces the system to track an optimal trajectory that
is given by ydes(t) = Φ(t)w. Here, the matrices K and
D are design parameters. As the basis function weights w
are Gaussian-distributed, the mean of the acceleration control
action is inferred as

µa|x,s = −K̃(y−ΦµWw|s)− D̃(ẏ− Φ̇µWw|s) + Φ̈µWw|s, (8)

with x being the robot state composed of position and velocity,
and

K̃ = K − (KΦ +DΦ̇ + Φ̈)ΣWw|x,sΦ
>Σ−1y ,

D̃ = D − (KΦ +DΦ̇ + Φ̈)ΣWw|x,sΦ̇
>Σ−1ẏ .

(9)

The matrix ΣWw|x,s is the covariance of the basis function
weights conditioned on the current robot state and the state
of the environment. The matrices Σy and Σẏ represent the
expected tracking error, e.g., due to modelling errors of the
system dynamics.

B. Orientation Control

For full pose control of the robot end-effector, we propose
to combine the probabilistic adaptive controller learned from
the key positions with a reactive orientation controller learned
from the corresponding key orientations. We adopt the idea of
probabilistic adaptive control for orientations by defining an
angular velocity control command as ωd = Kori(∆θ−∆θd),
with ∆θ = Logq(µq) the logarithmic map at the robot’s end-
effector quaternion q and ∆θd ∼ N (0,Σθd). In this formu-
lation, the parameters µq and Σθd are directly learned from
the orientations provided during the demonstrations within the
coordinate system of interest (e.g., the coordinate system of an
object to grasp). Analogue to the tracking error matrices Σy
and Σẏ , we introduce a control error matrix for the orientation
controller by modelling ∆θ ∼ N (∆θd,Σθ). Consequently,
the conditional mean of the desired angular velocity simplifies
to

µωd|∆θ = Kori
(
Σ−1θ + Σ−1θd

)−1
Σ−1θd ∆θ. (10)

Finally, the angular acceleration control command is defined as
aθ = −Dori(ω− µ̄ωd|∆θ), with ω being the angular velocity
of the robot end-effector and µ̄ωd|∆θ being the clipped result
of (10) in order to limit the angular velocity on-the-fly.

V. EXPERIMENTS

We here present the results of a user study comparing
the effectiveness of teaching through key positions (Method
KP) against full trajectories (Method FT), alongside other
experiments showcasing the effectiveness of the proposed
approach.
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Fig. 4. Experimental setup of the user study: drill pick-up (1-8, left figure)
and drop locations (T1 and T2) used for the demonstration collection, and
test locations used in the evaluation phase (1-5, right figure).

A. User Study

We conducted a study where 16 novice robot users (mean
age 28.8, SD 3.2) provided demonstrations to solve a pick-
and-place task with a 7 DoF FRANKA EMIKA Panda arm.
This study was approved by Idiap Research Institute’s Data
and Research Ethics Committee.

1) Experimental Setup: The task consisted of picking a toy
drill (from the YCB dataset [21]) and place it inside one of
two boxes, as shown in Fig. 4. The participants provided 8
demonstrations by displacing the gravity-compensated robot
arm. The number of demonstrations was selected as a trade-
off between data collection and a sensible duration of the study
(mean duration of 25 minutes). For each demonstration, a drill
pose was randomly selected from a pool of predefined demon-
stration scenarios, along with a corresponding robot’s starting
configuration. Variability in the selection of scenarios was
systematically enforced to prevent participants from providing
uninformative demonstrations, e.g., multiple demonstrations
with the same drill pose.

2) Conditions and Protocol: Participants first filled a brief
questionnaire consisting of three 7-point Likert scale state-
ments, aimed at assessing their robotics expertise. An av-
erage score of 1.95 was observed (Cronbach’s α = 0.9),
indicating novice users. After a brief familiarization phase
with the gravity-compensated robot, each participant provided
8 demonstrations for the aforementioned pick-and-place task,
for one of two methods (between-subjects study design): the
proposed via-points demonstrations (Method KP, presented in
Section III), and full trajectory demonstrations (Method FT,
acting as baseline). Each method was therefore used by 8
participants.

For Method KP, the participants were instructed to perform
the task by using 5 key positions, i.e., 3 for the pick action
(including the starting pose) and 2 for the place action.
Participants displaced the robot in its workspace (kinesthetic
teaching) and added key positions by uttering a verbal com-
mand (e.g., “Insert here!”). For Method FT, the participants
solely needed to verbally specify the beginning and the end
of their demonstrations. For Method FT, the number of radial
basis functions was set to 24, evenly split between the pick
and the place actions. Since the basis functions of Method
FT are equally distanced in time, a larger number of them

compared to Method KP is required, in order to capture
local details (e.g., the grasping pose). For both methods, the
task context (i.e., the drill pose) is captured by learning in
multiple frames (as presented in Section III-C), thus no explicit
task context variable s was used for the user study. The
trajectory of the robot end-effector pose in the world frame
(at the base of the robot) and in the object frame (located
on the drill) was recorded, although Method KP used only
the provided key positions for the learning. To facilitate the
learning for Method FT, we pre-processed the recorded end-
effector position trajectory by automatically finding the start-
and end time step of each demonstration and cutting off the
idle parts of the trajectory. The pre-processed data is then used
to learn a ProMP representation of the task for Method FT,
following the algorithm in [22].

The average computation time of the learning phase with 8
demonstrations for one participant is 4.6 seconds for Method
KP and 4.2 seconds for Method FT. For learning the key
position timing for Method KP, we empirically set the velocity
limit to ẏilim = 0.15 m

s and the acceleration limit to ÿilim = 2
m
s2 (equal for all axes). Since both learning approaches result
in the mathematical form given in (4), we apply the inference
in (6) to both task representations (with slight modifications
for the ProMP) and consequently use the control design
in Section IV for both approaches with the same hyper-
parameters. A demonstration was considered failed if either
the pick or the place actions were unsuccessful (e.g., the drill
slipped from the robot gripper or was placed outside of the
designated boxes). Failed demonstrations were excluded from
the learning and no corrective demonstrations were collected.

B. Evaluation

For each participant, we learned task-parameterized trajec-
tory distributions, following the method in Section III for
the participants providing demonstrations consisting of key
positions (Method KP), and by learning a ProMP for Method
FT. Three feedback controllers as in (8) were learned for
each participant, with as input the first 4, 6, and all successful
demonstrations to evaluate how this impacts the quality of the
skill reproduction. Each controller was tested on 5 novel static
scenarios, different from the ones used during the demon-
stration collection (see Fig. 4). These static drill poses are
prerecorded and provided to the controllers, avoiding computer
vision inaccuracies to impact the results.We additionally tested
the controllers in a mock-up handover task, where a second
robot arm1 pushes the drill on the table towards the controlled
robot, equipped with a camera at the wrist to track the drill’s
pose. This scenario requires the trajectory to be adapted on-
the-fly, therefore testing the online adaptation capabilities of
the proposed approach. For each reproduction on a novel static
scenario, we computed the acceleration effort e, defined as

e =

∫ T

0

ÿ(t)>ÿ(t)dt, (11)

1The second robot performs two fixed (although unknown to the first
robot) pushing actions with a short intermediate pause, ensuring a consistent
experimental scenario.
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Fig. 5. Distribution of cumulative success score σ, separated by method and
by number of demonstrations utilized for training.

where ÿ(t) is the recorded acceleration of the robot end-
effector, therefore measuring the smoothness of the reproduced
trajectory.

We further adopted a scoring system to operationalize
the success of the task: 1 point for a successful pick (0
otherwise), and 1 point for a successful place (0 otherwise), for
a maximum of 2 points per reproduction. The pick action was
considered successful if the drill did not slip from the closed
gripper during the transport. The place action was considered
successful if the drill landed in either of the two boxes. We
refer to the cumulative success obtained by a participant with
e.g., 4 demonstrations and Method KP as σ4

KP, ranging from
0 (failure on all 6 novel scenarios) to 2 × 6 = 12 (complete
success).

C. Results

We compare the participants’ effectiveness of teaching with
Method KP and Method FT and with different numbers of
demonstrations, in terms of success of the task reproductions
and of quality of the reproduced trajectory. Informed by
the literature on teaching through key positions [3], [4], we
expected

1) the two methods to achieve similar success scores (with
the score improving with a larger number of demonstra-
tions), and

2) Method KP to produce smoother trajectories than
Method FT, thanks to the optimization procedure de-
scribed in Section III-A.

We furthermore expected both methods to improve, in terms
of trajectory smoothness, over their input, i.e., the participants’
demonstrations.

Fig. 5 compares the distribution of cumulative score σ for
each teaching method. We observe a statistically significant
score difference between methods when trained with 4 and
6 demonstrations (Mann–Whitney U test2, p< .01∗∗), with a
median score of 9.5 for Method KP vs 4.5 for Method FT
when trained with 4 demonstrations. This difference can be
explained by the fact that Method KP needs to learn in a lower-
dimensional space than Method FT; a relevant difference when

2Data was tested for normality, always rejecting the null hypothesis
(Shapiro-Wilk test, p< .01∗∗). We therefore used non-parametric tests.
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Fig. 6. Distribution of acceleration effort e of trajectory reproductions,
separated by method and by number of demonstrations utilized for training.
The leftmost violin instead shows e of the collected demonstrations.

learning from few demonstrations. As expected, σ improves
for both methods with more than 6 demonstrations, with
negligible differences between methods.

Fig. 6 compares the distribution of acceleration effort e for
each teaching method and for the participants’ demonstrations.
Unsurprisingly, we see how the reproduced trajectories of both
methods require lower acceleration effort e compared to the
participants’ kinesthetic demonstrations. Method KP produces
however trajectories with significantly lower e compared to
Method FT (Mann–Whitney U test, p< .01∗∗ for any number
of demonstrations used in the training). This is a direct conse-
quence of the optimization process presented in Section III-A.

The differences between Method KP and Method FT are
further accentuated when looking at the hand-over task (see
the accompanying video for qualitative results). With 4 demon-
strations, Method KP succeeded at the task for 5 participants
out of 8. The number of successful executions goes to 6
when trained with all the available demonstrations. In con-
trast, no successful execution was possible with Method FT,
when trained with 4 and 6 demonstrations. Even when using
all available demonstrations, Method FT obtains successful
executions only for 2 of the 8 participants.

We observe that the main reason for failing at grasping the
drill is that the robot, with the camera mounted on its wrist,
looses track of the moving object while approaching it due to
abrupt movements not directed towards the drill. The presented
results, including the higher effort required for static scenarios
(see Fig. 6), indicate that Method FT is more prone to produce
those abrupt movements compared to Method KP.

As also observed in previous work [4], participants are
almost twice as fast when providing full trajectory demonstra-
tions (median 18 s) compared to key position demonstrations
(median 28 s). However, the success score achieved by Method
KP trained with 4 demonstrations (σ4

KP, median = 9.5) is
comparable with the one of Method FT with twice the demon-
strations (σ8

FT, median = 9.5). We argue that, in a real scenario,
operations other than the demonstration collection, such as
setting the environment or the robot arm’s initial configuration,
would dominate the process, making the aforementioned time
difference negligible.
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D. Showcase Tasks

We evaluate the effectiveness of our approach with expert
key position demonstrations for two tasks. See the accompa-
nying video for results.

1) Peg-in-Hole: The robot is taught to insert a peg into
a tight-tolerance hole at a fixed location while avoiding an
obstacle. Since the environment is constant during the task,
no context variable is learned for this experiment. The robot
reproduces the task from unseen initial positions while being
physically perturbed.

2) Plate Pushing: The robot is taught to keep a plate at
the center of a table by applying local pushes, informed by
feeding back the current position of the plate. The task context
s is chosen to be the first two coordinates (horizontal plane)
of the plate in a frame of reference located at the robot’s
base. The robot reproduces the task while the plate position
is dynamically changed.

VI. CONCLUSION

In this letter, we presented an approach to learning adaptive
movement primitives from key position demonstrations. To
recover the time information of these demonstrations, lost due
to the nature of teaching with key positions, our approach
minimizes the movement duration while keeping the velocity
and acceleration in bounds with a cascaded time-optimal
control formulation, resulting in optimal basis functions. In
a user study with novice users, we evaluated the effectiveness
of our key position approach as a teaching interface against
a full trajectory baseline method. We showed that learning
meaningful basis functions through linear optimal control re-
duces the number of kinesthetic demonstrations required for a
successful skill reproduction in unseen scenarios. Furthermore,
we showed how the learned basis functions enforce low-effort
movements even when adapting to unseen situations on-the-
fly.

A limitation of the proposed approach is that the timing
of the skill is computed offline. As such, adapting the robot
movement online does not preserve time-optimality w.r.t. (3)
(optimality w.r.t. (1) is inherently preserved). We plan to
investigate an extension of the proposed approach to orien-
tation manifolds in order to learn pose movement primitives.
Furthermore, we plan to investigate the combination of the
learned probabilistic adaptive controller and additional reactive
controllers, such as controllers for realtime collision avoidance
exploiting the learned variations of the skill.
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APPENDIX

A. Computation of Optimal Basis Functions

In the following, we derive the computation of the optimal
basis functions for one DoF.

In [18], it has been shown that the control

un(t) = b>e−A
>(t−tn)M(hn)(e−Ahnxn+1 − xn), (12)

with hn=tn+1−tn, minimizes the functional
J(u)=

∫ tn+1

tn
u2(τ)dτ among all controls that move the linear

system ẋ=Ax+bu from x(tn)=xn to x(tn+1)=xn+1.
In this paper, we aim at minimizing the acceleration (cf.
(1)), thus the linear system simplifies to a double-integrator



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

with x= (y, ẏ)
> and u=ÿ. The optimal acceleration in (12)

becomes a linear function in time

ÿn(t) = [−(t− tn), 1]M(hn)

[
yn+1 − yn − hnẏn+1

ẏn+1 − ẏn

]
,

(13)
with

M(hn) =
(∫ hn

0
e−Aτbb>e−A

>τdτ
)−1

= 2
h3
n

[
6 3hn

3hn 2h2n

]
.

The optimal acceleration in (13) can be used to con-
struct a spline that moves the system from x(0)=x1, pass-
ing through y(tn)=yn, n=2, . . . , N−1, to x(T )=xN in
an optimal way. Note that the N−2 velocities ẏ(tn) at
intermediate key positions are unknown. Thus, we intro-
duce w= (y1, y2, . . . , yN , ẏ1, ẏN )

> as known parameters and
v= (ẏ1, ẏ2, . . . , ẏN )

> as unknown key velocities (note that ẏ1
and ẏN are known, but part of v for consistency of (14)).
Formulating (13) as a function of w and v yields

ÿn(t) = [−(t− tn), 1]M(hn) (wLnw + vLnv) , (14)

with wLn∈R2×N+2 satisfying wLnw= [yn+1−yn, 0]
>, and

vLn∈R2×N satisfying vLnv= [−hnẏn+1, ẏn+1−ẏn]
>.

A unique optimal acceleration spline is obtained by im-
posing continuity, i.e., ÿn(tn+1)=ÿn+1(tn+1). This constraint
forms a linear system of equations, i.e., Pvv=Pww, with
Pv∈RN×N and Pw∈RN×N+2 being defined by N−2 conti-
nuity constraints at intermediate key positions and 2 equality
constraints for start and end velocity. Note that by solving for
v=P−1v Pww, we obtain optimal key velocities. Inserting the
optimal key velocities back into (14), we obtain the optimal
acceleration for segment n as a linear function of the known
parameters w, i.e.,

ÿn(t) = [−(t− tn), 1] Ωnw, (15)

with Ωn=M(hn)
(
wLn+vLnP

−1
v Pw

)
. The optimal accel-

eration at time t∈ [0, T ] is then given by ÿ(t)=φ̈(t)w, with

φ̈(t) = [−(t− tn), 1] Ωn, tn < t < tn+1. (16)

Consequently, the optimal velocity and position splines are
given through integration of ÿ(t), i.e., ẏ(t)=φ̇(t)w and
y(t)=φ(t)w respectively, with

φ̇(t) =

[
−1

2
(t− tn)2, t− tn

]
Ωn + vlnP

−1
v Pw

φ(t) =

[
−1

6
(t− tn)3,

1

2
(t− tn)2

]
Ωn+

(t− tn)vlnP
−1
v Pw + wln,

(17)

with n being defined by tn<t<tn+1, vln∈RN satisfying
vlnv=ẏn and wln∈RN+2 satisfying wlnw=yn. Note that for
a given timing parameter h, the time-independent coefficients
(e.g., Ωn, P−1v Pw) in (17) can be precomputed once in order
to reduce online computation cost.

For systems with d DoF, such that
w= (y>

1 , . . . ,y
>
N , ẏ

>
1 , ẏ

>
N )

>, with yn∈Rd, the optimal
position trajectory is given by y(t)=Φ(t)w, where the basis
function matrix is given through a Kronecker product, i.e.,
Φ(t)=φ(t)⊗Id, with Id∈Rd×d being the identity matrix.


