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Abstract

Body posture influences human and robot performance in manipulation tasks, as appropriate poses facilitate motion or

the exertion of force along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze,

control, and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be

designed according to different task requirements, such as tracking a desired position or applying a specific force. In this

context, this article presents a novel manipulability transfer framework, a method that allows robots to learn and repro-

duce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based for-

mulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of

symmetric positive-definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to

follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a

robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of

the approach.

Keywords

Robot learning, learning from demonstrations, manipulability ellipsoids, manipulability optimization,
Riemannian manifolds, differential kinematics

1. Introduction

When we perform a manipulation task, we naturally place

our arms (and body) in a posture that is best suited to carry

out the task at hand (see Figure 1). Such posture variation

is a means through which the motion and strength charac-

teristics of the arms are made compatible with the task

requirements. For example, human arm kinematics plays a

central role when humans plan point-to-point reaching

movements, where joint trajectory patterns arise as a func-

tion of the visual target (Morasso, 1981), indicating that the

task requirements influence the human arm posture. This

insight was also identified in more complex situations,

where not only kinematic but also other biomechanic fac-

tors affect the task planning (Cos et al., 2011). For example,

the human central nervous system plans arm movements

considering its directional sensitivity, which is directly

related to the arm posture (Sabes and Jordan, 1997). This

allows humans to be mechanically resistant to potential per-

turbations coming from obstacles occupying the workspace.

Interestingly, directional preferences of human arm move-

ments are characterized by a tendency to exploit interaction

torques for movement production at the shoulder or elbow,

indicating that the preferred directions are largely deter-

mined by biomechanical factors (Dounskaia et al., 2014).

The robotics community has also been aware of the

impact of robot posture on reaching movements and manip-

ulation tasks (e.g., pushing, pulling, reaching). It is well

known that by varying the posture of a robot, we can

change the optimal directions for generating motion or

applying specific forces. This has direct implications in

hybrid control, because the controller capability can be

fully realized when the optimal directions for controlling

velocity and force coincide with those dictated by the task

(Chiu, 1987). In this context, the so-called manipulability

ellipsoid (Yoshikawa, 1985b) serves as a geometric descrip-

tor that indicates the ability to arbitrarily perform motion
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and exert a force along the different task directions in a

given joint configuration.

Manipulability ellipsoids have been used to measure the

compatibility of robot postures with respect to fine and

coarse manipulation (Chiu, 1987), and to improve

minimum-time trajectory planning using a manipulability-

aware inverse kinematics algorithm (Chiacchio, 1990).

Vahrenkamp et al. (2012) proposed a grasp selection pro-

cess that favored high manipulability in the robot work-

space. Other works have focused on maximizing the

manipulability ellipsoid volume in trajectory generation

algorithms (Guilamo et al., 2006), and task-level robot pro-

gramming frameworks (Somani et al., 2016), to obtain

singularity-free joint trajectories and high task-space dexter-

ity. Nevertheless, as stated in Lee (1989), solely maximizing

the ellipsoid volume to achieve high dexterity in motion

may cause a reverse effect on the flexibility in force.

The aforementioned approaches do not specify a desired

robot manipulability for the task. In contrast, Lee and Oh

(2016) proposed an optimization method to find reaching

postures for a humanoid robot that achieved desired (manu-

ally specified) manipulability volumes. Similarly, a series

of desired manipulability ellipsoids was predefined accord-

ing to Cartesian velocity and force requirements in dual-

arm manipulation tasks (Lee, 1989). Note that both Lee

(1989) and Lee and Oh (2016) predetermined the task-

dependent robot manipulability, which required a meticu-

lous and demanding analysis about the motion that the

robot needed to perform, which becomes impractical when

the robot is required to carry out a large set of different

tasks. Furthermore, these approaches overlooked an impor-

tant characteristic of manipulability ellipsoids, namely, the

fact that they lie on the manifold of symmetric positive-

definite (SPD) matrices. This may influence the optimal

robot joint configuration for the task at hand.

Other geometric descriptors have been proposed in the

literature to evaluate the velocity or force performance of

robots at a given joint configuration. In contrast to manip-

ulability ellipsoids that do not fully account for boundary

limits in the space of joint velocities or torques, manipul-

ability polytopes provide a linear estimate of the exact joint

constraints in task space (Chiacchio et al., 1997; Lee,

1997). Moreover, Ajoudani et al. (2015) introduced the

concept of a stiffness feasibility region (SFR) to represent

the non-polytopic boundary where the realization of a

desired Cartesian stiffness matrix is feasible. While the

polytope approaches provide a more accurate estimate of

the velocity or force generation capabilities of the robot

compared with manipulability ellipsoids, their calculation

is computationally expensive. SFR is a particular Cartesian

stiffness descriptor and therefore does not generalize to

other robot control settings. Manipulability ellipsoids are

easy to compute, while representing an intuitive estimate of

the robot ability to perform velocities, accelerations or

exert forces along the different task directions.

In this article we introduce the novel idea that

manipulability-based posture variation for task compatibility

can be addressed from a robot learning from demonstration

perspective. Specifically, we cast this problem as a manipul-

ability transfer between a teacher and a learner. The former

demonstrates how to perform a task with a desired time-

varying manipulability profile, while the latter reproduces

the task by exploiting its own redundant kinematic structure

so that its manipulability ellipsoid matches the demonstra-

tion. Unlike classical learning frameworks that encode refer-

ence position, velocity, and force trajectories, our approach

offers the possibility of transferring posture-dependent task

requirements such as preferred directions for motion and

force exertion in operational space, which are encapsulated

in the demonstrated manipulability ellipsoids.

This idea opens two main challenges, namely, (i) how to

encode and retrieve a sequence of manipulability ellipsoids,

and (ii) how to track a desired time-varying manipulability

either as the main task of the robot or as a secondary objec-

tive. To address the former problem, we propose a tensor-

based formulation of Gaussian mixture model (GMM) and

Gaussian mixture regression (GMR) that takes into account

that manipulability ellipsoids lie on the manifold of SPD

matrices (see Section 3 for a full description of the model).

The latter challenge is solved through a manipulability

tracking formulation inspired by the classical inverse kine-

matics problem in robotics, where a first-order differential

relationship between the robot manipulability ellipsoid and

the robot joints is established, as explained in Section 4.

This relationship also demands to consider that manipulabil-

ity ellipsoids lie on the SPD manifold, which is here tackled

by exploiting tensor-based representations and differential

geometry (see Section 2). The geometry awareness of our

formulations is crucial for achieving successful manipulabil-

ity transfer, as shown in Section 5. Note that Riemannian

geometry has also been successfully exploited in robot

motion optimization (Ratliff et al., 2015) and manipulability

analysis of closed chains (Park and Kim, 1998). For the

sake of clarity, different aspects of the proposed learning

and tracking approaches are illustrated with simple exam-

ples using simulated planar robots throughout the article.

The proposed approach can be straightforwardly applied

to different types of kinetostatic and dynamic

Fig. 1. Illustration of pushing (a) and pulling (b) tasks for which

the posture of the human significantly influences their ability to

carry out the task.
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manipulability measures. This opens the door to manipul-

ability transfer scenarios with various types of robots where

different task requirements at kinematic and dynamic levels

can be learned and successfully transferred between agents

of different embodiments. The functionality of the pro-

posed approach is evaluated in different simulated manipul-

ability tracking tasks involving a 16-degree-of-freedom

(DoF) robotic hand and two legged robots. The full manip-

ulability transfer is showcased in a bimanual setup where

an unplugging task is kinesthetically demonstrated to a 14-

DoF dual-arm robot, which then transfers the learned

model to a different dual-arm system that reproduces the

unplugging task successfully, as described in Section 6.

Early contributions on our learning and tracking frame-

works were presented in Rozo et al. (2017) and Jaquier

et al. (2018), respectively. In Rozo et al. (2017), the learn-

ing approach provided a sequence of desired manipulability

ellipsoids that a learner robot reproduced using gradient-

based nullspace commands. Existing approaches built on

the optimization of manipulability-based indices are not

suitable as they do not allow the tracking of specific manip-

ulability ellipsoids. In Jaquier et al. (2018), the tracking

framework used manually specified robot manipulability

ellipsoids for the task. As mentioned previously, this may

be tedious and cumbersome when the robot needs to carry

out different and complex tasks. Therefore, the integration

of the proposed learning and tracking approaches solves the

aforementioned problems and offers a complete geometry-

aware manipulability transfer framework where manipul-

ability ellipsoid profiles are learned from demonstrations

and reproduced accurately. This opens the possibility to

transfer posture-dependent task requirements between

agents of dissimilar kinematic structures. In particular, this

framework also permits to transfer other velocity, force, or

impedance specifications with any priority order with

respect to the manipulability tracking controller.

Beyond the combination of our early contributions on

manipulability learning and tracking, the other con-

tributions of this article are: (i) analyzing the role of the

proposed differential geometry formulation of the geometry-

aware tensor-based GMM/GMR adapted to manipulability

ellipsoids; (ii) extending the geometry-aware manipulability

tracking control scheme initially designed for kinetostatic

manipulability measures to dynamic measures; (iii) demon-

strating the exponential stability of the proposed manipul-

ability tracking controllers; (iv) introducing various novel

types of geometry-aware manipulability tracking schemes

and methodologies to consider the robot actuators contribu-

tion and variability-based tracking precision; (v) analyzing

the importance of the geometry-awareness of the manipul-

ability tracking controllers by comparison against state-of-

the-art manipulability-based optimization methods.

A summary video, as well as videos of the illustrative

planar examples and simulated and real experiments

accompany the article and can be found at https://sites.goo

gle.com/view/manipulability. Related source codes are

available at https://github.com/NoemieJaquier/

Manipulability.

2. Background

2.1. Manipulability ellipsoids

Velocity and force manipulability ellipsoids introduced in

Yoshikawa (1985b) are kinetostatic performance measures

of robotic platforms. They indicate the preferred directions

in which force or velocity control commands may be per-

formed at a given joint configuration. More specifically, the

velocity manipulability ellipsoid describes the characteris-

tics of feasible motion in Cartesian space corresponding to

all the unit norm joint velocities. The velocity manipulabil-

ity of an n-DoF robot can be found by using the kinematic

relationship between task velocities _x and joint velocities _q,

_x= J(q) _q ð1Þ

where q 2 R
n and J 2 R

6× n are the joint position and

Jacobian of the robot, respectively. Moreover, consider the

set of joint velocities of constant (unit) norm k _qk2 = 1

describing the points on the surface of a hypersphere in the

joint velocity space, which is mapped into the Cartesian

velocity space R
6 with1

k _qk2 = _q> _q= _x>(JJ>)�1 _x ð2Þ

by using the least-squares inverse kinematics relation

_q= Jy _x= J>(JJ>)�1 _x. Equation (2) represents the robot

manipulability in terms of motion, indicating the flexibility

of the manipulator in generating velocities in Cartesian

space.2

In the literature, the velocity manipulability ellipsoid is

usually defined as (JJ>)�1, where the principal axes of the

ellipsoid coincide with the eigenvectors and their length is

equal to the inverse of the square root of the corresponding

eigenvalues, i.e., 1ffiffiffi
li

p (see, e.g., Chiu, 1987). For the sake of

consistency, we here use an alternative definition of the

velocity manipulability ellipsoid given by M _x = JJ>. In

this case, the major axis of the manipulability ellipsoid is

aligned to the eigenvector associated with the maximum

eigenvalue lmax of M _x, whose length equals the square

root of lmax. Thus, the interpretation and representation of

the manipulability ellipsoid from the corresponding matrix

are facilitated. Note that the major axis of the velocity

manipulability ellipsoid M _x = JJ> indicates the direction

in which the greater velocity can be generated, which is

also the direction in which the robot is more sensitive to

perturbations. This occurs owing to the principal axes of

the force manipulability being aligned with those of the

velocity manipulability, with reciprocal lengths (eigenva-

lues) caused by the duality of velocity and force (for details

see Chiu, 1987).

Other forms of manipulability ellipsoids exist, such as

the dynamic manipulability (Yoshikawa, 1985a), which

gives a measure of the ability of performing end-effector
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accelerations along each task-space direction for a given

set of joint torques. This has been shown to be useful when

the robot dynamics cannot be neglected in highly dynamic

manipulation tasks (Chiacchio et al., 1991b). Recent works

have extended this measure to analyze the robot capacity to

accelerate its center of mass (CoM) for locomotion stability

(Azad et al., 2017; Gu et al., 2015), showing the applicabil-

ity of the aforementioned tools beyond robotic

manipulation.

As mentioned previously, any manipulability ellipsoid

M belongs to the set of SPD matrices SD
++ that describes

the interior of the convex cone. Consequently, our manipul-

ability transfer formulation must consider this particular

characteristic to properly encode, reproduce, and track

manipulability ellipsoids. To do so, we here propose

geometry-aware formulations of both learning and tracking

problems by exploiting Riemannian manifolds and tensor

representations, which are introduced next.

2.2. Riemannian manifold of SPD matrices

The set of D×D SPD matrices SD
++ is not a vector space

because it is not closed under addition and scalar product

(Pennec et al., 2006), and thus the use of classical

Euclidean space methods for treating and analyzing these

matrices is inadequate. A compelling solution is to endow

these matrices with a Riemannian metric so that these form

a Riemannian manifold.3 This metric permits to define

geodesics, which are the generalization of straight lines to

Riemannian manifolds. Similarly to straight lines in

Euclidean space, geodesics are the minimum-length curves

between two points on the manifold.

Intuitively, a Riemannian manifoldM is a mathematical

space for which each point locally resembles a Euclidean

space. For each point S 2 M, there exists a tangent space

T SM equipped with a positive-definite inner product. In

the case of the SPD manifold, the tangent space at any

point S 2 SD
++ is identified by the space of symmetric

matrices SymD and the inner product between two matrices

T1, T2 2 T SM is

hT1,T2iS = tr(S�
1
2T1S�1T2S�

1
2) ð3Þ

The space of SPD matrices can be represented as the

interior of a convex cone embedded in its tangent space

SymD. To utilize these tangent spaces, we need mappings

back and forth between T SM and M, which are known

as exponential and logarithmic maps.

The exponential map ExpS : T SM!M maps a

point L in the tangent space to a point L on the manifold,

so that it lies on the geodesic starting at S in the direction

L and such that the distance between S and L is equal to

the norm of L in the tangent space. The inverse operation

is called the logarithmic map LogS :M! T SM. Both

operations are illustrated in Figure 2(a).

Specifically, the exponential and logarithmic maps on the

SPD manifold corresponding to the affine-invariant distance

d(L,S)= k log (S�
1
2LS�

1
2)kF ð4Þ

are computed as (see (Pennec et al., 2006) for details)

L =ExpS(L)= S
1
2 exp (S�

1
2LS�

1
2)S

1
2 ð5Þ

L=LogS(L)= S
1
2 log (S�

1
2LS�

1
2)S

1
2 ð6Þ

where exp (�) and log (�) are the matrix exponential and

logarithm functions.

Another useful operation over manifolds is the parallel

transport GS!L : T SM! T LM, which moves elements

between tangent spaces such that the angle between two

elements in the tangent space remains constant (see Figure

2(b)). The parallel transport of T 2 T SSD
++ to T LSD

++ is

given by

~T=GS!L(T)=AS!LTA
>
S!L ð7Þ

with AS!L = L
1
2S�

1
2 (for details see Sra and Hosseini,

2015). This operation is exploited when it is necessary to

move SPD matrices along a curve on the nonlinear mani-

fold. Finally, for a complete introduction to differential

geometry and Riemannian manifolds, we refer the inter-

ested reader to, e.g., do Carmo (1992) and Lee (2012).

In this article, we first exploit the Riemannian manifold

framework to propose a probabilistic learning model that

encodes and retrieves manipulability ellipsoids considering

that these belong to SD
++ . Second, we take advantage of the

Riemannian geometry to compute the difference between

manipulability ellipsoids in the tracking problem, and con-

sequently propose novel velocity- and acceleration-based

controllers. This geometry-aware approach proves to be

Fig. 2. SPD manifold S2
++ embedded in its tangent space Sym2.

One point corresponds to a matrix
T11T12

T12T22

� �
2 Sym2. Points

inside the cone, such as S and L, belong to S2
++ . In (a) L lies on

the tangent space of S such that L=LogS(L). The shortest path

between S and L is the geodesic represented as a red curve,

which differs from the Euclidean path depicted in yellow. In (b)
~T 2 T LM is the result of the parallel transport of T 2 T SM
from T SM to T LM. The coordinate axes of the tangent

spaces T SM and T LM are represented in dark gray.
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crucial for learning and tracking manipulability ellipsoids

in terms of accuracy, stability, and convergence, beyond

providing an appropriate mathematical treatment of both

problems.

2.3. Tensor representation

Tensors are generalization of matrices to arrays of higher

dimensions (Kolda and Bader, 2009), where vectors and

matrices may respectively be seen as first- and second-

order tensors. Tensor representation permits to represent

and exploit data structure of multidimensional arrays. In

this article, such representation is first used in the learning

process to encode a distribution of manipulability ellipsoids

(as explained in Section 3). Then, tensor representation is

also exploited in the proposed manipulability tracking for-

mulation to find the first-order differential relationship

between the robot joints and the robot manipulability ellip-

soid (first- and second-order tensors, respectively), which

results in a third-order tensor (see Section 4). To do so, we

first introduce the tensor operations needed for our mathe-

matical treatment.

2.3.1. Tensor product. The tensor product is a multilinear

generalization of the outer product of two vectors

x� y= xy>. The tensor product of two tensors

X 2 R
I1 ×���× IM , Y 2 R

J1 ×���× JN is X � Y 2
R

I1 ×���× IM × J1 ×���× JN with elements

(X � Y )i1, ..., iM , j1, ..., jN = xi1, ..., iM yj1, ..., jN ð8Þ

2.3.2. n-mode product. The multiplication of a tensor

X 2 R
I1 × ...× In × ...× IN by a matrix A 2 R

J × In , known as

the n-mode product is defined as

Y = X × nA( Y(n) =AX(n) ð9Þ

where X(n) 2 R
In × I1I2...IN is the n-mode matricization or

unfolding of tensor X . Element-wise, this n-mode product

can be written as (X × nA)i1...in�1jnin + 1...iN =P
in

ajnin xi1...in�1inin + 1...iN .

2.3.3. Tensor contraction. As described in Tyagi and Davis

(2008), we denote the element (i, j, k, l) of a fourth-order

tensor S by S kl
ij with two covariant indices i, j and two con-

travariant indices k, l. The element (k,l) of a matrix X is

denoted by Xkl with two covariant indices k, l. A tensor

contraction between two tensors is performed when one or

more contravariant and covariant indices are identical. For

example, the tensor contraction of S 2 R
D×D×D×D and

X 2 R
D×D is written as

S X=
XD

k = 1

XD

l = 1

S kl
ij Xkl ð10Þ

2.3.4. Tensor covariance. Similarly to the covariance of

vectors, the 2M th-order covariance tensor

S 2 R
I1 ×���× IM × I1 ×���× IM of centered tensors

X n 2 R
I1 ×���× IM is given by

S =
1

N � 1

XN

n = 1

X n � X n ð11Þ

where N is the total number of data points. This definition is

used in the formulation of tensor-variate normal distributions.

2.3.5. Normal distribution of symmetric matrices. The

tensor-variate normal distribution of a random second-order

symmetric matrix X 2 SymD with mean N 2 SymD and

covariance S 2 R
D×D×D×D is defined as (Basser and

Pajevic, 2007)

N (XjN, S )= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)

~DjS j
q e�

1
2
(X�N)S �1(X�N) ð12Þ

with ~D = D + D(D� 1)=2. This formulation is used in

Section 3 to formulate a normal distribution of SPD

matrices necessary to adapt the formulations of GMM and

GMR to encode and retrieve manipulability ellipsoids.

2.3.6. Derivative of a matrix with respect to a vector. In

the following identities, the matrix Y 2 R
I × J is a function

of x 2 R
K , while A 2 R

L× I and B 2 R
J ×L are constant

matrices. The derivative of a matrix function Y with respect

to a vector x is a third-order tensor ∂Y
∂x
2 R

I × J ×K such that

∂Y

∂x

� �
ijk

=
∂yij

∂xk

ð13Þ

Note that when the matrix function Y is multiplied by a

constant matrix, the partial derivatives of Y are given as

follows.

Left multiplication by a constant matrix

∂AY

∂x
=

∂Y

∂x
×1A ð14Þ

Right multiplication by a constant matrix

∂YB

∂x
=

∂Y

∂x
×2B

> ð15Þ

Finally, another useful operation for our manipulability

tracking formulation is the derivative of the inverse of the

matrix Y with respect to the vector x, which results in a

third-order tensor, namely

∂Y�1

∂x
=� ∂Y

∂x

>
×1Y

�1 ×2Y
�> ð16Þ

Note that the proposed geometry-aware manipulability

tracking, introduced in Section 4, takes inspiration from the

628 The International Journal of Robotics Research 40(2-3)



computation of the robot Jacobian, which is computed from

the first-order time derivative of the robot forward kine-

matics. We use the tensor representation to similarly com-

pute the first-order derivative of the function that describes

the relationship between a manipulability ellipsoid M and

the robot joint configuration q. Mathematical proofs for

(14), (15), and (16) are given in Appendix A.

3. Learning manipulability ellipsoids

The first open problem in manipulability transfer is to

appropriately encode sequences of demonstrated manipul-

ability ellipsoids and subsequently retrieve a desired manip-

ulability profile that encapsulates the patterns observed

during the demonstrations. In order to describe how we

tackle this problem, we first introduce the mathematical

formulation of a GMM that encodes a set of demonstrated

manipulability ellipsoids over the manifold of SPD

matrices. This probabilistic formulation models the trend of

the demonstrated manipulability sequences along with their

variability, reflecting their dispersion through the different

demonstrations. After, we describe how a distribution of

the desired manipulability ellipsoids can be retrieved via

GMR on the SPD manifold.

3.1. GMM on SPD manifolds

Similarly to multivariate distribution (see Dubbelman,

2011; Simo-Serra et al., 2017; Zeestraten et al., 2017), we

can extend the normal distribution (12) to the SPD mani-

fold. Thus, a tensor-variate distribution maximizing the

entropy in the tangent space is approximated by

NM(XjN, S )= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)

~DjS j
q e�

1
2
LogN(X) S

�1 LogN(X) ð17Þ

where X 2 M, N 2 M is the origin in the tangent space

and S 2 T NM is the covariance tensor.

Similarly to the Euclidean case, a GMM on the SPD

manifold is defined by

p(X)=
XK

k = 1

pkNM(XjNk , S k) ð18Þ

with K being the number of components of the model, and

pk representing the priors such that
P

k pk = 1.

The parameters of a GMM on the manifold of SPD

matrices are estimated by expectation–maximization (EM)

algorithm. Specifically, the responsibility of each compo-

nent k is computed in the E-step as

p(kjXi)=
pk NM(XijNk , S k)PK
j = 1 pj NM(XijNj, S j)

ð19Þ

Nk =
XN

i = 1

p(kjXi) ð20Þ

During the M-step, the mean Nk is first updated itera-

tively until convergence for each component. The covar-

iance tensor S k and prior pk are then updated using the

new mean:

Nk  
1

Nk

ExpNk

XN

i = 1

p(kjXi) LogNk
(Xi)

 !
ð21Þ

S k  
1

Nk

XN

i = 1

p(kjXi) LogNk
(Xi)� LogNk

(Xi) ð22Þ

pk  
Nk

N
ð23Þ

3.2. GMR on SPD manifolds

GMR computes the conditional distribution p(XOOjXII ) of

the joint distribution p(X), where the subindices I and O
denote the sets of dimensions that span the input and out-

put variables. We use the following block decomposition of

the data points, means, and covariances:

X=
XII 0
0 XOO

� �
, N =

NII 0
0 NOO

� �

S =

S IIII 0 0 0

0 S OOII 0 0

0 0 S IIOO 0

0 0 0 S OOOO

0BBB@
1CCCA ð24Þ

where we represent the fourth-order tensor by separating

the components of the third and fourth modes with horizon-

tal and vertical bars, respectively. With this decomposition,

manifold functions can be applied individually on input and

output parts, for example the exponential map would be

ExpNk
(X)=

ExpNII (XII ) 0
0 ExpNOO (XOO)

� �
Similarly to GMR in Euclidean space (Rozo et al., 2016)

and in manifolds where data are represented by vectors

(Zeestraten et al., 2017), GMR on SPD manifold approxi-

mates the conditional distribution by a single Gaussian

p(XOOjXII );N (N̂OO, Ŝ
OO
OO ) ð25Þ

where the mean X̂OO is computed iteratively until conver-

gence in its tangent space using

Dk =LogN̂OO
(NOO, k)� ~S IIOO, k

~S II�1

II , k LogXII (NII , k) ð26Þ

N̂OO  ExpX̂OO(
X

k

hkDk) ð27Þ

with hk describing the responsibilities of the GMM compo-

nents in the regression, namely
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hk =
pk N (XII jNII , k, S IIII , k)PK
j = 1 pj N (XII jNII , j, S IIII , j)

ð28Þ

The covariance Ŝ OOOO is then computed in the tangent

space of the mean

Ŝ OOOO =
X

k

hk
~S OOOO, k � ~S IIOO, k

~S II�1

II , k
~S OOII , k + Dk � Dk

� �
� N̂OO � N̂OO

ð29Þ

where ~S is the parallel transported covariance tensor

~S =GN!X̂(S ) with X̂=
XII 0
0 X̂OO

� �
ð30Þ

This covariance has been typically used to define the con-

troller gains of robotic systems for trajectory tracking prob-

lems (see also Section 4.4). Note that the definition of the

tangent space T NM (which has the structure of a

Euclidean vector space) is what allow us to compute the

conditional distribution above. Also note that to parallel

transport a fourth-order covariance tensor

S 2 R
D×D×D×D, the covariance is first converted into a

second-order tensor S 2 R
~D× ~D with ~D = D + D(D� 1)=2,

as proposed in Basser and Pajevic (2007). We can then

compute its eigentensors Vk , which are used to parallel

transport the covariance matrix between tangent spaces

(Freifeld et al., 2014). Let ~Vk =GN!X̂(Vk) be the kth paral-

lel transported eigentensor with (7) and lk the kth eigenva-

lue. The parallel transported fourth-order covariance tensor

is then obtained with (for more details see Jaquier and

Calinon, 2017)

GN!X̂(S )=
X

k

lk
~Vk � ~Vk ð31Þ

3.3. Manipulability learning example with two

planar robots

In order to illustrate the functionality of the proposed learn-

ing approach, we carried out an experiment using a couple

of simulated planar robots with dissimilar embodiments

and a different number of joints. The central idea is to

teach a redundant robot to track a reference trajectory in

Cartesian space with a desired time-varying manipulability

ellipsoid. For the demonstration phase, a 3-DoF teacher

robot follows a C-shape trajectory four times, from which

we extracted both the end-effector position xt and robot

manipulability ellipsoid Mt(q), at each time step t. The col-

lected time-aligned data were split into two training data-

sets of time-driven trajectories, namely Cartesian position

and manipulability. We trained a classical GMM over the

time-driven Cartesian trajectories and a geometry-aware

GMM over the time-driven manipulability ellipsoids, using

models with five components, i.e., K = 5 (the number was

selected by the experimenter).

During the reproduction phase, a 5-DoF student robot

executed the time-driven task by following a desired

Cartesian trajectory x̂t computed from a classical GMR as

x̂t;p(xjt). As secondary task, the robot was also required

to vary its joint configuration for matching desired manip-

ulability ellipsoids M̂t;p(Mjt), estimated by GMR over

the SPD manifold.

Figure 3(a) shows the four demonstrations carried out by

the 3-DoF robot, where both the Cartesian trajectory and

manipulability ellipsoids are displayed. Note that the

recorded manipulability ellipsoids slightly change across

demonstrations as a side effect of the variation observed in

both the initial end-effector position and the generated tra-

jectory. Figure 3(b) displays the demonstrated ellipsoids (in

gray) along with the center Nk of the five components of

the GMM encoding M. These are centered at the end-

effector position recovered by the classical GMR for the

corresponding time steps represented in the geometry-aware

GMM. Figure 4 shows the desired Cartesian trajectory and

manipulability ellipsoid profile respectively estimated by

classical GMR and GMR in the SPD manifold. Both

manipulability and Cartesian path are references to be

tracked by the student robot.

These results validate that the proposed learning frame-

work permits to learn and plan the reproduction of refer-

ence trajectories, while fulfilling additional task

requirements encapsulated in a profile of desired manipul-

ability ellipsoids. In Section 4, we develop a manipulability

tracking formulation that will then be used by the 5-DoF

student robot to track the desired manipulability profile

obtained in the learning phase.

4. Tracking manipulability ellipsoids

Several robotic manipulation tasks may demand the robot

to track a desired trajectory with certain velocity specifica-

tions, or apply forces along different task-related axes.

Fig. 3. (a) Four demonstrations of a 3-DoF planar robot tracking

a C-shape trajectory. The end-effector path (light gray solid lines)

and the manipulability ellipsoids at different time steps are

shown for all the demonstrations. (b) Demonstrated

manipulability ellipsoids (in gray) and centers Nk of the 5-state

GMM in the SPD manifold. Position x and time t are given in

centimeters and seconds, respectively.
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These requirements are more easily achieved if the robot

adopts a posture that suits velocity or force control com-

mands. In other tasks, the robot may be required to adopt a

posture that comply several aligned velocity or force

requirements. These problems can be viewed as matching a

set of desired manipulability ellipsoids that are compatible

with the task requirements. In this section, we introduce an

approach that addresses this problem by exploiting the

mathematical concepts presented in Section 2.

4.1. Manipulability Jacobian

Given a desired profile of manipulability ellipsoids, the

goal of the robot is to adapt its posture to match the desired

manipulability, either as its main task or as a secondary

objective. We here propose a formulation inspired by the

classical inverse kinematics problem in robotics, which per-

mits to compute the joint angle commands to track a

desired manipulability ellipsoid.

First, the manipulability ellipsoid is expressed as a func-

tion of time

M(t)= f (J(q(t))) ð32Þ

for which we can compute the first-order time derivative by

applying the chain rule as

∂M(t)

∂t
=

∂f (J(q))

∂q
×3

∂q(t)

∂t

>
= J (q)×3 _q> ð33Þ

where J 2 R
6× 6× n is the manipulability Jacobian of an

n-DoF robot, representing the linear sensitivity of the

changes in the robot manipulability ellipsoid _M= ∂M(t)
∂t

to

the joint velocity _q= ∂q(t)
∂t

. Note that the computation of the

manipulability Jacobian depends on the type of manipul-

ability ellipsoid that is used. We develop here the

expressions for the force, velocity, and dynamic manipul-

ability ellipsoids.

The derivation of the manipulability Jacobian J _x corre-

sponding to the velocity manipulability ellipsoid M _x = JJ>

is straightforward by using (14) and (15)4

J _x =
∂J

∂q
×2J+

∂J>

∂q
×1J ð34Þ

Similarly, the manipulability Jacobian J F correspond-

ing to the force manipulability ellipsoid MF = (JJ>)�1 is

obtained using (14), (15), and (16),

J F =� ∂J

∂q
×2J+

∂J>

∂q
×1J

� �
×1M

F ×2M
F ð35Þ

In a similar fashion, the manipulability Jacobian J €x

corresponding to the dynamic manipulability ellipsoid

M€x = YY> with Y = JL(q)�1 (as defined in (Yoshikawa,

1985a), where L(q) is the robot inertia matrix), is com-

puted as follows

J €x =
∂Y

∂q
×2Y +

∂Y>

∂q
×1Y ð36Þ

where

∂Y

∂q
=

∂J

∂q
×2L�>+

∂L�1

∂q
×1J

=
∂J

∂q
×2L�> � ∂L

∂q
×1Y×2L�>

Details on the computation of the derivative of the

Jacobian and inertia matrix with respect to the joint angles

are given in Appendices B and C.

4.2. Geometry-aware manipulability tracking

formulation

4.2.1. Velocity-based controller. A solution to control a

robot so that it tracks a desired end-effector trajectory is to

compute the desired joint velocities using the inverse kine-

matics formulation derived from (1). We use here a similar

approach to compute the joint velocities _q to track a desired

manipulability profile. More specifically, by minimizing

the ‘2 -norm of the residuals

min
_q
k _M� J ×3 _q> k = min

_q
k vec( _M)� J >(3) _q k

we can compute the required joint velocities of the robot to

track a profile of desired manipulability ellipsoids as its

main task with

_q= (J y
(3))
>vec( _M) ð37Þ

where vec( _M) is the vectorization of the matrix _M.

Fig. 4. (a) Desired execution of a C-shape tracking task. The

desired Cartesian trajectory and manipulability profile are

depicted as a black curve and green ellipsoids. (b) The top shows

the desired manipulability ellipsoids estimated by GMR and the

bottom shows the influence of GMM components on the time-

driven GMR. The colors match the distributions shown in Figure

3(b).
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Note that (37) allows us to define a controller to track a

reference manipulability ellipsoid as main task, similarly as

the classical velocity-based control that tracks a desired

task-space velocity. To do so, we propose to use a

geometry-aware similarity measure to compute the joint

velocities necessary to move the robot towards a posture

where the match between the current manipulability ellip-

soid Mt and the desired one M̂t is maximum. Specifically,

the difference between manipulability ellipsoids is com-

puted using the logarithmic map (6) on the SPD manifold.

Therefore, the corresponding controller is given by

_qt = (J y
(3))
>KMvec(LogMt

(M̂t)) ð38Þ

where KM is a gain matrix.

Alternatively, for the case in which the main task of the

robot is to track reference trajectories in the form of

Cartesian positions or force profiles, the tracking of a pro-

file of manipulability ellipsoids is assigned a secondary

role. Thus, the robot task objectives are to track the refer-

ence trajectories while exploiting the kinematic redundancy

to minimize the difference between current and desired

manipulability ellipsoids. In this situation, a manipulability-

based redundancy resolution is carried out by computing a

nullspace velocity that similarly exploits the geometry of

the SPD manifold. Thus, the corresponding controller is

given by

_qt = JyKx (x̂t � xt)

+ (I� JyJ)(J y
(3))
>KM vec(LogMt

(M̂t))
ð39Þ

Note that matricization and vectorization operations can

be defined using Mandel notation to alleviate the computa-

tional cost of the controllers using tensor representations,

such that

X (3) =

vec X :, :, 1ð Þ>

..

.

vec X :, :,Kð Þ>

0BB@
1CCA and

vec
a b

b g

� �� �
=

a

gffiffiffi
2
p

b

0B@
1CA

ð40Þ

for 2× 2×K third-order tensors and 2× 2 matrices.

In order to show the functionality of the proposed

approach where the goal of the robot is to reproduce a

given manipulability ellipsoid either as its main task or as a

secondary objective, we carried out experiments with a

simulated 4-DoF planar robot. In the first case, the robot is

required to vary its joint configuration to make its manipul-

ability ellipsoid Mt coincide with the desired one M̂, with-

out any task requirement at the level of its end-effector. In

the second case, the robot needs to keep its end-effector at

a fixed Cartesian position while moving its joints to match

the desired manipulability ellipsoid. Figure 5 shows how

the manipulator configuration is successfully adjusted so

that Mt ’ M̂ when the manipulability ellipsoid tracking is

considered as the main task or as a secondary objective

(see Table 1). These results show that our geometry-aware

controllers inspired by the inverse kinematics formulation

are suitable to solve the manipulability ellipsoid tracking

problem.

4.2.2. Stability analysis. We here analyze the stability

properties of the proposed manipulability tracking control-

ler given the geometry of the underlying manifold. First,

note that the dynamical system operated by the controller

(38) corresponds to

_M= kMLogM(M̂) ð41Þ

where the controller gain is assumed to be a positive scalar

value for sake of simplicity. Then, we select the Lyapunov

function V as

V (M)= hF,FiM̂ ð42Þ

Fig. 5. (a) Manipulability tracking as the main task. (b)

Manipulability-based redundancy resolution with Cartesian

position control. The robot color goes from light gray to black to

show the evolution of the posture. Initial, final, and desired

manipulability ellipsoids are depicted in yellow, dark purple, and

green, respectively. The top rows show close-up plots

corresponding to the initial and final manipulability.

Table 1. Initial and final distances d(M̂,Mt) between the

current and desired manipulability for the experiments illustrated

in Figure 5

Initial Final

Main task 1:342 0:199
Redundancy resolution 2:194 0:955
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where F=LogM̂(M) is a vector field composed of the ini-

tial velocities of all geodesics departing from the origin M̂,

and h�,�iM̂ is the inner product (3). As proved by Pait and

Colon (2010), the function (42) is a Lyapunov function for

a dynamical system _M= h(M) such that h(M̂)= 0 if the

Lie derivative LhV (M)= 2hh,FiM̂ is negative everywhere

except at the origin M̂. To verify this condition, we first

express the velocity of the dynamical system (41) in the

tangent space of M̂ using parallel transport as

GM!M̂( _M)=� kM̂LogM̂(M) ð43Þ

The Lie derivative LhV of the proposed Lyapunov function

for the dynamical system (43) is given by

LhV (M)= 2h�kM̂LogM̂(M), LogM̂(M)iM̂
=� 2kM̂ hLogM̂(M), LogM̂(M)iM̂
=� 2kM̂V

ð44Þ

Therefore, we have

V (M).0, LhV (M)\0 8M 6¼ M̂

V (M)=LhV (M)= 0(M= M̂

so that the function (42) is a valid Lyapunov function.

Moreover, by observing that V (M)= d2(M, M̂) with

d(�, �) the affine-invariant distance (4), we have

c1d2(M, M̂)ł V (M)ł c2d2(M, M̂)

LhV (M)ł� c3d2(M, M̂)

where 0\c1 ł 1, c2 ø 1, and c3 = 2kM̂.0. This implies

that the controller (38) is exponentially stable (see, e.g.,Wu,

2020). It can be easily shown that this result holds with

c3 = 2lmin(KM̂) for a positive-definite controller gain

matrix KM̂, where lmin(�) returns the minimum eigenvalue

of the matrix.

Note that the Lyapunov function (42) is similar to that

usually defined to demonstrate the exponential stability of

the classical inverse kinematic-based velocity controller

_qt = JyKx (x̂t � xt). In that case, the Lyapunov function is

defined as V (x)= (x̂� x)>(x̂� x), which is equivalent to

the inner product he, ei with the error e= x̂� x. In the case

of manipulability tracking, the inner product h�,�i is defined

in the SPD manifold and the error e is computed as

LogM̂(M). Finally, it is worth highlighting that when the

manipulability tracking is assigned a secondary role, the

controller (39) does not influence the stability of the main

task of the robot as the manipulability-based redundancy

resolution is carried out in the corresponding nullspace.

4.2.3. Acceleration-based controller. Similarly to the

velocity-based controller, we propose a geometry-aware

acceleration-based controller that allows the computation

of the joint accelerations €q required to track a desired

manipulability trajectory (i.e., desired manipulability and

manipulability velocity profiles). The approach is inspired

by the inverse kinematics formulation and its differential

relationships used to compute the joint accelerations neces-

sary to track desired end-effector positions and velocities.

To formalize the acceleration-based controller, let us

first define the second-order time derivative of the manipul-

ability ellipsoid computed from (33) by applying the prod-

uct rule

∂2M(t)

∂t2
= J (q)×3 €q>+ _J (q)×3 _q> ð45Þ

(see Appendix D for details on the computation of _J (q)).
Thus, by minimizing the ‘2-norm of the residuals, we can

compute the required joint accelerations of the robot to

track a desired trajectory of manipulability ellipsoids as its

main task with

€q= (J y
(3))
> vec( €M)� _J >(3) _q
� �

ð46Þ

Similarly as in the classical acceleration-based controller

that tracks a desired end-effector trajectory, we can define a

controller to track a reference manipulability ellipsoid tra-

jectory based on (46). To do so, we exploit the geometry of

the SPD manifold to compute the difference between the

current manipulability ellipsoid Mt and the desired one M̂t,

as previously specified for the velocity-based controller.

Moreover, because the first-order time derivative of manip-

ulability ellipsoids lies on the tangent space of the SPD

manifold (i.e., the space of symmetric matrices SymD), the

difference between the current manipulability velocity _Mt

and the desired one
c_Mt is computed as a subtraction in the

Euclidean space. Therefore, a reference manipulability

acceleration command can be specified by

vec( €Mt)=Kpvec LogMt
(M̂t)

� �
+Kdvec(

c_Mt � _Mt) ð47Þ

which resembles a proportional–derivative controller where

Kp and Kd are gain matrices. Then, the reference joint

acceleration €q can be computed using (46) and (47). Note

that this reference joint acceleration can correspond to a

main task of the robot or to a secondary tracking objective.

In the latter case, a manipulability-based redundancy reso-

lution can also be implemented in a similar way as (39).

4.3. Actuators contribution

In many practical applications, the joint velocities of the

robot are limited. The definition of manipulability ellipsoid

can then be extended to include these actuation constraints,

as shown in Lee (1997). We here provide the definition of

the force, velocity, and dynamic manipulability ellipsoids

and the corresponding manipulability Jacobians consider-

ing joint actuation constraints.

To include the joint velocity constraints of the robot in

the definition of the velocity manipulability ellipsoid, we

use the following weighted forward kinematics formulation
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_x= (JW _q)|fflffl{zfflffl}
~J

(W _q�1 _q)|fflfflfflffl{zfflfflfflffl}
~_q

ð48Þ

where W _q = diag( _q1, max, . . . , _qn, max) is a diagonal matrix

whose elements correspond to the maximum joint velocities

of the robot. Then, considering the set of joint velocities of

constant unit norm k~_qk = 1 mapped into the Cartesian

velocity space through

k~_qk2 = ~_q
>~_q= _x>(~J~J

>
)�1 _x ð49Þ

the velocity manipulability ellipsoid is given by
~M

_x
= ~J~J

>
= JW _qW _q>J>, which represents the flexibility

of the manipulator in generating velocities in Cartesian

space considering its maximum joint velocities as illu-

strated in Figure 6(a). Note that the actuators contribution

W _qW _q> also has a geometrical interpretation based on the

fact that the robot joint position q lies on the flat n-torus

manifold (Park, 1995).

By following the methodology of Section 4.1, the

change in the robot manipulability ellipsoid is related to

the joint velocity via

∂ ~M(t)

∂t
= ~J (q)×3 _q> ð50Þ

Therefore, the velocity manipulability Jacobian including

joint velocity limits is given by

~J _x =
∂J

∂q
×2JW

_qW _q>+
∂J>

∂q
×1JW

_qW _q> ð51Þ

Figure 6(b) shows the effect of including the actuator con-

tribution when tracking a velocity manipulability ellipsoid.

Note that the robot joint q1 moves significantly when given

the highest velocity limit. In contrast, its influence on the

manipulability tracking task is minimal when given the low-

est velocity limit. This demonstrates the importance of con-

sidering the robot actuator specifications when tracking

manipulability ellipsoids in real platforms.

In a similar way, the force manipulability ellipsoid con-

sidering the maximum joint torques is defined as
~M
F
= (JΩtJ>)�1, where Ωt = (W>W t>)�1 and W t =

diag(t1, max, . . . , tn, max). Then, the corresponding manip-

ulability Jacobian is given by

~J F =� ∂J

∂q
×2JΩ

t +
∂J>

∂q
×1JΩ

t

� �
×1

~M
F ×2

~M
F

Finally, the dynamic manipulability ellipsoid considering

the maximum joint torques is ~M
€x
= YΩt�1Y> with corre-

sponding manipulability Jacobian defined as

~J €x =
∂Y

∂q
×2YΩt�1 +

∂Y>

∂q
×1YΩt�1 ð52Þ

4.4. Exploiting fourth-order precision matrix as

controller gain

An open problem regarding the proposed tracking

approach is how to specify the values of the gain matrix

KM, which basically determines how the manipulability

tracking error affects the resulting joint velocities. In this

sense, we propose to define KM as a precision matrix,

which describes how accurately the robot should track a

desired manipulability ellipsoid. In learning from demon-

stration applications, such gain matrix would typically be

set as proportional to the inverse of the observed covar-

iance S (see Section 3.2). This encapsulates variability

information of the task to be learned. Our goal here is to

exploit this information to demand the robot a high preci-

sion tracking for directions in which low variability is

observed, and vice versa.

We therefore introduce the required precision S �1 for a

given manipulability tracking task into the controllers

defined in Section 4.2. To do so, we define the gain matrix

KM as a function of the precision tensor. Specifically, we

define the controller gain matrix as a full SPD matrix,

which is computed from the matricization of the precision

tensor S �1 along its two first dimensions, with a propor-

tion defined by

KM}S �1
(1, 2) ð53Þ

To show how precision matrices work as controller

gains in our manipulability tracking problem, we tested dif-

ferent forms of KM aimed at reproducing a given manipul-

ability ellipsoid as a main task with a simulated 4-DoF

planar robot. The robot is required to move its joints to

track a desired manipulability ellipsoid, where the control-

ler gain matrix KM is a diagonal matrix with the diagonal

elements of (53) to take into account the variation of each

Fig. 6. Illustration of the contribution of actuators. (a) Velocity

manipulability ellipsoids obtained when setting a maximum joint

velocity, for each joint, five times higher than the rest. The

manipulability corresponding to equal maximum joint velocity is

shown in gray. (b) Joint trajectories obtained with manipulability

tracking (as in Figure 5(a)) for equal maximum joint velocities

(top), highest velocity limit for q1 (middle), and lowest velocity

limit for q1 (bottom).
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component of the manipulability ellipsoid. We tested four

different precision tensors. First, equal variability for all

components of the manipulability ellipsoid matrix is given.

Then, the variability along the first or the second main axis

of the manipulability ellipsoid, corresponding to the first

and second diagonal elements of the gain matrix KM, is

reduced. This means that the robot needs to prioritize the

tracking of one of the ellipsoid main axes over the other. In

the fourth test, the variability of the correlation between the

two main axes of the manipulability ellipsoid is lowered. In

this last case, the manipulability controller prioritizes the

tracking of the ellipsoid orientation over the shape.

Figure 7 shows how the manipulator posture is adapted

to track the desired manipulability ellipsoid with a priority

on the component with the lowest variability. Note that

when high tracking precision is required for one of the

main axes of the ellipsoid, the robot initially seeks to fit the

shape of the ellipsoid along that specific axis, and subse-

quently matches the whole manipulability ellipsoid. In this

case, the precision ratio between the prioritized and the rest

of components of the gain matrix is 10:1. When high track-

ing precision is assigned to the correlation of the ellipsoid

axes, the robot first tries to align its manipulability with the

orientation of the desired ellipsoid, and afterwards the

whole manipulability is matched. In this case, the precision

ratio between the prioritized correlation and the other com-

ponents of the gain matrix is 3:1. Note that the precision

tensor naturally affects the computed joint velocities

required to track a given ellipsoid, which consequently

influences the resulting motion of the end-effector as a

function of the precision constraints, as shown in Figure

7(e). After convergence, the desired manipulability ellip-

soid is successfully matched for all experiments. These

results show that our geometry-aware tracking permits to

take into account the variability information of a task to

define the manipulability tracking precision.

Therefore, our manipulability tracking approach may be

readily combined with the manipulability learning frame-

work introduced in Section 3. In order to illustrate this, we

show the reproduction phase of the experiment carried out

in Section 3.2. The 5-DoF student robot was requested to

track a desired Cartesian trajectory as main task, while

varying its joint configuration for matching desired manip-

ulability ellipsoids as secondary task. The student robot

used the geometry-aware controller defined by (39), where

KM was defined either as a scalar value or as a diagonal

matrix with the diagonal elements of (53) with the preci-

sion tensor being equal to the inverse of the covariance ten-

sor Ŝ OOOO retrieved by GMR (29). Our goal here was to

exploit the learned variability information of the task to

demand the robot a high precision tracking where low

Fig. 7. Manipulability tracking as the main task with diagonal gain matrices defined from different precision tensors. The top plots

depict the end-effector trajectory (solid colored line) and the posture of the robot along with the corresponding manipulability at time

t = 0, 0:25, and 1 s. The evolution of the manipulability along time is shown in the bottom plots. (a) Equal tracking precision for all

components. (b), (c) Tracking precision is 10:1 higher for x1 and x2, respectively. (d) Correlation between x1 and x2 axes is assigned a

high tracking accuracy. (e) Evolution of the robot manipulability and end-effector trajectory for the gain matrices used in (a)–(d). The

colors match those of the previous graphs. Initial and desired manipulability ellipsoids are depicted in dark blue and green on all

graphs. Time t is in seconds.

Fig. 8. Reproductions of a learned C-shape tracking task with

desired manipulability ellipsoids. The end-effector trajectory is

shown in black solid line, while the desired and reproduced

manipulabilities are depicted in green and dark purple,

respectively: (a) KM is a scalar value; (b) KM is the diagonal of

the precision tensor retrieved by GMR. The required tracking

precision is higher at the start and end of the task as a

consequence of the low observed variability.
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variability was observed in the demonstrations, and vice

versa. Successful reproductions of the demonstrated task

using our manipulability-based redundancy resolution con-

troller with scalar and variability-based matrix gains are

shown in Figures 8(a) and (b), respectively. Note that the

variability-based matrix gain changes the required tracking

precision, where higher precision is enforced only at the

beginning and the end of the task, which results in lower

control efforts in between. These results validate that the

proposed approach allows the robot to reproduce reference

profiles of desired manipulability ellipsoids while adapting

the tracking precision according to the demonstrated

requirements of the task.

4.5. Nullspace of the manipulability Jacobian

As traditionally done when designing redundancy resolu-

tion controllers, the nullspace of the manipulability

Jacobian can also be exploited to fulfill secondary objec-

tives when manipulability tracking is the main task. More

specifically, a joint velocity _qN, aimed at fulfilling second-

ary objectives, can be projected into the nullspace of our

manipulability tracking controller (38) using the nullspace

operator (I� (J y
(3))
>J >(3)). Therefore, the resulting redun-

dancy resolution controller is given by

_qt = (J y
(3))
>KMvec(LogMt

(M̂t))

+ (I� (J y
(3))
>J >(3)) _qN

ð54Þ

In order to show the functionality of this nullspace oper-

ator, we carried out experiments with a simulated 6-DoF

planar robot. The main task of the robot is to track a desired

manipulability ellipsoid while keeping a desired pose for its

first joint q0, which is considered as secondary task. Thus,

the nullspace velocity is defined as a simple proportional

controller _qN =KPq (q̂� qt) where q̂ is the desired joint con-

figuration and KPq is a matrix gain defined so that only joint

position errors in the first joint are compensated. Figure 9

shows that the black manipulator configuration is adjusted

to track the desired manipulability ellipsoid and keep, as

accurately as possible, the desired joint position for q0.

Note that the black robot is able to find an alternative joint

configuration that permits not only to closely track the

desired manipulability, but also fulfill secondary objectives

projected into its nullspace, in contrast to the blue robot

which exclusively implements a manipulability tracking

task. These results show that the nullspace of the manipul-

ability Jacobian is suitable to carry out a secondary task

along with manipulability tracking as main objective.

5. Importance of geometry-awareness

In the previous sections we introduced a geometry-aware

manipulability transfer framework composed of (1) a prob-

abilistic model that encodes and retrieves manipulability

ellipsoids, and (2) manipulability tracking controllers. In

this section, we show that the geometry-awareness of our

formulations is crucial for successfully learning and track-

ing manipulability ellipsoids in addition to providing an

appropriate mathematical treatment of both problems.

5.1. Learning

We first evaluate the proposed learning formulation com-

pared with a framework that ignores that manipulability

ellipsoids belong to the SPD manifold. To do so, we

encode a distribution of manipulability ellipsoids with a

GMM acting in the Euclidean space and we then retrieve

desired manipulability ellipsoids via the corresponding

GMR. To ensure the validity of the desired manipulability

ellipsoids, GMM and GMR are performed on lower trian-

gular matrices L obtained via Cholesky decomposition.

Thus, the positive-definiteness of the desired manipulabil-

ity ellipsoids computed as M̂= L̂L̂
>

is guaranteed, where

L̂ is the estimated GMR output. Note that this property is

not guarantee in the case where GMM and GMR acting in

the Euclidean space is applied directly to the manipulability

ellipsoids M. Therefore, we do not consider this approach

in the comparison as the desired matrices M̂ may not be

manipulability ellipsoids in some cases.

Figure 10 compares the proposed approach (Section 3)

and the manipulability learning using GMM/GMR acting

in Euclidean space. The demonstration consists of a time

series of changing manipulability ellipsoids. For each

approach, a 1-state GMM is trained and a reproduction is

carried out for a longer time period than the demonstration

using GMR. Both geometry-aware and Euclidean

approaches obtain similar means of the GMM component

(see Figure 10(a) and (b)). This is due to the fact that the

Euclidean mean computed using the Cholesky decomposi-

tion is a good approximation of the mean computed on

Fig. 9. Use of the nullspace of the manipulability Jacobian. Two

6-DoF planar robots are required to track a desired

manipulability ellipsoid as main task. The black robot also keeps

its first joint at a fixed position (depicted by the green link),

which is a secondary objective projected into the nullspace of the

manipulability Jacobian. The final manipulability ellipsoids (in

purple) fully overlap the desired ones (in green), showing a

precise manipulability tracking. The initial manipulability

ellipsoid is depicted in yellow.
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SD
++ if the SPD data are close enough to each other.

However, the covariances of the GMM components of both

approaches are not equivalent. Indeed, the covariance of

our geometry-aware approach is computed using the SPD

data projected in the tangent space of the mean, while that

of the Euclidean GMM corresponds to the covariance of

the elements of the vectorized Cholesky decomposition,

which ignores the geometry of the SPD manifold.

The manipulability ellipsoids profiles retrieved by the

geometry-aware and Euclidean GMR are similar around

the mean of the GMM component, but diverge when mov-

ing away from it (see Figure 10(c)). This is because the

estimated output in Euclidean space is only a valid approxi-

mation for input data lying close to the mean. In contrast,

our approach is able to extrapolate the rotating behavior of

the demonstrated manipulability ellipsoids as the recovered

trajectory follows a geodesic on the SPD manifold (see

Figure 10(b)). Note that this is the equivalent to following

a straight line in Euclidean space, which is the expected

result of a trajectory computed via Gaussian conditioning.

This behavior is obtained by parallel transporting the

GMM covariances to the tangent space of the mean of the

estimated conditional distribution of GMR (30). Therefore,

the Euclidean GMR does not recover a trajectory following

a geodesic on the manifold, leading to inconsistent extrapo-

lated manipulability ellipsoids.

The reported results show that our geometry-aware

approach accurately reproduces the behavior of the demon-

strated data, and therefore provides a mathematically sound

method for learning and retrieving manipulability ellipsoids

in the SPD manifold. Note that similar behaviors are

observed for GMM with any number of states, the number

K = 1 was chosen here to facilitate the visualization of the

results.

5.2. Tracking

5.2.1. Comparisons with Euclidean tracking. After show-

ing the importance of geometry for learning manipulability

ellipsoids, we compare the proposed tracking formulation

against a controller ignoring the geometry of SPD matrices

(i.e., treating the problem as Euclidean). Moreover, we eval-

uate our controller when the tracking of manipulability ellip-

soids is assigned a secondary role. This evaluation compares

our formulation against three Euclidean controllers, and the

gradient-based approach in Rozo et al., (2017). For the case

in which the manipulability tracking is the main objective,

we consider a 4-DoF planar robot that is required to track a

desired manipulability ellipsoid by minimizing the error

between its current and desired manipulability ellipsoids M
and M̂. We first compare the proposed approach (38) with

the following Euclidean manipulability tracking controller

_qt = (J y
(3))
>KMvec(M̂t �Mt) ð55Þ

where the difference between two manipulability ellipsoids

is computed in Euclidean space, i.e., ignoring that manipul-

ability ellipsoids belong to the set of SPD matrices. Second,

we compare the proposed approach to the Cholesky-based

Euclidean manipulability controller

_qt = (J y
(3))
>KMvec(DLtDL>t ) ð56Þ

where DL= L̂� L and matrices L are obtained from the

Cholesky decomposition such that M=LL>. This control-

ler ensures that the difference between two manipulability

ellipsoids is positive definite, but ignores that they belong

to the SPD manifold. For completeness, we also compare

our approach with the Cholesky-Jacobian-based Euclidean

manipulability controller

_qt = (J y
chol(3))

>KM vec(L̂� L) ð57Þ

where J chol =
dL
dq = dL

dM J is the Cholesky-based manipul-

ability Jacobian, so that _L= J chol ×3 _q>. This approach

tracks a desired manipulability solely through its Cholesky

decomposition with an adapted manipulability Jacobian.

Fig. 10. Importance of geometry in manipulability learning

formulations. (a) Demonstrated data (depicted in light gray), and

mean of the GMM component for the geometry-aware and

Euclidean approaches (overlapping blue and red ellipsoids,

respectively). (b) Mean of the GMM component and estimated

profiles in the cone of SPD matrices. The manipulability profile

obtained by our approach, shown in green, follows a geodesic.

The profile obtained by the Euclidean framework is depicted by

the orange curve and does not follow a geodesic on the manifold.

The geodesic containing the mean of the Euclidean GMM, being

a geometrically valid trajectory (depicted in purple), does not

correspond to the trajectory obtained with the Euclidean

framework. Thus, the Euclidean approach is geometrically

flawed. (c) Manipulability profiles retrieved by the geometry-

aware and Euclidean GMR, shown as green and orange ellipses,

respectively. The time axis is shared with (a).
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Similarly to (56), it ensures the positive definiteness of

manipulability ellipsoids, but ignores that they belong to

the SPD manifold. For all the following comparisons, the

gain matrices KM are identity matrices.

Figure 11 shows the convergence rate for the proposed

geometry-aware controller, the Euclidean-based approach,

the Cholesky-based Euclidean and Cholesky–Jacobian-

based Euclidean formulations. Two tests were carried out

by varying the initial configuration of the robot and the

desired manipulability ellipsoid. In the first case, the

Euclidean and geometry-aware formulations converge to

similar robot joint configurations with a distance between

the current and desired manipulability close to zero (see

Figure 11(a), left and middle, and Table 2). However, in the

second test, the Euclidean formulation induces a sudden

change in the joint configuration, resulting in an abrupt

increase on the error measured between the current and

desired manipulability ellipsoids (see Figure 11(b), left and

middle). In real scenarios, such unstable robot behavior

would certainly be harmful and unsafe. This erroneous

tracking performance can be explained by the fact that the

Euclidean path between two SPD matrices is a valid

approximation of the geodesic only if these are close

enough to each other, as shown in Figure 11(a)(right).

When this approximation is not valid (see Figure 11(b),

right), the Euclidean controller outputs inconsistent refer-

ence joint velocities that destabilize the robotic system,

therefore failing to track the desired manipulability. Note

Fig. 11. Performance of different manipulability tracking formulations. The graphs on the left show the affine-invariant distance

between the current and desired manipulability ellipsoids over time. The distances for the Euclidean, Cholesky-based Euclidean,

Cholesky–Jacobian-based Euclidean and geometry-aware approaches are depicted in blue, yellow, lilac, and red, respectively. The

graphs in the middle display the initial and final robot postures and the final manipulability ellipsoids. The initial posture is depicted

in light gray, while the final posture and corresponding manipulability for the three methods are depicted in the same color as the

distances. The desired manipulability is depicted in green. The middle graph in (b) also shows the sudden change in the robot posture

for both Euclidean methods (55) and (56). The robot posture before and after the abrupt change is shown in blue and light blue,

respectively, for (55) and in yellow and olive, respectively, for (56). The graphs on the right depict the evolution of the manipulability

ellipsoids in the SPD manifold. The colors correspond to those of the previous graphs with the green dot representing the desired

manipulability. The isolated light blue and olive dots in the bottom graph in (b) represent the manipulability ellipsoids after the abrupt

changes in the robot joint configuration.
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that the Cholesky-based Euclidean formulation does not

converge in both cases (see Table 2) and induces a sudden

change in joint configuration of the robot in the second sce-

nario, similarly to the Euclidean formulation. This can be

explained by the fact that the path induced by this method

is not close to geodesics on the SPD manifold as shown by

Figure 11(right). As opposed to the two Euclidean formula-

tions, the Cholesky–Jacobian-based Euclidean controller

does not induce unstable robot behaviors and converges

towards the desired manipulability ellipsoid for both cases.

However, this method shows a poor convergence rate com-

pared to our geometry-aware approach, as shown by Figure

11(left). This can be explained by the fact that, although

this approach generates curved paths on the SPD manifold,

these paths do not resemble geodesics and tend to induce

detours to reach the desired manipulability ellipsoid (see

Figure 11, left). This is particularly visible for the second

test, where the resulting joint configuration is farther from

the initial pose of the robot compared with the joint config-

uration obtained by the proposed geometry-aware controller

(see Figure 11(b), middle and right).

Previously, we hypothesized that the sudden changes in

joint configuration when using the Euclidean and

Cholesky-based Euclidean formulations in the second sce-

nario are due to the path induced by the methods on the

SPD manifold. In order to confirm this hypothesis, we

reproduced the second test with lower gain values. Figure

12 shows the convergence of the proposed geometry-aware

controller, the Euclidean-based approach and the Cholesky-

based Euclidean formulation for gain matrices equal to I,
0:5I, 0:1I, and 0:05I. We observe that, even for very low

gains, both Euclidean and Cholesky-based Euclidean for-

mulations lead to a sudden change in the joint configura-

tion, resulting in an abrupt increase on the error measured

between the current and desired manipulability ellipsoids

(see Figure 12, top and middle). Interestingly, the sudden

changes occur at similar location along the path between

the initial and desired manipulability ellipsoid indepen-

dently of the gain value for both formulations (see Figure

12, bottom), therefore confirming our above statement.

This can also be seen by looking at the yellow and dark

blue robots of Figure 12(middle) depicting the configura-

tions before the jump, which are almost identical in all the

graphs.

In the case in which the manipulability tracking task

becomes a secondary objective, the 4-DoF planar robot is

required to keep its end-effector at a fixed Cartesian posi-

tion x̂ while minimizing the distance between its current

and desired manipulability ellipsoids M and M̂. The four

following approaches are considered for comparison with

the proposed formulation (39). First, we analyze the corre-

sponding Euclidean manipulability-tracking controller

_qt = JyKx(x̂t � xt)

+ (I� JyJ)(J y
(3))
>KMvec(M̂t �Mt)

ð58Þ

where the difference between two manipulability ellipsoids

is computed in Euclidean space, i.e., ignoring that manipul-

ability ellipsoids belong to the set of SPD matrices.

Second, we implement the corresponding Cholesky-based

Euclidean manipulability controller

_qt = JyKx(x̂t � xt)

+ (I� JyJ)(J y
(3))
>KMvec(DLtDL>t )

ð59Þ

which ignores that manipulability ellipsoids lie on the SPD

manifold but ensure a positive-definite difference between

two ellipsoids. Third, we analyze the Cholesky–Jacobian-

based Euclidean manipulability controller

_qt = JyKx(x̂t � xt)

+ (I� JyJ)(J y
chol(3))

>KMvec(L̂� L)
ð60Þ

which tracks manipulability ellipsoids through their

Cholesky decomposition. Fourth, we evaluate the gradient-

based approach of Rozo et al. (2017) that implements the

controller

_qt = JyKx(x̂t � xt)� (I� JyJ)argt(q) ð61Þ

where a is a scalar gain and

gt(q)= log det
M̂t +Mt

2

 !
� 1

2
log det (M̂tMt) ð62Þ

is a cost function based on Stein divergence (a distance-like

function on the SPD manifold (Sra, 2012)). The gain

matrices KM are fixed as identity matrices and the scalar

gain is set to 1 for the comparison.

Figure 13 shows the convergence rate for the

manipulability-based redundancy resolution of the afore-

mentioned approaches. Two tests were carried out by vary-

ing the initial configuration of the robot and the desired

manipulability ellipsoid. In both cases, both geometry-

aware and gradient-based approaches converge to a similar

final robot configuration (see Figure 13(a) and (b), right),

Table 2. Final distances d(M̂,Mt) between the current and desired manipulability ellipsoids for the performance comparison of the

different manipulability tracking formulations

Approach Euclidean (after jump) Cholesky (after jump) Cholesky–Jacobian Geometry-aware

Figure 11(a) 1:3× 10�4 — 1:446 — 0:1204 6× 10�5

Figure 11(b) 2:997 3:977 3:385 1:944 0:455 1:4× 10�4
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with similar values of the affine-invariant distance between

the final and desired manipulability ellipsoids (see Figure

13(a) and (b), left and Table 3). More importantly, the pro-

posed geometry-aware manipulability tracking approach

shows a faster convergence than the gradient-based

method, with a lower computational cost (3:5 and 4:2 ms

per time step, with non-optimized Matlab code on a laptop

with 2.7 GHz CPU and 32 GB of RAM). This notable dif-

ference may be attributed to the fact that despite both meth-

ods take into account the geometry of manipulability

ellipsoids, our approach is more informative about the

kinematics of the robot through the use of the manipulabil-

ity Jacobian J (q).
Note that for some specific initial robot configurations

and desired manipulability ellipsoids, the Euclidean

manipulability-tracking controller (58) shows a slightly

faster convergence rate than our method (see Figure 13(a)).

However, this Euclidean formulation again leads to unstable

behaviors in some configurations (see Figure 13(b)), where

the distance between the final and desired manipulability

ellipsoids remains high compared to the two geometry-

aware approaches. This poor tracking performance can be

attributed to the fact that the Euclidean difference between

two SPD matrices is an approximation that is only valid if

the matrices are close enough to each other. Thus, similarly

to Euclidean controller aimed at tracking manipulability

ellipsoids as first task (55), the Euclidean manipulability-

based redundancy resolution is only effective if the current

and desired ellipsoids are very similar. Moreover, the dis-

tance between the final and desired manipulability ellip-

soids remains higher than for the geometry-aware methods

and the Euclidean controller by using the Cholesky-based

Fig. 12. Comparison of the performance of different manipulability tracking formulations for different gains KM: (a) KM = I, (b)

KM = 0:5I, (c) KM = 0:1I, and (d) KM = 0:05I. The organization of the graphs and the colors are identical to Figure 11. The

Cholesky–Jacobian-based Euclidean formulation is not shown.

Table 3. Final distances d(M̂,Mt) between the current and desired manipulability ellipsoids for the performance comparison of the

different manipulability-based redundancy resolution formulations.

Approach Euclidean Cholesky Cholesky–Jacobian Geometry-aware Gradient-based

Figure 13(a) 0:433 0:808 1:418 0:416 0:436
Figure 13(b) 1:763 2:271 1:856 1:101 1:110

640 The International Journal of Robotics Research 40(2-3)



Euclidean manipulability-based redundancy resolution.

This tendency is similar to the observations made for the

tracking of manipulability ellipsoids as main objective and

is due to the fact that the controller (59) induces paths on

the manifold that are not close to geodesics. Furthermore,

the Cholesky–Jacobian-based Euclidean controller shows a

poor tracking performance for the two considered scenar-

ios. Notably, the distance between the current and desired

ellipsoids is largely increased before decreasing slowly in

the first case (see Figure 13(a)). Moreover, in some config-

urations, the final distance remains high compared with the

geometry-aware approaches as shown by Figure 13(b).

These behaviors are due to the fact that the controller (60)

does not follow geodesic paths on the SPD manifold.

The reported results supported our hypothesis that

geometry-aware manipulability controllers result in good

tracking performance while providing stable convergence

regardless of the manipulability tracking error. This was

observed when manipulability tracking was the main task

and a secondary objective of the robot. Moreover, our

manipulability-based redundancy resolution approach out-

performs the gradient-based method. Furthermore, our con-

troller permits the variability information of a task, given in

the form of a fourth-order covariance tensor, to be exploited

directly through the gain matrix of the controller. This

allows the robot to exploit the precision required while

tracking a manipulability ellipsoid either as main or sec-

ondary objective. This operation is not available in the

gradient-based method used for comparison, since the cor-

responding controller gain is a scalar.

5.2.2. Comparisons with manipulability-based

optimization. We compare our tracking approach against

two state-of-the-art manipulability-based optimization

methods widely used to improve robots posture for task

execution. We first evaluate our geometry-aware controller

against manipulability volume maximization. Then, we

compare our controller to the compatibility index maximi-

zation (Chiu, 1987), where the distance from the ellipsoid

center to its surface is maximized along a specified direc-

tion. To do so, we consider two 8-DoF planar robots that

are required to track a desired Cartesian velocity trajectory

that leads to an L-shape path in the Cartesian space. In

order to achieve high dexterity in motion, the first robot is

requested to track a desired manipulability ellipsoid whose

main axis is elongated along the direction of motion. The

second robot varies its posture in order to maximize either

the manipulability volume or the compatibility index along

the direction of motion.

Figure 14(a) shows the resulting joint configurations

and manipulability ellipsoids of the two robots at different

stages of the task where the second robot maximizes the

Fig. 13. Performance comparison of the different manipulability-

based redundancy resolution formulations. Two cases are shown

with varying initial robot configuration and desired

manipulability. The graph on the left shows the convergence of

the affine invariant distance between the current and the desired

manipulability ellipsoid over time. The distances for the

Euclidean, Cholesky-based Euclidean, Cholesky–Jacobian-based

Euclidean, and geometry-aware and gradient-based approaches

are depicted in blue, yellow, lilac, red, and purple, respectively.

The graph on the right shows the initial and final posture of the

robot along with the final manipulability ellipsoids. The initial

posture of the robot is depicted in light gray. The final postures

and the corresponding manipulability ellipsoids for the different

methods are depicted in the same color as the distances. The

desired manipulability ellipsoid is depicted in green.

Fig. 14. (a) Comparison of our manipulability tracking controller

(in purple) with the manipulability volume maximization (in

yellow). The main axis of the desired manipulability ellipsoids (in

green) are aligned with the direction of motion in order to allow

high velocities during the task execution. The robot colors

become darker with the evolution of the movement. (b) Close-up

plots of the manipulabilities represented in (a). (c) Comparison of

our manipulability tracking controller (in purple) with the

compatibility index maximization (in light blue).
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manipulability volume as secondary objective. We observe

that the main axis of the manipulability ellipsoid obtained

with the volume maximization approach is often perpendi-

cular to the direction of motion, which often occurs as this

method does not consider any geometric information about

the desired manipulability ellipsoid. In addition, because

the resulting posture leads to ellipsoids that are not consis-

tent with the task requirement (task velocity control direc-

tions) and degrade the robot capabilities, this becomes

unstable when the gain of the velocity tracking controller is

increased to achieve higher Cartesian velocities, as shown

in Figure 15. Conversely, the robot tracking a desired

manipulability ellipsoid successfully completes the task

when higher velocities are required.

The main advantage of maximizing the compatibility

index over the volume is that the directions in which the

ellipsoid should be elongated are specified. However, this

approach favors robot configurations that may be close to

singularities as the manipulability ellipsoids corresponding

to these posture are flat ellipsoids that can be largely elon-

gated (see Figure 14(c)). This effect exacerbates when the

compatibility index maximization is the main task of the

robot, as this is not required to match a specific position in

Cartesian space. Chiu (1988) extended the compatibility

index optimization approach by defining the compatibility

cost as a weighted sum, allowing the maximization or mini-

mization of the ellipsoid along several directions. This

method provides more flexibility on the resulting ellipsoid

due to the weighted combination, at the cost of a laborious

tuning. Moreover, the orientation and elongation of the

main axes of the ellipsoid after the optimization are hard to

infer from the cost weights.

In contrast to the considered manipulability-based opti-

mization methods, the proposed geometry-aware control-

lers seeks to fit the full desired manipulability ellipsoid in

all its directions. Singular configurations can therefore be

easily avoided by defining appropriate desired manipulabil-

ity ellipsoids. Moreover, our manipulability controller

allows the tracking of any manipulability ellipsoid, includ-

ing those providing a compromise between dexterity in

motion and force exertion along any axis. This is not possi-

ble when using the compatibility index approach of Chiu

(1987) as it always favors the dexterity in motion over force

or vice versa. Although this compromise might be

achievable using the compatibility index approach of Chiu

(1988), our method does not require a laborious tuning pro-

cess. Manipulability tracking is also hard to achieve

through manipulability volume maximization as there is no

explicit control on the resulting ellipsoid main axes.

6. Experiments

Previously, in our former work (Jaquier et al., 2018), we

showed the benefits of including the manipulability redun-

dancy resolution controller in the nullspace of a position

controller for a pushing and an insertion task. In contrast to

the result obtained by the position controller alone, the pos-

ture of the robot significantly varied during the execution

of the tasks to be compatible with their respective force

requirements as a consequence of the force manipulability

tracking.

In this section, we extensively evaluate the proposed

tracking formulation with different robotic platforms and

different types of manipulability ellipsoids in simulation.

The approach is evaluated to track a desired manipulability

for grasping with an Allegro hand (four 4-DoF fingers)

and to track a desired CoM manipulability with NAO and

Centauro robots (25 and 39 DoFs, respectively). We then

illustrate and evaluate the proposed manipulability transfer

approach in a bimanual task using a Baxter robot (two 7-

DoF arms) and a couple of Franka Emika Panda robots (7

DoFs).

6.1. Manipulability tracking for a robotic hand

In the context of robotic hands, manipulability ellipsoids

have been used to analyze their performances in grasping

tasks (Prattichizzo et al., 2012). In this experiment, we aim

at modifying the posture of a robotic hand to match a

desired manipulability ellipsoid while grasping an object.

For the case of multiple arm systems, the set of joint

velocities of constant unit norm

k _qak = k( _q>1 , . . . , _q>C )
>k = 1 is mapped to the Cartesian

velocity space _xa = ( _x>1 , . . . , _x>C )
> through

k _qak2 = _q>a _qa = _x>a (G
y>
a JaJ

>
a G

y
a )
�1 _xa ð63Þ

with the Jacobian Ja = diag(J1, . . . , JC), the grasp matrix

Ga = (G1, . . . ,GC), and C the number of arms. Therefore,

the velocity manipulability ellipsoid of the C-arm system is

given by M _xa =Gy>
a JaJ

>
a G

y
a (Chiacchio et al., 1991a).

Note that the system is modeled under assumptions that the

arms are holding a rigid object with a tight grasp.

In this first experiment, the Allegro hand was required

to track a desired manipulability, while maintaining relative

positions between the different fingers. This experiment

aims at emulating how humans adapt their finger config-

uration to the task at hand while grasping an object. In this

experiment, the desired velocity manipulability ellipsoid

was designed by the experimenter to be a medium-sized

isotropic ellipsoid. The purpose of this design is to provide

Fig. 15. Cartesian velocities achieved with our manipulability

tracking controller (purple) and the volume maximization

approach (yellow) as secondary objective for a Cartesian velocity

controller. The gain of the velocity controller are equal for both

approaches. The desired velocities are shown in green.
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the hand with the capability to perform a displacement of

the object while being resistant to external perturbations in

all the directions. For example, in the case where the hand

is holding a pen, it is desirable that the pen can be moved

with dexterity, while the hand should resist to perturbations

owing to the pen–surface contacts.

The fingers were controlled according to a leader–

follower strategy (Luh and Zheng, 1987). Therefore, the

thumb joints were moved to track the desired manipulabil-

ity ellipsoid using the controller (38) and the other fingers

were required to maintain constant relative end-effector

positions with respect to the thumb end-effector, while

tracking the manipulability as secondary objective with the

redundancy controller (39). The center of the object was

considered as the central position between the four fingers

of the hand and the contact points were assumed to be at

the finger tips.

Figure 16(a) and (b) show an example of adaptation of

the posture of the hand to track a desired velocity manipul-

ability ellipsoid for a grasp defined by the user. As

expected, the robot modified its joint configuration in order

to match, as accurately as possible, the desired velocity

manipulability (see Figure 16(c)). Note that the manipul-

ability tracking in this experiment can only be achieved

partially, because the robotic hand is also required to main-

tain the initial grasp. Nevertheless, this tracking may be

further improved if the dimensionality of the nullspace of

the main task is higher (e.g., not all the finger tips are posi-

tion-constrained), or using a higher-DoF robotic hand.

6.2. Manipulability tracking for a humanoid CoM

An interesting use of manipulability ellipsoids arises when

these are defined at the CoM of humanoid robots, which

permits their capabilities to accelerate the CoM in locomo-

tion to be analyzed (Azad et al., 2017; Gu et al., 2015), or

how resistant they can be to external perturbations to be

evaluated using the force manipulability at a specific huma-

noid posture. With the goal of getting some insights on the

role of CoM manipulability ellipsoids in legged robots, we

designed manipulability tracking experiments using two

different floating-base robots in simulation, namely, the

humanoid NAO and the Centauro robot (Baccelliere et al.,

2017).

Specifically, we required the robots to track a desired

manipulability ellipsoid defined at its CoM while maintain-

ing balance. We assumed a strict hierarchy of tasks that

gave the highest priority to the task of maintaining the

CoM position over the support polygon and zero velocity

at all contact points with the floor, while the manipulability

tracking was considered a secondary task. Under the afore-

mentioned assumptions, we implemented the inverse

kinematics-based controller for floating-base robots pro-

posed in Mistry et al. (2008), which we briefly introduce

here. First, let us define the Jacobian for the primary task

as

Jb =
Jfeet

JCoM, xy


 �
ð64Þ

where Jfeet represents the Jacobians for the position/orienta-

tion of the robot feet while JCoM, xy is the Jacobian for the

projection of the CoM onto the (x, y) plane (assuming the

gravity vector is in the z direction). Next, we define the vec-

tor of primary desired velocities xb (i.e., velocities of the

robot feet and CoM), noting that all the robot feet velocities

must equal zero in order to maintain constraints, therefore

_xb =
0

_xCoM


 �
ð65Þ

where _xCoM is the velocity at the robot CoM so that it lies

in the support polygon.

Regarding the secondary task, that is, the manipulability

tracking at the robot CoM, we first compute the Jacobian at

the CoM JCoM for floating-base robots as in Mistry et al.

(2008), which allows us to calculate manipulability ellip-

soids of the types introduced in Section 4. Depending on

which type of manipulability we require the robot to track,

we can use any of the manipulability Jacobians (34), (35),

or (36) to compute the desired joint velocities _q for the

manipulability tracking task using (38). Thus, the full joint

velocity controller for legged robots required to keep bal-

ance while tracking a desired manipulability ellipsoid at

their CoM is defined as

_q=
In× n

06× n


 �>
(Jy

b _xb +Nb (J
y
(3))
>KMvec(LogMt

(M̂t)))

ð66Þ

where the first term is included in order to account for the

virtual joints of legged robots, n is the number of DoF of

the robot, and Nb is the nullspace of the Jacobian (64).

We ran several experiments for testing the manipulabil-

ity tracking at the CoM of the Centauro (Figure 17) and

NAO (Figure 18) robots using the controller (66). The tests

Fig. 16. Manipulability tracking for grasping tasks with the

Allegro hand in simulation. (a) and (b) The initial and final pose

of the robot, respectively. (c) Initial, final, and desired

manipulability ellipsoids depicted in yellow, dark purple, and

green, respectively. The bottom-right graph shows the evolution

of the distance between the current and desired manipulability

ellipsoid over time (given in seconds).
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consisted of manually setting a desired manipulability ellip-

soid to be tracked at the CoM of the robot, and running a

joint velocity controller given the reference provided by

(66). Notably, both Centauro and NAO tracked the desired

manipulability as precisely as possible without compromis-

ing the balancing task. Figures 17(c) and (c) show the dis-

tance between the desired and current CoM manipulability,

which decreases over time as the robot adapts its posture to

carry out a good tracking while keeping its balance. An

interesting aspect about defining and tracking CoM manip-

ulability ellipsoids is the final posture that the robots

achieve. Figure 17(b) shows the final posture achieved by

Centauro when tracking a CoM manipulability whose pro-

jection on the (x1, x2) plane is a tilted ellipse, which makes

the robot adopt a posture where the front legs and torso

rotate on the same plane (which corresponds to the floor in

the virtual environment). The final posture of NAO dis-

played in Figure 18(b) shows that both arms are completely

extended along the humanoid frontal axis, in an attempt to

align them with one of the main axes of the CoM manipul-

ability ellipsoid. However, both the balancing task and the

lower number of DoF constrain NAO to closely match the

desired manipulability.

6.3. Manipulability transfer between robots for a

bimanual task

The performance of the proposed manipulability transfer

framework was tested in a bimanual unplugging of an elec-

tric cable from a power socket. The central idea is to teach

different dual-arm robots to execute a task requiring a spe-

cific manipulability profile via kinesthetic teaching pro-

vided only to one of the bimanual robots.

In the first part of the experiment, the two 7-DoF arms

of a Baxter robot are kinesthetically guided to provide

demonstrations (see Figure 19(a)). The posture of the arms

is modified by the user so that the main axis of the dual

force manipulability ellipsoid of the system

MFa = (Gy>
a JaJ

>
a G

y
a )
�1 is aligned with the direction of

extraction. Then, the arms are moved in opposite directions

to unplug the electric cable from the socket. We extracted

both the relative position Dxt between the end-effectors of

both arms and the force manipulability ellipsoid of the sys-

tem MF
a, t. The collected data were time-aligned and split

into two datasets of time-driven trajectories, namely relative

Cartesian positions and manipulability. We trained a classi-

cal GMM over the time-driven relative positions and a

geometry-aware GMM over the time-driven manipulability

ellipsoids. The number of components of each model

(K = 4) was selected by the experimenter.

In the second part of the experiment, the unplugging

task is reproduced by both the Baxter robot and a pair of

Franka Emika Panda robots (see Figure 19(b) and (c)). For

Fig. 17. Tracking of the CoM manipulability with the Centauro

robot in simulation. (a) and (b) The initial and final pose of the

robot, respectively. (c) Initial, final, and desired manipulability

ellipsoids depicted in yellow, dark purple, and green,

respectively. The bottom-right graph shows the evolution of the

distance between the current and desired manipulability ellipsoid

over time (given in seconds).

Fig. 18. CoM manipulability tracking with NAO in simulation.

(a) and (b) The initial and final pose of NAO, respectively. The

CoM of the robot is depicted by a red sphere. (c) Initial, final,

and desired manipulability ellipsoids depicted in yellow, dark

purple, and green, respectively. The bottom-right graph shows

the distance between the current and desired manipulability over

time (given in seconds).

Fig. 19. Unplugging task: (a) demonstrations provided by the

user on the Baxter robot; (b) reproduction by the Baxter robot;

(c) reproduction by the two Franka Emika Panda robots. The

robots pose at the beginning of the task, before, and after the

extraction of the cable from the socket are shown in the left,

middle, and right column, respectively.
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both reproductions, the relative position between the end-

effectors and the desired manipulability of the system were

computed at each time step by a classical GMR as

D̂xt;p(Dxjt) and a geometry-aware GMR as

M̂
F

a, t;p(MF
a jt). In both cases, the left robotic arm was

required to move its joints to track the desired manipulabil-

ity ellipsoid (38), whereas the right arm was required to

maintain the desired relative Cartesian position with respect

to the left arm, while tracking the desired manipulability as

secondary objective (39). Note that the actuation contribu-

tion of each robot was taken into account to compute the

manipulability ellipsoids through the whole experiment.

Figure 20(a) displays the two demonstrations recorded

by kinesthetically guiding the Baxter robot along with the

components of the GMM encoding Dxt and the centers of

the components of the geometry-aware GMM encoding

MF
a . The first and third dimensions of Dxt are not repre-

sented as they do not vary significantly during the experi-

ment. Figure 20(b) shows the relative Cartesian position

and manipulability ellipsoid profile to be tracked and the

reproduction results when the Baxter robot executed the

task. Baxter successfully tracked the desired manipulability

ellipsoid while maintaining the required relative distance

between its end-effectors.

Figure 20(c) shows the relative Cartesian position

between the arms and the manipulability ellipsoid profile

obtained during the reproduction of the task by the two

Panda robots. These successfully achieved the required task

and tracked the desired manipulability ellipsoid profile

obtained from model trained with the data recorded on the

Baxter robot. Note the manipulability matching is not exact

in this case owing to the differences between Baxter and

the Panda robots. Indeed, even if the actuation capabilities

of each robot are taken into account in our manipulability

transfer framework, the capabilities of the two dual-arm

system differ due to other physical specificities, e.g., the

relative position of the bases of the arms.

7. Discussion

Our tracking formulation enables robots to modify their

posture in an exponentially stable way so that desired

manipulability ellipsoids are tracked, either as a main con-

trol task or as a redundancy resolution problem where the

manipulability tracking is considered a secondary objective.

Compared with state-of-the-art manipulability-based opti-

mization schemes, our tracking formulation allows the

reproduction of any manipulability ellipsoid beyond the

maximization of manipulability parameters. The proposed

tracking approach covers different manipulability ellipsoids

proposed in the literature, such as velocity, force, and

dynamic manipulability ellipsoids (Doty et al., 1995). A rel-

evant aspect about our approach is their generic structure,

which means that we can track manipulability ellipsoids for

a large variety of robots, as reported in the previous section,

where a robotic hand, a Centauro robot, a humanoid, and

two different bimanual setups were used to test our tracking

approach. This shows that our approach can be used in a

large variety of contexts and that many further applications

can be considered.

The manipulability transfer results reported in Section

6.3 showed the effectiveness of the proposed approach for

transferring manipulability ellipsoids between robots that

differ in their kinematic structure, which has remained a

challenge in the robot learning community. Our learning

Fig. 20. (a) Demonstrations and GMM encoding the unplugging task. The top graph shows the demonstrated relative end-effectors

position for the Baxter robot (in gray) and components of the 4-state GMM (in blue). Only the most representative dimension is

displayed. The distance between the two arms increases when the cable is unplugged from the socket. The middle-bottom graphs show

the demonstrated force manipulability profile (in gray) and centers of the 4-state GMM in the SPD manifold over time (in purple). (b)

Reproduction of the unplugging task with Baxter. The desired and reproduced trajectories are represented in green and dark blue,

respectively. The top graph shows the desired and reproduced relative position between the end-effectors along the second dimension.

The middle-bottom graphs show the desired and reproduced (overlapping) manipulability ellipsoids. (c) Reproduction of the

unplugging task with the two Panda robots. The desired and reproduced trajectories are represented in green and purple, respectively.

The top graph shows the desired and reproduced relative position between the end-effectors along the second dimension. The middle-

bottom graphs shows the desired and reproduced manipulability ellipsoids. The position x and time t are given in meters and seconds.
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framework allows a robot to learn posture-dependent task

requirements without explicitly encoding a model in the

joint space of the demonstrator, which would require com-

plex kinematic mapping algorithms and would make task

analysis less interpretable at first sight. In addition, the pro-

posed framework extends the robot learning capabilities

beyond the transfer of trajectory, force, and impedance.

It is important to emphasize the fact that the manipul-

ability tracking precision strongly depends on the number

of DoFs when the task is considered a secondary objective,

as the higher it is, the more capable the robot is to perform

more than one task simultaneously. Note that, in the case

of legged robots (which are often characterized by a high

number of DoFs), the manipulability tracking may still be

slightly compromised because of the set of constraints

imposed by the balancing task, as observed in Section 6.2.

However, if these robots are provided with the possibility

of modifying their feet position while keeping balance,

then the manipulability tracking may be further improved.

This clearly requires more sophisticated balancing control-

lers, but gives robots more freedom to adapt their posture

and achieve better manipulability tracking. Note that in the

case of robotic hands, a similar behavior arises when the

finger tips are constrained according to some grasping

requirements, which might affect the manipulability track-

ing when projected into the nullspace of the primary task.

It is important to note that the proposed manipulability

tracking approach is a local method in the sense that the

solution depends on the current configuration of the robot

expressed through the Jacobian. This makes the tracking

convergence dependent on the current configuration of the

robot, which sometimes may limit the tracking perfor-

mance. However, the robot may achieve a better tracking

performance if it is allowed to look for other initial pos-

tures. As an example, the robot may not track precisely the

desired manipulability ellipsoids for a given initial posture,

due for instance to its joint limits. However, if the robot

slightly modifies its initial posture, it may find a better

starting configuration to subsequently minimize the error

between the desired and current manipulability ellipsoids

in a larger proportion, even if the new initial posture ini-

tially increases this error.

Overall, the proposed manipulability transfer framework

may be exploited in a large variety of applications, where

the posture of the robot may have an impact on its perfor-

mance while executing the task. In addition to varying the

robot posture for task compatibility, tracking a desired

manipulability profile as a secondary task may typically

complement a main control task to avoid singularity, handle

perturbations during task execution, optimize the execution

time, or minimize the energy consumption (Kim et al.,

2010). In particular, manipulability transfer may be utilized

from a motion planning point of view. To do so, the robot

may first track a desired manipulability as main control task

in a planning phase, where the robot adapts its posture in

order to anticipate the next action. Following this planning

phase, the robot executes the desired action with a posture

adapted to the task requirements. In this phase, the desired

manipulability is tracked as a secondary task. Moreover, in

the context of rehabilitation and assistance, the proposed

learning and tracking formulations may be exploited in con-

trol strategies for exoskeletons. In Petric et al. (2019) the

exoskeleton posture is optimized to achieve an isotropic

manipulability by sensing the human muscular manipul-

ability. In this setting, a varying exoskeleton manipulability

profile may be retrieved using GMR as a function of the

sensed muscular manipulability.

From a mathematical point of view, it is worth highlight-

ing the importance of considering the structure of the data

we work with. While alternative solutions to handle SPD

matrices are present in literature (e.g., those using Cholesky

decomposition), we showed that Euclidean manipulability-

tracking controllers lead to unstable behaviors in contrast to

the stable behavior displayed by our geometry-aware con-

troller. Equally important, the manipulability ellipsoids pro-

files retrieved by the geometry-aware and Euclidean GMR

were similar only around the mean of the GMM components,

but diverged when moving away from it. This is because the

estimated output in Euclidean space is only a valid approxi-

mation for input data lying close to the mean, as reported in

Section 5. Therefore, geometry-awareness is crucial for suc-

cessful learning and tracking of manipulability ellipsoids.

8. Conclusions and future work

This article has presented a novel framework for transfer-

ring manipulability ellipsoids to robots. The proposed

approach has been built on a probabilistic learning model

that allows the encoding and retrieval manipulability ellip-

soids, and on the extension of the classical inverse kine-

matics problem to manipulability ellipsoids, by establishing

a mapping between a change of manipulability ellipsoid

and the robot joint velocity. We exploited tensor representa-

tion and Riemannian manifolds to build a geometry-aware

learning framework and exponentially stable tracking con-

trollers and showed the importance of geometry-awareness

for manipulability transfer. We have then shown that our

manipulability transfer framework allows the exploitation

of task variations recovered by the learning approach to

characterize the precision of the manipulability tracking

problem. This approach enables the learning of posture-

dependent task requirements. It provides a skill transfer

strategy going beyond the imitation of trajectory, force, or

impedance behaviors. Furthermore, it allows manipulability

transfer between agents of different embodiments, while

taking into account their individual characteristics and is

adapted to complex scenarios involving any manipulability

ellipsoid shape and various types of robots.

Future work will explore manipulability transfer between

humans and robots. Following this research direction, we

recently proposed a statistical analysis of single and

dual-arm manipulability ellipsoids for human movements,
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accompanied by two human-to-robot manipulability trans-

fer experiments. The corresponding results will be detailed

in a forthcoming publication. We will also investigate

manipulability transfer strategies where the desired manip-

ulability would be optimized as a function of the robot. The

objective would be to adapt the manipulability ellipsoid to

exploit the capabilities of the learner in situations in which

this learner can reach a better manipulability than the

teacher for the task at hand.
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Notes

1. Note that an additional scaling of the joint velocities may be

included to consider actuator boundaries.

2. Dually, the force manipulability ellipsoid can be computed

from the static relationship between joint torques and

Cartesian forces (Yoshikawa, 1985b).

3. The original cone of SPD matrices has been changed into a

regular and complete (but curved) manifold with an infinite

development in each of its D(D + 1)=2 directions (Pennec

et al., 2006).

4. In the remainder of the article we drop dependencies on q to

simplify the notation.
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Appendix A. Derivative of a matrix with

respect to a vector

A.1. Left multiplication by a constant matrix

(Equation (14))

We have

∂AY

∂x
=

∂Y

∂x
×1A

Proof.

∂AY

∂x

� �
ljk

=
∂

∂xk

X
i

aliyij =
X

i

ali

∂yij

∂xk

h

A.2. Right multiplication by a constant matrix

(Equation (15))

We have

∂YB

∂x
=

∂Y

∂x
×2B

>

Proof.

∂YB

∂x

� �
ilk

=
∂

∂xk

X
i

yijbjl =
X

j

bjl

∂yij

∂xk

h

A.3. Derivative of the inverse of a matrix

(Equation (16))

We have
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∂Y�1

∂x
=� ∂Y

∂x

>
×1Y

�1 ×2Y
�>

Proof. We compute the derivative of the definition of the

inverse Y�1Y= I as

∂

∂x
(Y�1Y)=

∂

∂x
(I)

∂Y�1

∂x
×2Y

>+
∂Y

∂x
×1Y

�1 = 0

Then, by isolating ∂Y�1

∂x , we obtain

∂Y�1

∂x
=� ∂Y

∂x

>
×1Y

�1 ×2Y
�>

Appendix B. Symbolic manipulability

Jacobian for a serial kinematic chain

The computation of the manipulability Jacobian involves

computing the derivative of the robot Jacobian with respect

to the joint angles. Those derivatives can be computed in a

symbolic form as shown in Bruyninckx and De Schutter

(1996). We remind here the symbolic derivative for the

hybrid representation of the Jacobian J 2 R
6× n that is used

in the computation of the manipulability Jacobian J .

The ith column of the Jacobian is denoted by

Ji =
wi

vi

� �
ð67Þ

with wi 2 R
3 and vi 2 R

3 the rotational and translational

components of the Jacobian.

The derivative of the Jacobian with respect to the joint

angles is a third-order tensor ∂J
∂q 2 R

6× n× n with mode-1

fibers or columns

∂J

∂q

� �
:ij

=
∂Ji

∂qj
=

PD(J
j)Ji if j ł i

�MD(J
j)Ji if j.i

�
ð68Þ

where

PD(J
j)=

½wj × � 03× 3

03× 3 ½wj × �

� �
ð69Þ

MD(J
j)=

03× 3 03× 3

½vj × � 03× 3

� �
ð70Þ

and × the cross product between two vectors. The notation

½wj × � in a matrix denotes that the corresponding component

of the result of the right-multiplication of the matrix by a vector

is equal to the cross product between wj and the corresponding

vector component, e.g., PD(J
j)Ji =

wj ×wi

wj × vi

� �
.

Note that the time derivative of the Jacobian can there-

fore be computed as

dJ

dt
=
Xn

j = 1

∂J

∂qj
_qj ð71Þ

Appendix C. Symbolic dynamic

manipulability Jacobian for a serial kinematic

chain

The derivative of the robot inertia matrix with respect to

joint angles is necessary for the computation of the

dynamic manipulability Jacobian. It can be computed in

closed form as follows.

The inertia matrix L(q) 2 R
n× n can be written as

L(q)=
Xn

i = 1

J>i
Li 0
0 miI

� �
Ji ð72Þ

where Ji, Li, and mi are the Jacobian, inertia matrix, and

mass of link i, respectively (Murray et al., 1994; Park,

1995).

The derivative of the inertia matrix is the third-order ten-

sor ∂L
∂q 2 R

n× n× n computed as

∂L

∂q
=
Xn

i = 1

∂J>i
∂q

×2J
>
i Mi +

∂Ji

∂q
×1J

>
i Mi ð73Þ

where Mi =
Li 0

0 miI

� �
and ∂Ji

∂q is computed with

Equation (68).

Appendix D. Symbolic derivative of the

manipulability Jacobian for a serial kinematic

chain

In some cases, e.g., in the acceleration tracking controller,

the time derivative of the manipulability Jacobian is

required. This time derivative can be computed symboli-

cally by exploiting the first and second derivative of the

Jacobian with respect to the joint angles.

The time derivative of the velocity manipulability

Jacobian J _x 2 R
6× n× n defined as

J _x =
∂J

∂q
×2J+

∂J>

∂q
×1J ð74Þ

is obtained by exploiting the chain rule as

∂J _x

∂t
=

∂

∂t

∂J

∂q
×2J+

∂J>

∂q
×1J

� �
ð75Þ

=
∂2J

∂t∂q
×2J+

∂J

∂q
×2

∂J

∂t
+

∂2J>

∂t∂q
×1J+

∂J>

∂q
×1

∂J

∂t

ð76Þ

The time derivative of the Jacobian is given by Equation

(71) and the time derivative of the derivative of the

Jacobian with respect to joint angles is given by
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∂2J

∂t∂qj

=
Xn

k = 1

∂2J

∂qk∂qj

_qk ð77Þ

where the second derivative of the Jacobian with respect to

the joint angles is a fourth-order tensor ∂2J
∂q2 2 R

6× n× n× n

with mode-1 fibers or columns

∂2J

∂q2

� �
:ijk

=
∂2Ji

∂qk∂qj

=

(PD(J
j)PD(J

k))Ji +PD(J
j)(PD(J

k)Ji) if k ł j ł i

PD(J
j)(PD(J

k)Ji) if j ł k ł i

�PD(J
j)(MD(J

k)Ji) if j ł i\k

�(PD(J
k)MD(J

j))Ji �MD(J
j)(PD(J

k)Ji) if k ł i\j

�(PD(J
k)MD(J

j))Ji if i\k\j

�(PD(J
j)MD(J

k))Ji if i\j ł k

8>>>>>>>>><>>>>>>>>>:
ð78Þ

where PD(J
j) and MD(J

k) are defined as in (69) and (70),

respectively. The time derivative of the force manipulability

Jacobian J F and the manipulability Jacobian J €x corre-

sponding to the dynamic manipulability ellipsoid can be

computed symbolically in a similar way using Equations

(71) and (77). Moreover, their with respect to joint angles

can be computed symbolically using the chain rules,

Equations (68) and (78).
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