
Learning the skill of archery by a humanoid robot iCub

Petar Kormushev1, Sylvain Calinon2, Ryo Saegusa3, Giorgio Metta4

Abstract— We present an integrated approach allowing the
humanoid robot iCub to learn the skill of archery. After being
instructed how to hold the bow and release the arrow, the robot
learns by itself to shoot the arrow in such a way that it hits the
center of the target. Two learning algorithms are proposed and
compared to learn the bi-manual skill: one with Expectation-
Maximization based Reinforcement Learning, and one with
chained vector regression called the ARCHER algorithm. Both
algorithms are used to modulate and coordinate the motion
of the two hands, while an inverse kinematics controller is
used for the motion of the arms. The image processing part
recognizes where the arrow hits the target and is based on
Gaussian Mixture Models for color-based detection of the target
and the arrow’s tip. The approach is evaluated on a 53-DOF
humanoid robot iCub.

I. INTRODUCTION

Acquiring new motor skills involves various forms of
learning. The efficiency of the process lies in the intercon-
nections between imitation and self-improvement strategies.
Similarly to humans, a robot should ideally be able to acquire
new skills by employing such mechanisms.

Some tasks can be successfully transferred to the robot
using only imitation strategies [1] [2]. Other tasks can be
learned very efficiently by the robot alone using Reinforce-
ment Learning (RL) [3]. The recent development of com-
pliant robots progressively moves their operational domain
from industrial applications to home and office uses, where
the role and tasks can not be determined in advance. While
some tasks allow the user to interact with the robot to teach it
new skills, it is generally preferable to provide a mechanism
that permits the robot to learn to improve and extend its skills
to new contexts under its own guidance.

Researchers in machine learning and robotics have made
tremendous efforts and advances to move RL algorithms
from discrete to continuous domains, thus extending the
possibilities for robotic applications. Until recently, policy
gradient algorithms (such as Episodic REINFORCE [4] and
Episodic Natural Actor-Critic eNAC [5]) have been a well-
established approach to cope with the high dimensionality
[6]. Unfortunately, they also have shortcomings, such as high
sensitivity to the learning rate.

To avoid such problems, Kober et al proposed in [7] an
episodic RL algorithm called Policy learning by Weighting
Exploration with the Returns (PoWER). It is based on
Expectation-Maximization algorithm (EM) and one major
advantage over policy-gradient-based approaches is that it

Authors {1,2} are with the Advanced Robotics Department and authors
{3,4} are with the Robotics, Brain and Cognitive Sciences Department
of the Italian Institute of Technology (IIT), 16163 Genova, Italy.
{petar.kormushev,sylvain.calinon,ryo.saegusa,
giorgio.metta}@iit.it.

Fig. 1. Experimental setup for the archery task. A position-controlled 53-
DOF humanoid robot iCub learns to shoot arrows using a bow and learn to
hit the center of the target using RL algorithm and visual feedback from a
camera.

does not require a learning rate parameter. This is desirable
because tuning a learning rate is usually difficult to do for
control problems but critical for achieving good performance
of policy-gradient algorithms. PoWER also demonstrates
superior performance in tasks learned directly on a real robot,
such as the ball-in-a-cup task [8] and the pancake flipping
task [9].

In this paper we present an integrated approach allowing
a humanoid robot to learn the skill of archery. After being
instructed how to hold the bow and release the arrow, the
robot learns by itself to shoot the arrow in such a way that
it hits the center of the target. The archery task was selected
because: (1) it involves bi-manual coordination; (2) it can
be performed with slow movements of the arms and using
small torques and forces; (3) it requires using tools (bow
and arrow) to affect an external object (target); (4) it is an
appropriate task for testing different learning algorithms and
aspects of learning, because the reward is inherently defined
by the high-level description of the task goal; (5) it involves
integration of image processing, motor control and learning
parts in one coherent task.

The focus of the paper is on learning the bi-manual

(a) (b)

Fig. 2. Archery by a human and automata. (a) the shooting form in Kyudo
[10]. (b) the replica of the archery automata [11].

coordination necessary to control the shooting direction and
velocity in order to hit the target. Two learning algorithms are
proposed and compared: one with Expectation-Maximization
based Reinforcement Learning, and one with chained vector
regression. Both algorithms are used to modulate and coor-
dinate the motion of the two hands, while inverse kinematics
controller is used for the motion of the arms. We propose
solutions to the learning part, the image processing part used
to detect the arrow’s tip on the target, and the motor control
part of the archery training.

II. DESCRIPTION OF THE ARCHERY TASK

Archery is the art of propelling arrows with the use of a
bow and has been developed to high levels in many societies.
In North America, archery was well known among native
people from pre-Columbian times. In Japan archery is known
as Kyudo, shown in Fig. 2 (a), which is recognized as a rather
mental sport, with a longer bow and simpler equipment than
in European archery [10].

At the end of the 19th century, H. Tanaka created an
archery automata which was able to perform the complete se-
quential movements to shoot an arrow [11]. The movements
were composed of four primitives: grasping an arrow, setting
the arrow at the bow string, drawing the bow, and releasing
the shot. Fig. 2 (b) shows a replica of the archery automata.
Instead of pulling the string of the bow with the right hand
towards the torso, this automata is actually pushing the bow
with the left hand in the opposite direction.

The independently developed examples of archery show
that the same skill can be achieved in a different manner,
and that the skill is adapted differently depending on the tool
and embodiment, to achieve the same result. Similarly, in our
robotic archery experiment, we needed to adapt the setup and
shooting movement to the specifics of our humanoid robot.

III. PROPOSED APPROACH

In this section we propose two different learning algo-
rithms for the archery training and one image processing
algorithm for detecting the arrow on the target. The focus
of the proposed approach falls on learning the bi-manual

coordination for shooting the arrow with a desired direction
and velocity. Similarly to [12], we consider discrete goal-
directed movements where the relative position between the
two hands represents coordination patterns that the robot
needs to learn. We do not consider the problem of learning
how to grasp the bow or pull the arrow, and therefore these
sub-tasks are pre-programmed.

A. Learning algorithm 1: PoWER

As a first approach for learning the bi-manual coordination
needed in archery, we use the state-of-the-art EM-based
RL algorithm PoWER by Jens Kober and Jan Peters [7].
We selected PoWER algorithm because it does not need
a learning rate (unlike policy-gradient methods) and also
because it can be combined with importance sampling to
make better use of the previous experience of the agent in
the estimation of new exploratory parameters.

PoWER uses a parameterized policy and tries to find val-
ues for the parameters which maximize the expected return of
rollouts (also called trials) under the corresponding policy.
For the archery task the policy parameters are represented
by the elements of a 3D vector corresponding to the relative
position of the two hands performing the task.

We define the return of an arrow shooting rollout τ to be:

R(τ) = e−||r̂T−r̂A||, (1)

where r̂T is the estimated 2D position of the center of the
target on the target’s plane, r̂A is the estimated 2D position
of the arrow’s tip, and || · || is Euclidean distance.

As an instance of EM algorithm, PoWER estimates the
policy parameters θ to maximize the lower bound on the
expected return from following the policy. The policy param-
eters θn at the current iteration n are updated to produce the
new parameters θn+1 using the following rule (as described
in [8]):

θn+1 = θn +

〈
(θk − θn)R(τk)

〉
w(τk)〈

R(τk)
〉
w(τk)

. (2)

In Eq. (2), (θk − θn) = ∆θk,n is a vector difference which
gives the relative exploration between the policy parameters
used on the k-th rollout and the current ones. Each relative
exploration ∆θk,n is weighted by the corresponding return
R(τk) of rollout τk and the result is normalized using the
sum of the same returns. Intuitively, this update rule can be
thought of as a weighted sum of parameter vectors where
higher weight is given to these vectors which result in better
returns.

In order to minimize the number of rollouts which are
needed to estimate new policy parameters, we use a form of
importance sampling technique adapted for RL [3] [7] and
denoted by 〈·〉w(τk) in Eq. (2). It allows the RL algorithm to
re-use previous rollouts τk and their corresponding policy
parameters θk during the estimation of the new policy

^

3D parameter space

2D reward spaceθ3

θ2

θ1

r2

r1

r3

θΤ

rΤ

 f (.)

wi

Fig. 3. The conceptual idea underlying the ARCHER algorithm.

parameters θn+1. The importance sampler is defined as:〈
f(θk, τk)

〉
w(τk)

=

σ∑
k=1

f(θind(k), τind(k)), (3)

where σ is a fixed parameter denoting how many rollouts the
importance sampler is to use, and ind(k) is an index function
which returns the index of the k-th best rollout in the list of
all past rollouts sorted by their corresponding returns, i.e. for
k = 1 we have:

ind(1) = argmax
i

R(τi), (4)

and the following holds: R(τind(1)) ≥ R(τind(2)) ≥ ... ≥
R(τind(σ)). The importance sampler allows the RL algorithm
to calculate new policy parameters using the top-σ best
rollouts so far. This reduces the number of required rollouts
to converge and makes this RL algorithm applicable to online
learning.

B. Learning algorithm 2: ARCHER

For a second learning approach we propose a custom
algorithm developed and optimized specifically for problems
like the archery training, which have a smooth solution space
and prior knowledge about the goal to be achieved. We will
refer to it as the ARCHER algorithm (Augmented Reward
CHainEd Regression). The motivation for ARCHER is to
make use of richer feedback information about the result of
a rollout. Such information is ignored by the PoWER RL al-
gorithm because it uses scalar feedback which only depends
on the distance to the target’s center. ARCHER, on the other
hand, is designed to use the prior knowledge we have on the
optimum reward possible. In this case, we know that hitting
the center corresponds to the maximum reward we can get.
Using this prior information about the task, we can view
the position of the arrow’s tip as an augmented reward. In
this case, it consists of a 2-dimensional vector giving the
horizontal and vertical displacement of the arrow’s tip with
respect to the target’s center. This information is obtained
either directly from the simulated experiment in Section IV
or calculated by the image processing algorithm in Section
III-C for the real-world experiment. Then, ARCHER uses
a chained local regression process that iteratively estimates

new policy parameters which have a greater probability of
leading to the achievement of the goal of the task, based on
the experience so far.

Each rollout τi, where i ∈ {1, . . . , N}, is initiated by
input parameters θi ∈ R3, which is the vector describing the
relative position of the hands and is produced by the learning
algorithms. Each rollout has an associated observed result
(considered as a 2-dimensional reward) ri = f(θi) ∈ R2,
which is the relative position of the arrow’s tip with respect
to the target’s center rT = (0, 0)T . The unknown function f
is considered to be non-linear due to air friction, wind flow,
friction between the bow and the arrow, and etc. A schematic
figure illustrating the idea of the ARCHER algorithm is
shown in Fig. 3.

Without loss of generality, we assume that the rollouts are
sorted in descending order by their scalar return calculated
by Eq. 1, i.e. R(τi) ≥ R(τi+1), i.e. that r1 is the closest to
rT . For convenience, we define vectors ri,j = rj − ri and
θi,j = θj−θi. Then, we represent the vector r1,T as a linear
combination of vectors using the N best results:

r1,T =

N−1∑
i=1

wir1,i+1. (5)

Under the assumption that the original parameter space
can be linearly approximated in a small neighborhood, the
calculated weights wi are transferred back to the original
parameter space. Then, the unknown vector to the goal
parameter value θ1,T is approximated with θ̂1,T as a linear
combination of the corresponding parameter vectors using
the same weights:

θ̂1,T =

N−1∑
i=1

wiθ1,i+1. (6)

In a matrix form, we have r1,T = WU , where W contains
the weights {wi}Ni=2, and U contains the collected vectors
{r1,i}Ni=2 from the observed rewards of N rollouts. The least-
norm approximation of the weights is given by Ŵ = r1,TU

†,
where U† is the pseudoinverse of U .1 By repeating this
regression process when adding a new couple {θi, ri} to the
dataset at each iteration, the algorithm refines the solution
by selecting at each iteration the N closest points to rT .
ARCHER can thus be viewed as a linear vector regression
with a shrinking support region.

In order to find the optimal value for N (the number of
samples to use for the regression), we have to consider both
the observation errors and the function approximation error.
The observation errors are defined by εθ = ||θ̃ − θ|| and
εr = ||r̃ − r||, where θ̃ and r̃ are the real values, and θ
and r are the observed values. The function approximation
error caused by non-linearities is defined by εf = ||f−Aθ||,
where A is the linear approximation.

On the one hand, if the observations are very noisy (εr �
εf and εθ � εf), it is better to use bigger values for N ,

1In this case, we used a least-squares estimate. For more complex solution
spaces, ridge regression or other regularization scheme can be considered.

in order to reduce the error when estimating the parameters
wi. On the other hand, for highly non-linear functions f
(εf � εr and εf � εθ), it is better to use smaller values for
N , i.e. to use a small subset of points which are closest to
rT in order to minimize the function approximation error
εf . For the experiments presented in this paper we used
N = 3 in both the simulation and the real-world, because
the observation errors were kept very small in both cases.

The ARCHER algorithm can also be used for other tasks,
provided that: (1) a-priori knowledge about the desired target
reward is known; (2) the reward can be decomposed into
separate dimensions; (3) the task has a smooth solution
space.

C. Image processing algorithm

The problem of detecting where the target is, and what is
the relative position of the arrow with respect to the center
of the target, is solved by image processing. We use color-
based detection of the target and the tip of the arrow based
on Gaussian Mixture Model (GMM). The color detection is
done in YUV color space, where Y is the luminance, and
UV is the chrominance. Only U and V components are used
to ensure robustness to changes in luminosity.

In a calibration phase, prior to conducting an archery
experiment, the user explicitly defines on a camera image
the position and size of the target and the position of the
arrow’s tip. Then, the user manually selects NT pixels lying
inside the target in the image, and NA pixels from the arrow’s
tip in the image. The selected points produce two datasets:
cT ∈ R2×NT and cA ∈ R2×NA respectively.

From the two datasets cT and cA, a Gaussian Mixture
Model (GMM) is used to learn a compact model of the color
characteristics in UV space of the relevant objects. Each
GMM is described by the set of parameters {πk, µk,Σk}Kk=1,
representing respectively the prior probabilities, centers and
covariance matrices of the model (full covariances are con-
sidered here). The prior probabilities πk satisfy πk ∈ R[0,1]

and
∑K
k=1 πk = 1. A Bayesian Information Criterion (BIC)

[13] is used to select the appropriate number of Gaussians
KT and KA to represent effectively the features to track.

After each reproduction attempt, a camera snapshot is
taken to re-estimate the position of the arrow and the target.2

From the image cI ∈ R2×Nx×Ny of Nx ×Ny pixels in UV
color space, the center m of each object on the image is
estimated through the weighted sum

m =

Nx∑
x=1

Ny∑
y=1

1

Sx,y

K∑
k=1

πk N (cI,x,y; µk,Σk)

[
x
y

]
, (7)

with Sx,y =

K∑
j=1

πj N (cI,x,y; µj ,Σj).

2If the arrow did not stick to the wall, we put it back manually to the
point of impact on the wall.

Fig. 4. Fitting a GMM to represent the target’s and arrow’s color
characteristics in YUV color space. In this case, three Gaussians have been
found to represent the target and a single Gaussian to represent the arrow.

In the above equation, N (c;µk,Σk) is the probability
defined by

N (c;µk,Σk) =
1√

(2π)2|Σk|
e−

1
2 (c−µk)>Σ−1

k (c−µk). (8)

The reward vector is finally calculated as r = mT −mA,
where mA is the estimated center of the arrow and mT is the
estimated center of the target. Fig. 4 illustrates the work of
the described algorithm with color data taken from an image
of the real archery target.

IV. SIMULATION EXPERIMENT

The two proposed learning algorithms (PoWER and
ARCHER) are first evaluated in a simulation experiment.
Even though the archery task is hard to model explicitly
(e.g., due to the unknown parameters of the bow and arrow
used), the trajectory of the arrow can be modeled as a simple
ballistic trajectory, ignoring air friction, wind velocity and
etc. A typical experimental result for each algorithm is shown
in Fig. 5. In both simulations, the same initial parameters are
used. The simulation is terminated when the arrow hits inside
the innermost ring of the target, i.e. the distance to the center
becomes less than 5 cm.

For a statistically significant observation, the same ex-
periment was repeated 40 times with a fixed number of
rollouts (60) in each session. The averaged experimental
result is shown in Fig. 6. The ARCHER algorithm clearly
outperforms the PoWER algorithm for the archery task. This
is due to the use of 2D feedback information which allows
ARCHER to make better estimations/predictions of good
parameter values, and to the prior knowledge concerning the
maximum reward that can be achieved. PoWER, on the other
hand, achieves reasonable performance despite using only 1D
feedback information.

Based on the results from the simulated experiment, the
ARCHER algorithm was chosen to conduct the following
real-world experiment.

−0.4
−0.2

0
0.2

−2

−1.5

−1

−0.5

0

0.2

0.4

x
2

x
1

x 3

(a) PoWER

−0.4
−0.2

0

−2

−1.5

−1

−0.5

0

0.2

0.4

0.6

x
2

x
1

x 3

(b) ARCHER

Fig. 5. Simulation of archery. Learning is performed under the same
starting conditions with two different algorithms. The red trajectory is the
final rollout. (a) PoWER algorithm needs 19 rollouts to reach the center.
(b) ARCHER algorithm needs 5 rollouts to do the same.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Number of rollouts

D
is

ta
nc

e
to

 ta
rg

et
 [m

]

PoWER
ARCHER

Fig. 6. Comparison of the speed of convergence for the PoWER and
ARCHER algorithms. Statistics are collected from 40 learning sessions
with 60 rollouts in each session. The first 3 rollouts of ARCHER are done
with large random exploratory noise, which explains the big variance at the
beginning.

Fig. 7. Real-world experiment using the iCub [14]. The distance between
the target and the robot is 2.2 meters. The diameter of the target is 50 cm.

V. ROBOT EXPERIMENT

A. Robotic platform

The real-world robot experimental setup is shown in Fig.7.
The experiment was conducted with iCub [14]. The iCub is
an open-source robotic platform with dimensions comparable
to a three and a half year-old child (about 104cm tall), with
53 degrees of freedom (DOF) distributed on the head, torso,
arms, hands, and legs [15] [16]. Software modules in the
architecture are interconnected using YARP [17] [18].

In the experiment, we used the torso, arms, and hands. The
torso has 3 DOF (yaw, pitch, and roll). Each arm has 7 DOF,
three in shoulder, one in the elbow and three in the wrist.
Each hand of the iCub has 5 fingers and 19 joints although
with only 9 drive motors several of these joints are coupled.
We manually set the orientation of the neck, eyes and torso of
the robot to turn it towards the target. The finger positions of
both hands were also set manually to allow the robot to grip
the bow and release the string suitably. We used one joint in
the index finger to release the string. It was not possible to
use two fingers simultaneously to release the string because
of difficulties with synchronizing their motion. The posture
of the left arm (bow side) was controlled by the proposed
system, as well as the orientation of the right arm (string
side). The position of the right hand was kept within a small
area, because the limited range of motion of the elbow joint
did not permit pulling the string close to the torso.

B. Robot control

To control the robot, the inverse kinematics module de-
veloped by Pattacini et al is used [19]. The proposed so-
lution is to treat the inverse kinematics as an optimization
under inequality constraints problem. Compared to standard
Jacobian-based approaches, this approach has the advantage
that the solver internally encapsulates knowledge of the joint
bounds. Moreover, it is capable of dealing with a complex
set of non-linear constrains expressed both in joint and
task space. Another difference from standard Jacobian-based
approaches is that this solution gives priority to the position
in Cartesian space over the orientation. Hence, it is possible

(Right)

(Left)

(Torso)

Fig. 8. Orientations for the two hands of the iCub robot during the archery
task. Top: The right hand and the left hand CAD models of the iCub hands.
Center: The fixed coordinate frames of reference attached to each hand are
shown, as well as the main frame of reference attached to the torso of the
robot. The thick blue arrow shows the relative position of the two hands
which is controlled by the learning algorithm during the learning sessions.
The current configuration corresponds to the robot’s posture in Fig. 7.

to consider a desired rest position without having to define
an explicit hierarchy as in a standard nullspace formulation.
The optimization is defined as:

qo = arg min
q

(
w1

(
n̂− n(q)

)>
Σn
(
n̂− n(q)

)
+ w2

(
q̂ − q

)>
Σq
(
q̂ − q

))
, (9)

u.c.

(
x̂− x(q)

)>
Σx
(
x̂− x(q)

)
< ε,

q > qmin,
q < qmax.

In the above equation, qo, q ∈ R6 are joint angles within
bounds qmin and qmax. x(q) ∈ R3 and n(q) ∈ R3 are respec-
tively the position and orientation of the end-effector (the
orientation is represented as an axis-angle representation).
Σq , Σx and Σn are covariance matrices used to modulate
the influence of the different variables. In the experiment
presented here, the use of identity matrices was sufficient to
obtain natural looking motions. ε is a predefined error value.

The posture of the iCub’s arms and the grasping configu-
ration for the bow and the arrow are shown in Fig. 1. During
the experiment, while the robot is learning, between every
trial shot it is adjusting the relative position and orientation
of the two hands, which in turn controls the direction and
speed of the arrow. The desired relative position between
the two hands is given by the learning algorithm before each
trial. The desired orientation of the two hands is calculated
in such a way, so that the bow is kept vertical (i.e. zero
roll angle). The left hand’s palm is kept perpendicular to the
desired arrow direction, while the right hand’s fingers are

Fig. 9. Detection of the target and the arrow. Left: The camera image.
Right: The pixels are filtered based on their likelihood of belonging to the
target model or the arrow model. The red cross indicates the estimated center
of the target. The blue circle indicates the estimated position of the arrow.

−0.4
−0.2

0
0.2

−2

−1.5

−1

−0.5

0

0.2

0.4

x
2x

1
x 3

Fig. 10. Results from a real-world experiment with the iCub robot. The
arrow trajectories are depicted as straight dashed lines, because we do not
record the actual trajectories from the real-world experiment, only the final
position of the arrow on the target’s plane. In this session the ARCHER
algorithm needed 10 rollouts to converge to the innermost ring of the target.

kept aligned with the arrow direction. Fig. 8 illustrates the
orientations for the two hands.

C. Experimental results

The real-world experiment was conducted using the pro-
posed ARCHER algorithm and the proposed image process-
ing method. The camera was attached to the metal frame
holding the robot and produced images with a resolution of
1280 × 720 pixels. An example detection of the target and
the arrow is shown in Fig. 9.

For the learning part, the number of rollouts until con-
vergence in the real world is higher than the numbers
in the simulated experiment. This is caused by the high
level of noise (e.g. physical bow variability, measurement
uncertainties, robot control errors, etc.). Fig. 10 visualizes the
results of a learning session performed with the real robot.
In this session, the ARCHER algorithm needed 10 rollouts
to converge to the center.

A sequence of video frames showing the learned
real-world arrow shooting is shown in Fig. 11. The
video is available online at: http://programming-by-
demonstration.org/videos/humanoids2010/.

VI. DISCUSSION

For the archery task, the original idea was to teach the
robot to pull the arrow by itself before releasing it, but this
turned out to be too difficult, because of the quite limited

Fig. 11. Sequence of video frames showing the learned real-world arrow
shooting. The arrow hits the central yellow part of the target.

range of motion and range of orientation of the two arms. The
narrow joint angle ranges makes the workspace very limited
and prohibits performing human-like movement especially
in horizontal direction. Thus, some aspects of the bi-manual
coordination were hard-coded to bypass these hardware lim-
itations. We had to modify the shooting position by folding
both arms in order to achieve maximum maneuverability for
the two hands. Also, we simplified the procedure for hooking
the arrow to the string, because of the difficulty in grasping,
pulling and releasing the rope.

With a RL algorithm, it is possible to incorporate a
bias/preference in the reward. For ARCHER, a similar effect
could be achieved using a regularizer in the regression.

In the future, we plan to extend the proposed method by
adding imitation learning in order to teach the robot how to
perform the whole movement for grasping and pulling the
arrow.

VII. CONCLUSION

We have presented an integrated solution which allows a
humanoid robot to shoot arrows with a bow and learn on its
own how to hit the center of the target. We have proposed a
local regression algorithm called ARCHER for learning this
particular skill, and we have compared it against the state-of-
the-art PoWER algorithm. The simulation experiments show
significant improvement in terms of speed of convergence
of the proposed learning algorithm, which is due to the use
of a multi-dimensional reward and prior knowledge about
the optimum reward that one can reach. We have proposed
a method for extracting the task-specific visual information
from the image, relying on color segmentation and using a
probabilistic framework to model the objects. The conducted
experiments on the physical iCub robot confirm the feasibil-
ity of the proposed integrated solution.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Ugo
Pattacini for the inverse kinematics controller of iCub, the
support of Dr. Vadim Tikhanoff for running the iCub simu-
lator, and the invaluable help of Prof. Darwin G. Caldwell
for improving the quality of this manuscript.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[3] R. Sutton and A. Barto, Reinforcement learning: an introduction.
Cambridge, MA, USA: MIT Press, 1998.

[4] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 229–256, 1992.

[5] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomput., vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[6] J.Peters and S.Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems IROS, 2006.

[7] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), May 2009,
pp. 2112 –2118.

[8] J. Kober, “Reinforcement learning for motor primitives,” Master’s
thesis, University of Stuttgart, Germany, August 2008.

[9] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with EM-based reinforcement learning,” in The 2010
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS2010),
2010.

[10] Wikipedia. (2010) History of archery; Kyudo. [On-
line]. Available: http://en.wikipedia.org/wiki/History of archery;
http://en.wikipedia.org/wiki/Kyudo

[11] Y. Suematsu. (2001) Zashiki karakuri. Department of Electronic-
Mechanical Engineering, Nagoya University. [Online]. Available:
http://www.karakuri.info/zashiki/index.html

[12] E. Gribovskaya and A. Billard, “Combining dynamical systems control
and programming by demonstration for teaching discrete bimanual
coordination tasks to a humanoid robot,” in Proc. ACM/IEEE Intl Conf.
on Human-Robot Interaction (HRI), 2008.

[13] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, pp. 461–464, 1978.

[14] G. Metta, G. Sandini, D. Vernon, L. Natale, and N. F., “The icub
humanoid robot: an open platform for research in embodied cognition,”
in Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems, Washington DC, USA, 2008, pp. 50–56.

[15] N. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. Ijspeert, M. Carrozza, and D. Cald-
well, “iCub: The design and realization of an open humanoid platform
for cognitive and neuroscience research,” Advanced Robotics, vol. 21,
no. 10, pp. 1151–1175, 2007.

[16] S. Lallee, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek,
T. v. D. Zant, F. Warneken, and D. P. Ford, “Towards a platform-
independent cooperative human-robot interaction system: I. percep-
tion,” in The 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2010), 2010.

[17] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot
platform,” International Journal on Advanced Robotics Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[18] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[19] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots,” in The 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS2010), 2010.

