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Abstract— We present an integrated approach allowing a
free-standing humanoid robot to acquire new motor skills by
kinesthetic teaching. The proposed method controls simultane-
ously the upper and lower body of the robot with different
control strategies. Imitation learning is used for training the
upper body of the humanoid robot via kinesthetic teaching,
while at the same time Reaction Null Space method is used
for keeping the balance of the robot. During demonstration, a
force/torque sensor is used to record the exerted forces, and
during reproduction, we use a hybrid position/force controller
to apply the learned trajectories in terms of positions and forces
to the end effector. The proposed method is tested on a 25-DOF
Fujitsu HOAP-2 humanoid robot with a surface cleaning task.

I. INTRODUCTION

Controlling a full-body humanoid robot is an extremely
difficult task, especially if the robot is standing free on its
own two legs. Physical human-robot interaction with full-
body humanoids has been studied in the context of assisted
walking [1], helping a robot to stand up [2], or compliant
human-robot interaction with a standing robot [3].

Recent advances in robotics and mechatronics have al-
lowed for the creation of light-weight research-oriented hu-
manoid robots, such as RobotCub’s iCub, Kawada’s HRP-2,
Honda’s ASIMO and Fujitsu’s HOAP-2 (shown in Fig. 1).
From a hardware point of view, these research platforms have
the potential for great movement abilities: they have many
DOF (degrees of freedom), permit low-level actuator control
for both position and torque, and have a number of useful
onboard sensors. From a software point of view, however,
it is difficult to pre-program sophisticated full-body motion
controllers for the huge variety of complex tasks they will
face in dynamic environments.

Developing the full potential of these robots is only
possible by giving them the ability to learn new tasks by
themselves or by imitation of human demonstrations of tasks
[4]–[6]. Such approaches give robots the ability to learn,
generalize, adapt and reproduce a task with dynamically
changing constraints based on human demonstrations of the
task.

Traditional ways of demonstrating skills to robots require
the use of vision, immersive teleoperation, or motion capture
[7]. The difficulty with them is that the correspondence
problem [8] needs to be addressed. Also, the lack of feedback
from the robot during the demonstrations means that the
teacher does not know for sure if the robot will be able
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Fig. 1. Upper-body kinesthetic teaching of a free-standing HOAP-2 robot
for a whiteboard cleaning task. During the teaching, the robot keeps its
balance while at the same time allowing the human to move its arm. (a)
The human teacher demonstrates the task by holding the hand of the robot. A
simple active compliance controller is used for the arm, and reactive balance
controller for the rest of the body; (b) The hip-strategy balance controller
allows the robot to increase the size of the working space without falling;
(c) At the beginning of the standalone reproduction, the robot extends its
arm and touches the surface; (d) During task reproduction, the robot leans
forward and uses the ankle torque controller and its own gravitational force
to exert the required force on the surface; (e) When the reference force is
bigger, the robot achieves it by leaning forward more and holding the hand
closer to the body; (f) At the end of the reproduction, the robot pushes itself
away from the board and returns to upright position.

to perform the skill without self-collisions or singular con-
figurations.

An alternative modality for performing the human demon-
strations is through kinesthetic teaching [9], in which the
human teacher moves directly the robot’s arms. Applying
kinesthetic teaching to a full-body humanoid robot, how-
ever, is not trivial, because of the difficulty in performing
demonstrations on many DOF simultaneously, as well as
the difficulty of keeping the robot’s balance during the
demonstration. Due to this, previous kinesthetic teaching
approaches mostly considered humanoid robots permanently
attached to a supporting base, thus avoiding the problem
of self-balancing (as in [9]), or by using very small servo-
controlled humanoid whose body was entirely supported
by the demonstrator (as in [10]). In most cases, only a
small fraction of the robot’s DOF are actually used (e.g. by
disabling or freezing lower body motors during the teaching
process). Only few works have considered imitation learning
in full-body humanoid self-balancing robots [11]–[14], but
not in the context of kinesthetic teaching.
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The novelty of this paper is in extending the kinesthetic
teaching approach to a full-body free-standing1 humanoid
robot that allows upper-body kinesthetic teaching and si-
multaneously keeps the robot’s own balance. We propose to
treat the teaching interaction as an external disturbance to the
robot. We thus assume that the human demonstrator is acting
as a continuous and variable external force on the upper body
of the humanoid robot, which needs to be compensated by
an appropriate balance controller.

A study of the dynamics and balance of a humanoid
robot during manipulation tasks can be found in [15]. In
[16], Hwang et al. studied the static relationship between
the hand reaction force and the Zero Moment Point (ZMP)
position. Harada et al. [17] did research on a humanoid robot
adaptively changing the gait pattern according to the hand
reaction force. A methodology for the analysis and control of
internal forces and center of mass behavior produced during
multi-contact interactions between humanoid robots and the
environment is proposed in [18].

One promising method for balance control of a humanoid
robot is based on the Reaction Null Space concept [19],
[20]. The concept was originally developed for free-flying
and flexible-base manipulators, but it has recently been
successfully applied to humanoid robots for controlling the
balance via the reactions imposed on the feet. The ankle and
hip strategies for balance recovery of a biped robot based
on the Reaction Null Space concept provide swift reaction
patterns resembling those of humans.

In this paper we develop an integrated approach for upper-
body kinesthetic teaching allowing a free-standing humanoid
robot to acquire new motor skills including force interactions
with external objects. In our approach, the robot is free-
standing and self-balancing during both the teaching and the
reproduction. We control simultaneously the upper and lower
body of the robot with different control strategies allowing
it to be compliant during teaching and stiff enough to exert
forces during reproduction.

The proposed method is tested on a 25-DOF Fujitsu
HOAP-2 humanoid robot by teaching it a surface cleaning
skill. The robot is equipped with a force/torque sensor
mounted on a passive two-DOF attachment at the end-
effector. After being instructed how to move the arm and
what force to apply with the hand on the surface, the robot
learns to generalize and reproduce the task by itself. The
surface cleaning task is challenging because it requires the
use of a tool (e.g. sponge) to affect an external object (e.g.
board), and involves both position and force information
[21]. The task is a good testbed for the proposed approach
because: (1) it can be taught via kinesthetic teaching; (2) it
requires full-body control, especially balance control during
both teaching and reproduction; (3) it requires exerting
varying forces to external objects; (4) it involves integration
of motor control and learning parts in one coherent task.

1By free-standing humanoid robot we mean self-balancing robot which
is standing on its own two feet without any additional support.

II. PROPOSED APPROACH
The proposed approach consists of three consecutive

phases: demonstration phase, learning phase, and reproduc-
tion phase. Fig. 2 shows a high-level outline of the approach.

A. Demonstration phase

During the demonstration phase, we use active compli-
ance controller for the upper body (the arms including the
shoulders), and a balance controller for the lower body
(the legs including the hip). The experimental setup for the
demonstration phase is shown in Fig. 1.

1) Active compliance controller for the upper body:
Moving HOAP-2’s limbs manually is possible by switching
off the motors, but requires effort that limits the use of
kinesthetic teaching to setups in which the robot is in a fixed
seated position [22]. Because of this, it is practically impos-
sible to do kinesthetic teaching of a free-standing HOAP-2
by simply switching off the motors of the arms, because the
demonstrator’s exerted forces are rapidly transmitted to the
torso and the robot is prone to fall down. In order to solve
this problem, we use a simple active compliance controller
based on torque control mode for friction compensation
with velocity feedback. We use velocity feedback, instead
of torque feedback, because the HOAP-2 does not have
torque sensing capabilities, but only motor current control.
We use imperfect friction model, taking into consideration
only the viscous friction, i.e. we consider the joint friction to
be proportional to the angular velocity. Also, we use lower
gains than the ones set by the manufacturer. Since the static
(Coulomb) friction of HOAP-2 is very high, and the weight
of the arm is light, we do not use gravity compensation.
The arm of the robot keeps its current configuration if it is
not touched by the user, due to the high static friction. The
implemented viscous friction compensation controller helps
in smooth movements, but impedes sudden sharp changes in
the direction of movement. For the tasks considered by this
paper this behavior is a good compromise, which aids the
kinesthetic teaching significantly by making the arm move
easily under the demonstrator’s guidance.

2) Balance controller for the lower body: The balance
controller employs two different balance strategies: ankle
strategy and hip strategy [19]. According to the ankle strat-
egy, the robot reacts in a compliant way in response to
the external disturbance by displacing its CoM (center of
mass). After the disappearance of the disturbance, the initial
posture will be recovered. On the other hand, the essence
of the hip strategy is to ensure compliant reaction to the
external disturbance by bending the hips, trying thereby to
displace the CoM as little as possible. This strategy has
been realized with the help of the Reaction Null Space
method [20]. Further on, smooth transition between the two
strategies is also ensured by making use of the transition
strategy recently presented in [23]. The resulting behavior
is such that the balance is first controlled with the help of
the ankle strategy in response to a relatively small force
exerted by the human teacher. When the teacher exerts an
additional force by strongly pulling the arm, e.g. to extend
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Fig. 2. Flowchart of the proposed approach, showing details about each of the three phases: demonstration, learning, and reproduction.

Fig. 3. Block schema of the controller used during the demonstration
phase.

the reach, the robot switches smoothly to the hip strategy and
bends the hips. When the strong pull is removed, the robot
switches back to the ankle balance strategy. A block schema
of the proposed controller used during the demonstration
phase is shown in Fig. 3. The controller consists of three
parts: the active compliance controller based on viscous
friction compensation for the arm with velocity feedback,
the balance controller with position and ZMP feedback, and
a local feedforward torque controller at the joint level2.

B. Learning phase

During this phase the recorded demonstrations are used to
learn a compact representation of the skill. We propose to en-
code the skill based on a superposition of basis motion fields
to provide a compact and flexible representation of a move-
ment. The approach is an extension of Dynamic Movement
Primitives (DMP) [24], [25] which encapsulates variation
and correlation information across multivariate data. In the
proposed method, a set of virtual attractors is used to reach
a target. The influence of these virtual attractors is smoothly

2HOAP-2’s controller has been modified to ensure 1 ms real-time torque
control for all joints.

switched along the movement on a time basis. The set of
attractors is learned by weighted least-squares regression,
by using the residual errors as covariance information to
estimate stiffness gain matrices. A proportional-derivative
controller is used to move sequentially towards the sequence
of targets (see [26] for details).

During the demonstration phase, the position, velocity, and
acceleration of the end-effector are recorded in the robot’s
frame of reference using forward kinematics. In the forward
kinematics model for the arm we have also included a model
of the two passive DOF of the sponge for cleaning the
surface, in order to improve the precision of recording of
the tip of the tool which the end-effector is holding. In
order to provide generalization ability for cleaning a surface
regardless of its position and orientation with respect to the
robot, the recorded trajectories from the robot’s frame of
reference are transformed to the surface’s frame of reference
before encoding them.

A demonstration consisting of T positions x (x has 3
dimensions), velocities ẋ and accelerations ẍ is recorded by
the robot. We use a mixture of K proportional-derivative
systems:

ˆ̈x =

K∑
i=1

hi(t)
[
KP

i (µ
X
i − x)− κV ẋ

]
, (1)

where µX
i are the learned virtual attractors, KP

i - the full
stiffness matrix gains, hi(t) - the mixing weights, and κV

is a damping factor. Fig. 4 shows example for recorded
trajectories and their corresponding reproduced trajectories
from the learned model representations. Both position and
force information are encoded by using this encoding schema
(see [27] for details).

C. Reproduction phase

For the reproduction, the learned trajectory is first trans-
formed from the surface’s frame of reference back to the
robot’s frame of reference. Then, a hybrid position/force
controller is used. The controller includes forward and
inverse kinematics functions for hand position feedback
control, an ankle joint regulator to ensure a reference static
force component at the initial contact, and a ZMP-based
feedback controller for the desired hand force during the
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Fig. 4. Demonstrated trajectory (in black) and the learned trajectory
(retrieved from the model, in red). Four trajectories are demonstrated for
variations of the cleaning task: (a) and (b) cover a bigger area and use
smooth movement for the end-effector; (c) uses faster movement with sharp
turns; (d) is for spot cleaning, focusing only on a small area.

motion. Note that the force/torque sensor is detached from
the hand during the reproduction phase because the robot’s
arm is underpowered to bear the weight of the sensor while
reproducing the task. Because of this, the applied force at
the hand is calculated via the ZMP position. The passive
two-DOF attachment is used so that the tool in the hand
has complete six DOF to comply with the surface being
cleaned. The attachment is sensorless, its joint angles and
joint velocities are calculated via the kinematic closed-loop
condition.

A 3D model of the reproduction phase is shown in Fig.
5. The sagittal and transverse projections of the used robot
model are depicted in Fig. 6. The reproduction controller
block schema is given in Fig. 7.

III. EXPERIMENTS

A. Experimental setup

The experimental setup is shown in Fig. 1. The follow-
ing number of servo actuators of Fujitsu’s HOAP-2 robot
are used: six for each leg, four for each arm3, and one
for the waist. Four force sensing resistors (FSRs) in each

3The left arm is kept fixed during the experiment, at a safe distance from
the torso and the legs.
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Fig. 5. 3D model of the reproduction phase. (a) Joint angles θ1 through θ5
are actively controlled, θ6 and θ7 are the passive joint coordinates resolved
via kinematic loop closure. (b) Coordinate frames of reference used for
transformation of the trajectories: {b} base, {w} whiteboard, {h} hand,
{e} end-effector (sponge).
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Fig. 6. (a) The model of the robot projected onto the sagittal plane.
The notations match those of the controller. (b) Transverse plane projection
of the robot’s feet and the swept path by the ZMP projection during the
reproduction of the task (in red dotted line).

Fig. 7. Block schema of the controller used during the reproduction phase.
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foot are used to detect reaction forces from the floor. The
exerted force by the sponge on the whiteboard is recorded
from a 6-axis Nitta F/T sensor attached to the end-effector
during the demonstration phase. Vision is not used. The
position and orientation of the whiteboard is computed by
touching 3 points of it with the end-effector via kinesthetic
teaching. This is a convenient way to adapt to a new
position/orientation of the whiteboard when the robot is
moved to a new place. Anti-slippery coating is used for
the feet to allow exerting stronger forces on the whiteboard
without foot slippage.

B. Experimental results

Fig. 4 shows four example recorded trajectories, and their
corresponding reproduced learned trajectories. A variety of
positional profiles have been successfully encoded with the
same number of parameters K = 50. The trajectories are
sampled to 500 points each, and the reproduction time is
between 10 and 30 seconds.

Fig. 8 shows the demonstrated force during the teach-
ing phase on one trial. The demonstrated force required
to perform the task is between 10N and 20N (the force
component in the direction normal to the surface). During
the reproduction, forces in the same range are used (i.e. no
rescaling is done) because the robot is able to exert forces of
such magnitude using both the ankle torque controller and the
gravity force produced by leaning forward. Only the normal
(Fz) component of the force is reproduced by the ankle
controller, while the other two components are naturally
produced by the planar movement of the end-effector along
the surface. The force exerted by the end-effector is not
measured directly during the reproduction, because the F/T
sensor is too heavy to be moved by the robot while in contact
with the surface. Instead, the exerted force is derived from
the reaction force measured at the feet of the robot, which
is shown in Fig. 9.

Fig. 10 shows the learned speed profile of the end-effector
for the same example. The maximum speed reaches 400
mm/s, which the robot is capable of reproducing. However,
for a faster or more dynamic task, or for a more force-
intensive task, appropriate rescaling would be necessary.

A video of the surface cleaning experiment is available
online at [28]. Fig. 1 shows some selected snapshots from
the demonstration and the reproduction phases.

IV. DISCUSSION

Numerous problems were identified and solved during the
experiments. Because of the only 4 available DOF of the arm
it was impossible to keep the wrist oriented parallel to the
whiteboard. This was solved by using two additional passive
DOF in the tool (sponge) and adding the passive joints to
the kinematics model of the robot.

The initial robot posture before starting a reproduction
turned out to be very important for avoiding self-collisions.
Improvements to the current implementation of the in-
verse kinematics position controller are required to ensure
collision-free paths for both the end-effector and the arm.
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Fig. 8. This shows the demonstrated force during the teaching phase,
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Fig. 9. Reaction force measured at the feet of the robot during
reproduction.

A trade-off was established in the compliant controller for
the arm. The implemented active control for the arm makes
the arm feel ”lighter” while doing kinesthetic teaching, but at
the same time it makes it harder to do rapid sharp changes
in the velocity. For heavier human-sized humanoid robots,
however, it might be necessary to use state-of-the-art gravity
compensation controllers to allow easier movements.

The proposed method can be extended in several direc-
tions. The Reaction Null Space method can be extended to
also include stepping. In case of a strong perturbation, it
might be necessary to move one foot forward or backward in
order to keep the balance of the robot, which requires online
footstep re-planning, which has been studied in the context of
robot guidance but not in the context of kinesthetic teaching.

The presented approach is easily applicable to bi-manual
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Fig. 10. Speed profile of the end-effector (EE) for the demonstrated
trajectory shown in Fig. 4(a).
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tasks, due to the relative independence of the lower-body
balance controller from the upper-body movements. This
allows the human teacher to demonstrate tasks involving both
arms such as manipulating big objects, pulling a bar, putting
wallpapers, etc. The disturbances caused by the upper-body
kinesthetic teaching will be rejected by the Reaction Null
Space controller.

In the presented experiment, the generalization abilities
of the position and force encoding technique are not fully
exploited. They will be used in further work to cope with
situations where multiple and noisy demonstrations are avail-
able, in which case the model will be used to encapsulate
in a probabilistic way the uncertainty in order to generalize
over a larger range of new situations.

Another extension that we plan to consider is to incorpo-
rate visual feedback to provide the robot with the capability
to automatically find spots to clean on the surface, determine
their shape and select an appropriate trajectory from the
learned movement repertoire.

V. CONCLUSION
We have presented an approach for upper-body kinesthetic

teaching of a free-standing humanoid robot, based on imi-
tation learning and disturbance rejection with Reaction Null
Space method. We successfully applied it to a surface clean-
ing task. The proposed approach and its future extensions
will secure a more natural way for human-robot interaction.
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