
Robotics 2013, 2, 122-148; doi:10.3390/robotics2030122
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Reinforcement Learning in Robotics: Applications and
Real-World Challenges †

Petar Kormushev ?, Sylvain Calinon and Darwin G. Caldwell

Department of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy;
E-Mails: sylvain.calinon@iit.it (S.C.); darwin.caldwell@iit.it (D.G.C.)

† Based on “Kormushev, P.; Calinon, S.; Caldwell, D.G.; Ugurlu, B. Challenges for the Policy
Representation When Applying Reinforcement Learning in Robotics. In Proceedings of WCCI 2012
IEEE World Congress on Computational Intelligence, Brisbane, Australia, 10–15 June 2012”.

? Author to whom correspondence should be addressed; E-Mail: petar.kormushev@iit.it.

Received: 4 June 2013; in revised form: 24 June 2013 / Accepted: 28 June 2013 /
Published: 5 July 2013

Abstract: In robotics, the ultimate goal of reinforcement learning is to endow robots
with the ability to learn, improve, adapt and reproduce tasks with dynamically changing
constraints based on exploration and autonomous learning. We give a summary of
the state-of-the-art of reinforcement learning in the context of robotics, in terms of
both algorithms and policy representations. Numerous challenges faced by the policy
representation in robotics are identified. Three recent examples for the application
of reinforcement learning to real-world robots are described: a pancake flipping task,
a bipedal walking energy minimization task and an archery-based aiming task. In all
examples, a state-of-the-art expectation-maximization-based reinforcement learning is used,
and different policy representations are proposed and evaluated for each task. The proposed
policy representations offer viable solutions to six rarely-addressed challenges in policy
representations: correlations, adaptability, multi-resolution, globality, multi-dimensionality
and convergence. Both the successes and the practical difficulties encountered in these
examples are discussed. Based on insights from these particular cases, conclusions are drawn
about the state-of-the-art and the future perspective directions for reinforcement learning
in robotics.

Keywords: reinforcement learning; robotics; learning and adaptive systems



Robotics 2013, 2 123

1. Introduction

Endowing robots with human-like abilities to perform motor skills in a smooth and natural way is one
of the important goals of robotics. A promising way to achieve this is by creating robots that can learn
new skills by themselves, similarly to humans. However, acquiring new motor skills is not simple and
involves various forms of learning.

Over the years, the approaches for teaching new skill to robots have evolved significantly, and
currently, there are three well-established types of approaches: direct programming, imitation learning
and reinforcement learning. All of these approaches are still being actively used, and each one has
its own advantages and disadvantages and is preferred for certain settings, as summarized in Table 1.
The bottom row in Table 1 indicates our prediction about a hypothetical future approach, predicted
based on extrapolation from the existing approaches, as explained in Section 10.

The ultimate goal of these approaches is to give robots the ability to learn, improve, adapt and
reproduce tasks with dynamically changing constraints. However, these approaches differ significantly
from one another:

• Direct programming: This is the lowest-level approach, but it is still being actively used in
industrial settings, where the environment is well-structured and complete control over the precise
movement of the robot is crucial. We add it for completeness, although it is not really a teaching
method; hence, we classify it as programming. Industrial robots are usually equipped with the
so-called teach pendant—a device that is used to manually set the desired robot positions.

• Imitation learning: This approach is called learning instead of programming, in order to
emphasize the active part that the agent (the robot) has in the process. This approach is also
known as programming by demonstration [1] or learning from demonstration [2]. There are three
main methods used to perform demonstrations for imitation learning:

– Kinesthetic teaching: This is the process of manually moving the robot’s body and
recording its motion [3]. This approach usually works only for smaller, lightweight robots
and in combination with a gravity-compensation controller, in order to minimize the apparent
weight of the robot. However, nevertheless, since the robot’s inertia cannot be effectively
reduced, it is not practical for bigger robots. Kinesthetic teaching could be performed
in a continuous way, recording whole trajectories, or alternatively, it could be performed
by recording discrete snapshots of the robot’s state at separate time instances, such as in
keyframe-based teaching of sequences of key poses [4].

– Teleoperation: This is the process of remotely controlling the robot’s body using another
input device, such as a joystick or a haptic device. This approach shares many similarities
with kinesthetic teaching in terms of advantages and disadvantages. One big difference
is that with teleoperation, the teacher can be located in a geographically distant location.
However, time delays become an issue as the distance increases (e.g., teleoperating a Mars
rover would be difficult). Similarly to kinesthetic teaching, only a limited number of degrees
of freedom (DoFs) can be controlled at the same time. Furthermore, with teleoperation, it is
more difficult to feel the limitations and capabilities of the robot than by using kinesthetic



Robotics 2013, 2 124

teaching. As an advantage, sometimes the setup could be simpler, and additional information
can be displayed at the interface (e.g., forces rendered by the haptic device).

– Observational learning: In this method, the movement is demonstrated using the teacher’s
own body and is perceived using motion capture systems or video cameras or other sensors.
It is usually needed to solve the correspondence problem [5], i.e., to map the robot’s
kinematics to that of the teacher.

The simplest way to use the demonstrations is to do a simple record-and-replay, which can only
execute a particular instance of a task. However, using smart representation of the recorded
movement in appropriate frame of reference (e.g., using the target object as the origin), it is
possible to have somewhat adaptable skill to different initial configurations, for simple (mostly
one-object) tasks. Based on multiple demonstrations that include variations of a task, the robot can
calculate correlations and variance and figure out which part of a task is important to be repeated
verbatim and which part is acceptable to be changed (and to what extent). Imitation learning has
been successfully applied many times for learning tasks on robots, for which the human teacher
can demonstrate a successful execution [3,6].

• Reinforcement learning (RL): This is the process of learning from trial-and-error [7],
by exploring the environment and the robot’s own body. The goal in RL is specified by the
reward function, which acts as positive reinforcement or negative punishment depending on the
performance of the robot with respect to the desired goal. RL has created a well-defined niche for
its application in robotics [8–14]. The main motivation for using reinforcement learning to teach
robots new skills is that it offers three previously missing abilities:

– to learn new tasks, which even the human teacher cannot physically demonstrate or cannot
directly program (e.g., jump three meters high, lift heavy weights, move very fast, etc.);

– to learn to achieve optimization goals of difficult problems that have no analytic formulation
or no known closed form solution, when even the human teacher does not know what
the optimum is, by using only a known cost function (e.g., minimize the used energy for
performing a task or find the fastest gait, etc.);

– to learn to adapt a skill to a new, previously unseen version of a task (e.g., learning to
walk from flat ground to a slope, learning to generalize a task to new previously unseen
parameter values, etc.). Some imitation learning approaches can also do this, but in a much
more restricted way (e.g., by adjusting parameters of a learned model, without being able to
change the model itself).

Reinforcement learning also offers some additional advantages. For example, it is possible to start
from a “good enough” demonstration and gradually refine it. Another example would be the ability to
dynamically adapt to changes in the agent itself, such as a robot adapting to hardware changes—heating
up, mechanical wear, growing body parts, etc.



Robotics 2013, 2 125

Table 1. Comparison of the main robot teaching approaches.

Approach/method for teaching the robot

HH
HHH

HHH

Difficulty
for the teacher

Computational
complexity Advantages Disadvantages

E
xi

st
in

g
ap

pr
oa

ch
es

Direct programming
Manually specifying
(programming) the robot
how to move each joint

HHH
HHHHigh

Lowest
Complete control
of the movement
of the robot to the
lowest level

Time-consuming,
error-prone, not scalable,
not reusable

Im
ita

tio
n

le
ar

ni
ng

Kinesthetic teaching
and Teleoperation
Directly move the robot’s
limbs or teleoperate to
record the movement

HHH
HHHMedium

Low

No need to
manually
program, can
just record and
replay movements

Cannot perform fast
movements; can move
usually only one limb at a
time; the robot has to be
lightweight

Observational learning
Demonstrate the movement
using the teacher’s own
body; perceive the
movement using motion
capture systems or video
cameras

H
HHHHHLow

Medium

Easy and natural
to demonstrate;
also works for
bimanual tasks or
even whole-body
motion

Correspondence problem
caused by the different
embodiment; the teacher
must be able to do the
task; often requires multiple
demonstrations that need
to be segmented and
time-aligned

Reinforcement learning
Specify a scalar reward
function evaluating the robot’s
performance that needs to
be maximized; no need to
demonstrate how to perform the
task; the robot discovers this on
its own

HH
HHHHLower
Higher

Robot can learn
tasks that even
the human cannot
demonstrate;
novel ways to
reach a goal can
be discovered

No control over the actions
of the robot; robot has
only indirect information
about the goal; need to
specify reward function,
policy parameterization,
exploration
magnitude/strategy, initial
policy

H
yp

ot
he

tic
al “Goal-directed learning”

(predicted via extrapolation) Only
specifying the goal that the robot
must achieve, without evaluating
the intermediate progress

HHH
HHHLowest

Highest

The easiest way
to specify (e.g.,
using NLP);
robot has direct
knowledge of the
goal

No control of the movement
of the robot; must know
what the goal is and how to
formally define it

This paper provides a summary of some of the main components for applying reinforcement learning
in robotics. We present some of the most important classes of learning algorithms and classes of policies.
We give a comprehensive list of challenges for effective policy representations for the application
of policy-search RL to robotics and provide three examples of tasks demonstrating how the policy
representation may address some of these challenges. The paper is a significantly improved and extended
version of our previous work in [15]. The novelties include: new experimental section based on
robotic archery task; new section with insights about the future of RL in robotics; new comparison
of existing robot learning approaches and their respective advantages and disadvantages; an expanded
list of challenges for the policy representation and more detailed description of use cases.



Robotics 2013, 2 126

The paper does not propose new algorithmic strategies. Rather, it summarizes what our team has
learned from a fairly extensive base of empirical evidence over the last 4–5 years, aiming to serve as
a reference for the field of robot learning. While we may still dream of a general purpose algorithm
that would allow robots to learn optimal policies without human guidance, it is likely that these are
far off. The paper describes several classes of policies that have proved to work very well for a wide
range of robot motor control tasks. The main contribution of this work is a better understanding that the
design of appropriate policy representations is essential for RL methods to be successfully applied to
real-world robots.

The paper is structured as follows. In Section 2, we present an overview of the most important
recent RL algorithms that are being successfully applied in robotics. Then, in Section 3, we identify
numerous challenges posed by robotics on the RL policy representation, and in Section 4, we describe
the state-of-the-art policy representations. To illustrate some of these challenges, and to propose adequate
solutions to them, the three consecutive Sections 5–7, give three representative examples for real-world
application of RL in robotics. The examples are all based on the same RL algorithm, but each faces
different policy representation problems and, therefore, requires different solutions. In Section 8,
we give a summary of the three tasks and compare them to three other robot skill learning tasks. Then,
in Section 9, we give insights about the future perspective directions for RL based on these examples
and having in mind robotics, in particular, as the application. Finally, in Section 10, we discuss potential
future alternative methods for teaching robots new tasks that might appear. We conclude with a brief
peek into the future of robotics, revealing, in particular, the potential wider need for RL.

2. State-of-the-Art Reinforcement Learning Algorithms in Robotics

Robot systems are naturally of high-dimensionality, having many degrees of freedom (DoF),
continuous states and actions and high noise. Because of this, traditional RL approaches based on
MDP/POMDP/discretized state and action spaces have problems scaling up to work in robotics, because
they suffer severely from the curse of dimensionality. The first partial successes in applying RL to
robotics came with the function approximation techniques, but the real “renaissance” came with the
policy-search RL methods.

In policy-search RL, instead of working in the huge state/action spaces, a smaller policy space is used,
which contains all possible policies representable with a certain choice of policy parameterization. Thus,
the dimensionality is drastically reduced and the convergence speed is increased.

Until recently, policy-gradient algorithms (such as Episodic Natural Actor-Critic eNAC [16] and
Episodic REINFORCE [17]) have been a well-established approach for implementing policy-search
RL [10]. Unfortunately, policy-gradient algorithms have certain shortcomings, such as high sensitivity
to the learning rate and exploratory variance.

An alternative approach that has gained popularity recently derives from the
Expectation-Maximization (EM) algorithm. For example, Kober et al. proposed in [18] an episodic RL
algorithm, called PoWER (policy learning by weighting exploration with the returns). It is based on
the EM algorithm and, thus, has a major advantage over policy-gradient-based approaches: it does not
require a learning rate parameter. This is desirable, because tuning a learning rate is usually difficult



Robotics 2013, 2 127

to do for control problems, but critical for achieving good performance of policy-gradient algorithms.
PoWER also demonstrates superior performance in tasks learned directly on a real robot, by applying
an importance sampling technique to reuse previous experience efficiently.

Another state-of-the-art policy-search RL algorithm, called PIˆ2 (policy improvement with path
integrals), was proposed by Theodorou et al. in [19], for learning parameterized control policies based
on the framework of stochastic optimal control with path integrals. They derived update equations for
learning to avoid numerical instabilities, because neither matrix inversions nor gradient learning rates are
required. The approach demonstrates significant performance improvements over gradient-based policy
learning and scalability to high-dimensional control problems, such as control of a quadruped robot dog.

Several search algorithms from the field of stochastic optimization have recently found successful
use for iterative policy improvement. Examples of such approaches are the cross-entropy method
(CEM) [20] and the covariance matrix adaptation evolution strategy (CMA-ES) [21]. Although these
algorithms come from a different domain and are not well-established in RL research, they seem to be a
viable alternative for direct policy search RL, as some recent findings suggest [22].

3. Challenges for the Policy Representation in Robotics

Only having a good policy-search RL algorithm is not enough for solving real-world problems in
robotics. Before any given RL algorithm can be applied to learn a task on a robot, an appropriate policy
representation (also called policy encoding) needs to be devised. This is important, because the choice
of policy representation determines what in principle can be learned by the RL algorithm (i.e., the policy
search space), analogous to the way a hypothesis model determines what kind of data a regression method
can fit well. In addition, the policy representation can have significant influence on the RL algorithm
itself, e.g., it can help or impede the convergence or influence the variance of the generated policies.

However, creating a good policy representation is not a trivial problem, due to a number of serious
challenges posed by the high requirements from a robotic system, such as:

• smoothness—the policy representation needs to encode smooth, continuous trajectories, without
sudden accelerations or jerks, in order to be safe for the robot itself and also to reduce its energy
consumption. In some rare cases, though, such as in bang-bang control, sudden changes might
be desirable;
• safety—the policy should be safe, not only for the robot (in terms of joint limits, torque limits,

work space restrictions, obstacles, etc.), but also for the people around it;
• gradual exploration—the representation should allow gradual, incremental exploration, so that the

policy does not suddenly change by a lot; e.g., in state-action-based policies, changing the policy
action at only a single state could cause a sudden dramatic change in the overall behavior of the
system when following this new branch of the policy, which is not desirable neither for the robot,
nor for the people around it. In some cases, though, a considerable step change might be necessary,
e.g., a navigation task where a robot needs to decide whether to go left or right to avoid an obstacle;
• scalability—to be able to scale up to high dimensions and for more complex tasks; e.g., a typical

humanoid robot nowadays has well above 50 DoF;



Robotics 2013, 2 128

• compactness—despite the high DoF of robots, the policy should use very compact encoding, e.g.,
it is impossible to directly use all points on a trajectory as policy parameters;
• adaptability—the policy parameterization should be adaptable to the complexity and fidelity of the

task, e.g., lifting weights vs. micro-surgery;
• multi-resolution—different parts of the policy parameterization should allow different

resolution/precision;
• unbiasedness—the policy parameterization should work without prior knowledge about the

solution being sought and without restricting unnecessarily the search scope for possible solutions;
• prior/bias—whenever feasible, it should be possible to add prior information (also called bias) in

order to jump-start policy search approaches, as illustrated in some of the use cases in this paper;
• regularization—the policy should allow one to incorporate regularization to guide the exploration

towards desired types of policies;
• time-independence—this is the property of a policy not to depend on precise time or position,

in order to cope with unforeseen perturbations;
• embodiment-agnostic—the representation should not depend on any particular embodiment of the

robot, e.g., joint-trajectory based policies cannot be transferred to another robot easily;
• invariance—the policy should be an invariant representation of the task (e.g., rotation-invariant,

scale-invariant, position-invariant, etc.);
• correlations—the policy should encapsulate correlations between the control variables (e.g.,

actuator control signals), similar to the motor synergies found in animals;
• globality—the representation should help the RL algorithm to avoid local minima;
• periodicity—to be able to represent easily periodic/cyclic movements, which occur

often in robotics (e.g., for locomotion—different walking gaits, for manipulation—wiping
movements, etc.);
• analyzability—facility to visualize and analyze the policy (e.g., proving its stability by poles

analysis, etc.);
• multi-dimensionality—to be able to use efficiently high-dimensional feedback without the need to

convert it into a scalar value by using a weighted sum of components;
• convergence—to help the RL algorithm to converge faster to the (possibly local) optima.

A good policy representation should provide solutions to all of these challenges. However, it is
not easy to come up with such a policy representation that satisfies all of them. In fact, the existing
state-of-the-art policy representations in robotics cover only subsets of these requirements, as highlighted
in the next section.

4. State-of-the-Art Policy Representations in Robotics

Traditionally, explicit time-dependent approaches, such as cubic splines or higher-order polynomials,
were used as policy representations. These, however, are not autonomous, in the sense that they cannot
cope easily with perturbations (unexpected changes in the environment). Currently, there are a number
of efficient state-of-the-art representations available to address this and many of the other challenges
mentioned earlier. We give three examples of such policy representations below:



Robotics 2013, 2 129

• Guenter et al. explored in [23] the use of the Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR) to respectively compactly encode a skill and reproduce a generalized
version of it. The model was initially learned by demonstration through expectation-maximization
techniques. RL was then used to move the Gaussian centers in order to alter the reproduced
trajectory by regression. It was successfully applied to the imitation of constrained reaching
movements, where the learned movement was refined in simulation to avoid an obstacle that was
not present during the demonstration attempts.
• Kober and Peters explored in [24] the use of Dynamic Movement Primitives (DMP) [25] as

a compact representation of a movement. The DMP framework was originally proposed by
Ijspeert et al. [26] and further extended in [25,27]. In DMP, a set of attractors is used to reach
a target, whose influence is smoothly switched along the movement. The set of attractors is first
learned by imitation, and a proportional-derivative controller is used to move sequentially towards
the sequence of targets. RL is then used to explore the effect of changing the position of these
attractors. The proposed approach was demonstrated with pendulum swing-up and ball-in-a-cup
tasks [28]. One of the first uses of motion primitives was in the work of Peters et al. for a
ball-batting experiment using the eNAC algorithm [29].
• Pardo et al. proposed in [30] a framework to learn coordination for simple rest-to-rest movements,

by taking inspiration of the motor coordination, joint synergies and the importance of coupling in
motor control [31–33]. The authors suggested to start from a basic representation of the movement
by considering point-to-point movements driven by a proportional-derivative controller, where
each variable encoding the task is decoupled. They then extended the possibilities of movement
by encapsulating coordination information in the representation. RL was then used to learn how
to efficiently coordinate the set of variables, which were originally decoupled.

Although these policy representations work reasonably well for specific tasks, neither one of
them manages to address all of the challenges listed in the previous section, but only a different
subset. In particular, the challenges of correlations, adaptability, multi-resolution, globality,
multi-dimensionality and convergence are rarely addressed by the existing policy representations.

In the following three sections. we give three concrete examples of tasks that pose such
rarely-addressed challenges for the policy representation, and we propose some possible solutions to
them. The three examples are: pancake flipping task, bipedal walking energy minimization task and
archery-based aiming task. In all examples, the same EM-based RL algorithm is used (PoWER), but
different policy representations are devised to address the specific challenges of the task at hand. Videos
of the three presented robot experiments are available online at: http://kormushev.com/research/videos/.

5. Example A: Pancake Flipping Task

This example addresses mainly the correlations, compactness and smoothness challenges described in
Section 3. We present an approach allowing a robot to acquire new motor skills by learning the couplings
across motor control variables. The demonstrated skill is first encoded in a compact form through a
modified version of DMP, which encapsulates correlation information. RL is then used to modulate
the mixture of dynamical systems initialized from the user’s demonstration via weighted least-squares

http://kormushev.com/research/videos/


Robotics 2013, 2 130

regression. The approach is evaluated on a torque-controlled seven-DoF Barrett WAMrobotic arm. More
implementation details can be found in [13].

5.1. Task Description

The goal of the pancake flipping task is to first toss a pancake in the air, so that it rotates 180◦, and
then to catch it with the frying pan. Due to the complex dynamics of the task, it is unfeasible to try
learning it directly with tabula rasa RL. Instead, a person presents a demonstration of the task first via
kinesthetic teaching, which is then used to initialize the RL policy. The experimental setup is shown in
Figure 1.

Figure 1. Experimental setup for the pancake flipping task. A torque-controlled seven-DoF
Barrett WAM robot learns to flip pancakes in the air and catch them with a real frying pan
attached to its end-effector. Artificial pancakes with passive reflective markers are used to
evaluate the performance of the learned policy.

The pancake flipping task is difficult to learn from multiple demonstrations, because of the high
variability of the task execution, even when the same person is providing the demonstrations. Extracting
the task constraints by observing multiple demonstrations is not appropriate in this case for two reasons:

• when considering such skillful movements, extracting the regularities and correlations from
multiple observations would be difficult, as consistency in the skill execution would appear only
after the user has mastered the skill;
• the generalization process may smooth important acceleration peaks and sharp turns in the

motion. Therefore, in such highly dynamic skillful tasks, early trials have shown that it was more
appropriate to select a single successful demonstration (among a small series of trials) to initialize
the learning process.

A common missing part of most existing policy representations is the lack of any coupling between
the different variables. To address this problem, we propose an approach that builds upon the works
above by taking into consideration the efficiency of DMP to encode a skill with a reduced number of
states and by extending the approach to take into consideration local coupling information across the
different variables.



Robotics 2013, 2 131

5.2. Proposed Compact Encoding with Coupling

The proposed approach represents a movement as a superposition of basis force fields, where the
model is initialized from weighted least-squares regression of demonstrated trajectories. RL is then
used to adapt and improve the encoded skill by learning optimal values for the policy parameters.
The proposed policy parameterization allows the RL algorithm to learn the coupling across the different
motor control variables.

A demonstration consisting of T positions, x in 3D, velocities, ẋ, and accelerations, ẍ, is shown to
the robot. By considering flexibility and compactness issues, we propose to use a controller based on a
mixture of K proportional-derivative systems:

ˆ̈x =
K∑
i=1

hi(t)
[
KP
i (µXi − x)− κV ẋ

]
(1)

The above formulation shares similarities with the DMP framework. The difference is that the
non-linear force of DMP is considered as resulting from a set of virtual springs, adding local corrective
terms to swiftly react to perturbations [34]. Here, we extend the use of DMP by considering synergy
across the different motion variables through the association of a full matrix, KP

i , with each of the K
primitives (or states) instead of a fixed κP gain.

The superposition of basis force fields is determined in Equation (1) by an implicit time dependency,
but other forms of activation weights can also be used. For example, we showed in [35] that the
representation in Equation (1) could also be used with activation weights based on spatial inputs instead
of temporal inputs, used to encode reaching behaviors modulated by the position of objects.

Similarly to DMP, a decay term defined by a canonical system, ṡ = −αs, is used to create an implicit
time dependency, t = − ln(s)

α
, where s is initialized with s = 1 and converges to zero. We define a set

of Gaussians, N (µTi ,Σ
T
i ), in time space, T , with centers, µTi , equally distributed in time, and variance

parameters, ΣT
i , set to a constant value inversely proportional to the number of Gaussians. This set

is used as a set of Gaussian basis functions. The scalar, α, is fixed depending on the duration of the
demonstrations. The weights are defined by:

hi(t) =
N (t; µTi ,Σ

T
i )∑K

k=1N (t; µTk ,Σ
T
k )

(2)

In Equation (1), {KP
i }Ki=1 is a set of full stiffness matrices, which we refer to as coordination matrices.

Using the full coordination matrices (not only their diagonal elements) allows us to consider different
types of synergies across the variables, where each state/primitive encodes local correlation information.
Both attractor vectors, {µXi }Ki=1, and coordination matrices, {KP

i }Ki=1, in Equation (1) are initialized from
the observed data through weighted least-squares regression (see [13] for details).

5.3. Experiment

Custom-made artificial pancakes are used, whose position and orientation are tracked in real-time by
a reflective marker-based NaturalPoint OptiTrack motion capture system.



Robotics 2013, 2 132

The return of a rollout, τ (also called trial), is calculated from the time-step reward, r(t). It is
defined as a weighted sum of two criteria (orientational reward and positional reward), which encourage
successful flipping and successful catching of the pancake:

R(τ) = w1

[arccos(v0.vtf )

π

]
+ w2e

−||xp−xF || + w3x
M
3 (3)

where wi are weights, tf is the moment when the pancake passes, with a downward direction, the
horizontal level at a fixed height, ∆h, above the frying pan’s current vertical position, v0 is the initial
orientation of the pancake (represented by a unit vector perpendicular to the pancake), vtf is the
orientation of the pancake at time, tf , xP is the position of the pancake center at time, tf , xF is the
position of the frying pan center at time, tf , and xM3 is the maximum reached altitude of the pancake.
The first term is maximized when the pancake’s orientation (represented as a normal vector) at time, tf ,
points in the opposite direction of the initial orientation, which happens in a successful flip. The second
term is maximized when the pancake lands close to the center of the frying pan.

To learn new values for the coordination matrices, the RL algorithm PoWER is used. The policy
parameters, θn, for the RL algorithm are composed of two sets of variables: the first set contains the
full 3 × 3 coordination matrices, KP

i , with the positional error gains in the main diagonal and the
coordination gains in the off-diagonal elements; the second set contains the vectors, µXi , with the attractor
positions for the primitives.

5.4. Experimental Results

In practice, around 60 rollouts were necessary to find a good policy that can reproducibly flip the
pancake without dropping it. Figure 2 shows a recorded sample rollout from the RL exploration, during
which the pancake rotated fully 180◦ and was caught successfully with the frying pan. The video frame
sequence from a successful 180◦ flipping rollout is shown in Figure 3.

It is interesting to notice the up-down bouncing of the frying pan towards the end of the learned skill,
when the pancake has just fallen inside of it. The bouncing behavior is due to the increased compliance
of the robot during this part of the movement. This was produced by the RL algorithm in an attempt to
catch the fallen pancake inside the frying pan. Without it, if a controller is too stiff, it would cause the
pancake to bounce off from the surface of the frying pan and fall out of it. Such unintentional discoveries
made by the RL algorithm highlight its important role for achieving adaptable and flexible robots.

In summary, the proposed policy parameterization based on superposition of basis force fields
demonstrates three major advantages:

• it provides a mechanism for learning the couplings across multiple motor control variables, thus
addressing the correlations challenge;
• it highlights the advantages of using correlations in RL for reducing the size of the representation,

thus addressing the compactness challenge;
• it demonstrates that even fast, dynamic tasks can still be represented and executed in a

safe-for-the-robot manner, addressing the smoothness challenge.



Robotics 2013, 2 133

Figure 2. Visualization of a real-world pancake flipping rollout (trial) performed by the
robot. The pancake (in yellow) was successfully tossed and caught with the frying pan, and
it rotated 180◦ (for better visibility of the pancake’s trajectory, the frying pan is not displayed
here). The trajectory of the end-effector is displayed with black dots and its orientation
(represented by the normal vector) with blue arrows. The normal vectors perpendicular to
the pancake are shown with black arrows.

Figure 3. Sequence of video frames showing a successful pancake flipping, performed on
the WAM robot.

6. Example B: Bipedal Walking Energy Minimization Task

In this example, we address mainly the adaptability, multi-resolution and globality challenges
described in Section 3. Adaptive resolution methods in state space have been studied in RL before
(see e.g., [36]). They address the pitfalls of discretization during reinforcement learning and show that
in high dimensions, it is better if the learning is not planned uniformly over the state space. For example,
in [37], Moore et al. employed a decision-tree partitioning of state-space and applied techniques from
game-theory and computational geometry to efficiently and adaptively concentrate high resolution on
critical areas.



Robotics 2013, 2 134

However, in the context of RL, adaptive resolution in policy parameterization remains largely
unexplored, so far. To address this challenge, we present a policy parameterization that can evolve
dynamically, while the RL algorithm is running without losing information about past experience.
We show that the gradually increasing representational power of the policy parameterization helps to
find better policies faster than a fixed parameterization. The particular problem at hand is an energy
minimization problem for a bipedal walking task. More implementation details can be found in [38].

6.1. Energy Minimization Problem

Recent advances in robotics and mechatronics have allowed for the creation of a new generation
of passively-compliant robots, such as the humanoid robot, COMAN(derived from the cCubbipedal
robot [39]), shown in Figure 4.

Figure 4. The experimental setup for the bipedal walking energy minimization task, showing
a snapshot of the lower body of the compliant humanoid robot, COMAN, during one
walking rollout.

Such robots have springs that can store and release energy and are essential for reducing the energy
consumption and for achieving mechanical power peaks. However, it is difficult to manually engineer an
optimal way to use the passive compliance for dynamic and variable tasks, such as walking. For instance,
the walking energy minimization problem is very challenging, because it is nearly impossible to be
solved analytically, due to the difficulty in modeling accurately the properties of the springs, the
dynamics of the whole robot and various nonlinearities of its parts. In this section, we apply RL to learn
to minimize the energy consumption required for walking of this passively-compliant bipedal robot.

The vertical center of mass (CoM) movement is a crucial factor in reducing the energy consumption.
Therefore, the proposed RL method is used to learn an optimal vertical trajectory for the center of mass
(CoM) of the robot to be used during walking, in order to minimize the energy consumption. In order to
apply RL in robotics to optimize the movement of the robot, first, the trajectory needs to be represented
(encoded) in some way. This particular experiment is based on cubic splines. Similar approaches have
been investigated before in robotics under the name via-points [40–42].



Robotics 2013, 2 135

However, there is a problem with applying a fixed policy parameterization RL to such a complex
optimization problem.

6.2. Problems with Fixed Policy Parameterization

In policy-search RL, in order to find a good solution, the policy parameterization has to be powerful
enough to represent a large enough policy space, so that a good candidate solution is present in it.
If the policy parameterization is too simple, with only a few parameters, then the convergence is quick,
but often a sub-optimal solution is reached. If the policy parameterization is overly complex, the
convergence is slow, and there is a higher possibility that the learning algorithm will converge to some
local optimum, possibly much worse than the global optimum. The level of sophistication of the policy
parameterization should be just the right amount, in order to provide both fast convergence and a good
enough solution.

Deciding what policy parameterization to use and how simple/complex it should be is a very difficult
task, often performed via trial-and-error manually by the researchers. This additional overhead is
usually not even mentioned in reinforcement learning papers and falls into the category of “empirically
tuned” parameters, together with the reward function, decay factor, exploration noise, weights, etc.
Since changing the policy parameterization requires restarting the learning from scratch, throwing away
all accumulated data, this process is slow and inefficient. As a consequence, the search for new solutions
often cannot be done directly on a real-world robot system and requires, instead, the use of simulations,
which are not accurate enough.

6.3. Evolving Policy Parameterization

To solve this problem, we propose an approach that allows us to change the complexity of the
policy representation dynamically, while the reinforcement learning is running, without losing any of the
collected data and without having to restart the learning. We propose a mechanism that can incrementally
“evolve” the policy parameterization as necessary, starting from a very simple parameterization and
gradually increasing its complexity and, thus, its representational power. The goal is to create an adaptive
policy parameterization, which can automatically “grow” to accommodate increasingly more complex
policies and get closer to the global optimum.

A very desirable side effect of this is that the tendency of converging to a sub-optimal solution will
be reduced, because in the lower-dimensional representations, this effect is less exhibited, and gradual
increasing the complexity of the parameterization helps us not to get caught in a poor local optimum.
A drawback of such an approach is that an informed initialization would be harder, depending on the
expressive power of the initial parameterization.

The main difficulty to be solved is providing backward compatibility, i.e., how to design the
subsequent policy representations in such a way that they are backward-compatible with the previously
collected data, such as past rollouts and their corresponding policies and rewards. One of the simplest
representations that have the property of backward compatibility are the geometric splines. For example,
if we have a cubic spline with K knots, and then we increase the number of knots, we can still preserve
the shape of the generated curve (trajectory) by the spline. In fact, if we put one additional knot between



Robotics 2013, 2 136

every two consecutive knots of the original spline, we end up with 2K − 1 knots and a spline that
coincides with the original spline. Based on this, the idea we propose is to use the spline knots as
a policy parameterization and use the spline backward compatibility property for evolving the policy
parameterization without losing the previously collected data.

The proposed technique for evolving the policy parameterization can be used with any policy-search
RL algorithm. For this particular implementation, we use PoWER, due to its low number of parameters
that need tuning. Different techniques can be used to trigger the increase in the number of knots of the
spline representation. For this example, we used a fixed, pre-determined trigger, activating at regular
time intervals.

6.4. Evaluation of Evolving Policy Parameterization

In order to evaluate the proposed evolving policy parameterization, we conduct a function
approximation experiment. The goal is to compare the proposed method with a conventional fixed policy
parameterization method that uses the same reinforcement learning algorithm as a baseline.

For this experiment, the reward function is defined as follows:

R(τ) = e−
∫ 1
0 [τ(t)−τ̃(t)]2dt (4)

where R(τ) is the return of a rollout (the policy-generated trajectory), τ , and τ̃ is the (unknown to the
learning algorithm) function that the algorithm is trying to approximate.

Figure 5. Comparison of the policy output from RL with fixed policy parameterization
(30-knot spline) versus evolving policy parameterization (from four- to 30-knot spline).
In black, the unknown to the algorithm global optimum, which it is trying to approximate.
In green, all the rollouts performed during the learning process. In red, the current
locally-optimal discovered policy by each reinforcement learning (RL) algorithm. Due to
the lower policy-space dimensionality at the beginning, the evolving policy parameterization
approaches the shape of the globally-optimal trajectory much faster. The fixed policy
parameterization suffers from inefficient exploration, due to the high dimensionality, as well
as from overfitting problems, as seen by the high-frequency oscillations of the discovered
policies. (a) Fixed policy parameterization; (b) Evolving policy parameterization.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)



Robotics 2013, 2 137

Figure 5 shows a comparison of the generated policy output produced by the proposed evolving policy
parameterization method, compared with the output from the conventional fixed policy parameterization
method. Figure 6 shows that the convergence properties of the proposed method are significantly better
than the conventional approach.

Figure 6. Comparison of the convergence of the RL algorithm with fixed policy
parameterization (30-knot spline) versus evolving policy parameterization (from four- to
30-knot spline). The results are averaged over 20 runs of each of the two algorithms.
The standard deviation is indicated with error bars. In addition to faster convergence and
higher achieved rewards, the evolving policy parameterization also achieves lower variance
compared to the fixed policy parameterization.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rollouts

A
ve

ra
ge

 r
et

ur
n

 

 

Evolving parameterization
Fixed parameterization

6.5. Bipedal Walking Experiment

For the real-world bipedal walking experiment, we use the lower body of the passively-compliant
humanoid robot, COMAN, which has 17 DoF. The experimental setup is shown in Figure 4.

To generate trajectories for the robot joints, we use a custom variable-height bipedal walking
generator. Given the z-axis CoM trajectory provided by the RL, we use the ZMP (Zero Moment Point)
concept for deriving the x- and y-axis CoM trajectories.

To calculate the reward, we measure the actual electrical energy used by the motors of the robot.
The return of a rollout, τ , depends on the average electric energy consumed per walking cycle and is
defined as:

R(τ) = e−k
1
c

∑
j∈J Ej(t1,t2) (5)

where J is the set of joints whose energy consumption we try to minimize, Ej(t1, t2) is the accumulated
consumed electric energy for the motor of the j-th individual joint of COMAN and k is a scaling constant.
To reduce the effect of noise on the measurement, for each rollout, the robot walks for 16 s (from time
t1 to t2), which corresponds to eight steps (c = 4 walking cycles).

The learning converged after 150 rollouts. The total cumulative distance traveled by the robot during
our experiments was 0.5 km. The discovered optimal policy by the RL algorithm, for which the lowest
energy consumption was achieved, consumes 18% less energy than a conventional fixed-height walking,
which is a significant improvement.



Robotics 2013, 2 138

In summary, the proposed evolving policy parameterization demonstrates three major advantages:

• it achieves faster convergence and higher rewards than the fixed policy parameterization,
using varying resolution for the policy parameterization, thus addressing the adaptability and
multi-resolution challenges;
• it exhibits much lower variance of the generated policies, addressing the gradual exploration

challenge;
• it helps to avoid local minima, thus addressing the globality challenge.

The described approach has been successfully applied also to other robot locomotion tasks, such as
learning to optimize the walking speed of a quadruped robot [43].

7. Example C: Archery-Based Aiming Task

This example addresses mainly the multi-dimensionality and convergence speed challenges described
in Section 3. We show that RL in combination with regression yields an extremely fast-converging
algorithm, and we demonstrate it in practice using the iCubhumanoid robot to quickly learn the skill
of archery.

The goal of this example is to develop an integrated approach allowing the humanoid robot,
iCub, to learn the skill of archery. After being instructed how to hold the bow and release the
arrow, the robot learns by itself to shoot the arrow in such a way that it hits the center of the
target. Two learning algorithms are introduced and compared to learn the bi-manual skill: one with
Expectation-Maximization-based reinforcement Learning and one with chained vector regression, called
the Augmented Reward Chained Regression (ARCHER) algorithm. Both algorithms are used to
modulate and coordinate the motion of the two hands, while an inverse kinematics controller is used
for the motion of the arms. The approach is evaluated on the humanoid robot, iCub, where only the
upper body is used for the experiment (38 DoF). The image processing part recognizes where the arrow
hits the target and is based on Gaussian Mixture Models for color-based detection of the target and the
arrow’s tip. More implementation details can be found in [14].

7.1. Description of the Archery Task

The archery task is challenging because: (1) it involves bi-manual coordination; (2) it can be
performed with slow movements of the arms and using small torques and forces; (3) it requires using
tools (bow and arrow) to affect an external object (target); (4) it is an appropriate task for testing different
learning algorithms and aspects of learning, because the reward is inherently defined by the high-level
description of the task goal; (5) it involves integration of image processing, motor control and learning
parts in one coherent task.

The focus of this task is on learning the bi-manual coordination necessary to control the shooting
direction and velocity in order to hit the target. Two learning algorithms are introduced and
compared: one with Expectation-Maximization-based reinforcement Learning and one with chained
vector regression. Both algorithms are used to modulate and coordinate the motion of the two hands,
while an inverse kinematics controller is used for the motion of the arms. We propose solutions to the



Robotics 2013, 2 139

learning part, the image processing part used to detect the arrow’s tip on the target and the motor control
part of the archery training.

In the following two subsections, we introduce two different learning algorithms for the archery
training. The focus of the proposed approach falls on learning the bi-manual coordination for shooting
the arrow with a desired direction and velocity.

7.2. Learning Algorithm 1: PoWER

As a first approach for learning the bi-manual coordination needed in archery, we use the
state-of-the-art EM-based RL algorithm, PoWER, by Kober et al. [18]. We selected the PoWER
algorithm, because it does not need a learning rate (unlike policy-gradient methods) and also because it
can be combined with importance sampling to make better use of the previous experience of the agent in
the estimation of new exploratory parameters.

PoWER uses a parameterized policy and tries to find values for the parameters that maximize the
expected return of rollouts (also called trials) under the corresponding policy. For the archery task, the
policy parameters are represented by the elements of a 3D vector corresponding to the relative position
of the two hands performing the task.

We define the return of an arrow shooting rollout, τ , to be:

R(τ) = e−||r̂T−r̂A|| (6)

where r̂T is the estimated 2D position of the center of the target on the target’s plane, r̂A is the estimated
2D position of the arrow’s tip and || · || is Euclidean distance.

7.3. Learning Algorithm 2: ARCHER

For a second learning approach, we propose a custom algorithm developed and optimized specifically
for problems like the archery training, which has a smooth solution space and prior knowledge about
the goal to be achieved. We will refer to it as the ARCHER algorithm (Augmented Reward Chained
Regression). The motivation for ARCHER is to make use of richer feedback information about the
result of a rollout. Such information is ignored by the PoWER RL algorithm, because it uses scalar
feedback, which only depends on the distance to the target’s center. ARCHER, on the other hand,
is designed to use the prior knowledge we have on the optimum reward possible. In this case, we know
that hitting the center corresponds to the maximum reward we can get. Using this prior information about
the task, we can view the position of the arrow’s tip as an augmented reward. In this case, it consists of a
two-dimensional vector giving the horizontal and vertical displacement of the arrow’s tip with respect to
the target’s center. This information is obtained by the image processing algorithm in Section 7.4 during
the real-world experiment. Then, ARCHER uses a chained local regression process that iteratively
estimates new policy parameters, which have a greater probability of leading to the achievement of the
goal of the task, based on experience, so far.

Each rollout, τi, where i ∈ {1, . . . , N}, is initiated by input parameters, θi ∈ R3, which is the vector
describing the relative position of the hands and is produced by the learning algorithms. Each rollout
has an associated observed result (considered as a two-dimensional reward), ri = f(θi) ∈ R2, which is



Robotics 2013, 2 140

the relative position of the arrow’s tip with respect to the target’s center, rT = (0, 0)T . The unknown
function, f , is considered to be non-linear due to air friction, wind flow, friction between the bow and
the arrow, etc.

Without loss of generality, we assume that the rollouts are sorted in descending order by their scalar
return calculated by Equation (6), i.e., R(τi) ≥ R(τi+1), i.e., that r1 is the closest to rT . For convenience,
we define vectors, ri,j = rj − ri and θi,j = θj − θi. Then, we represent the vector, r1,T , as a linear
combination of vectors using the N best results:

r1,T =
N−1∑
i=1

wir1,i+1 (7)

Under the assumption that the original parameter space can be linearly approximated in a small
neighborhood, the calculated weights, wi, are transferred back to the original parameter space. Then, the
unknown vector to the goal parameter value, θ1,T , is approximated with θ̂1,T as a linear combination of
the corresponding parameter vectors using the same weights:

θ̂1,T =
N−1∑
i=1

wiθ1,i+1 (8)

In a matrix form, we have r1,T = WU , where W contains the weights, {wi}Ni=2, and U contains the
collected vectors, {r1,i}Ni=2, from the observed rewards of N rollouts. The least-norm approximation of
the weights is given by Ŵ = r1,TU

†, where U† is the pseudoinverse of U . By repeating this regression
process when adding a new couple, {θi, ri}, to the dataset at each iteration, the algorithm refines the
solution by selecting at each iteration the N closest points to rT . ARCHER can thus be viewed as a
linear vector regression with a shrinking support region.

The ARCHER algorithm can also be used for other tasks, provided that: (1) a priori knowledge
about the desired target reward is known; (2) the reward can be decomposed into separate dimensions;
and (3) the task has a smooth solution space.

7.4. Image Processing Algorithm

The problem of detecting where the target is and what is the relative position of the arrow with respect
to the center of the target is solved by image processing. We use color-based detection of the target and
the tip of the arrow based on the Gaussian Mixture Model (GMM). Two separate GMM models are fitted
to represent the target’s and arrow’s color characteristics in YUVcolor space. After each shot, the reward
vector, r ∈ R2, is calculated as r = mT −mA, where mA is the estimated center of the arrow and mT is
the estimated center of the target.

7.5. PoWER vs. ARCHER (RL vs. Regression)

The two proposed learning algorithms (PoWER and ARCHER) are first evaluated in a simulation
experiment. The trajectory of the arrow is modeled as a simple ballistic trajectory, ignoring air
friction, wind velocity, etc. A typical experimental result for each algorithm is shown in Figure 7.
A comparison of the convergence of the two algorithms is shown in Figure 8. The ARCHER algorithm



Robotics 2013, 2 141

clearly outperforms the PoWER algorithm for the archery task. This is due to the use of 2D feedback
information, which allows ARCHER to make better estimations/predictions of good parameter values,
and to the prior knowledge concerning the maximum reward that can be achieved. PoWER, on the other
hand, achieves reasonable performance despite using only 1D feedback information.

Based on the results from the simulated experiment, the ARCHER algorithm was chosen to conduct
the following real-world experiment:

Figure 7. Simulation of archery. Learning is performed under the same starting conditions
with two different algorithms. The red trajectory is the final rollout. (a) The PoWER
algorithm needs 19 rollouts to reach the center; (b) The ARCHER algorithm needs five
rollouts to do the same.

−0.4
−0.2

0
0.2

−2

−1.5

−1

−0.5

0

0.2

0.4

x
2

x
1

x 3

(a)

−0.4
−0.2

0

−2

−1.5

−1

−0.5

0

0.2

0.4

0.6

x
2

x
1

x 3

(b)

Figure 8. Comparison of the speed of convergence for the PoWER and ARCHER
algorithms. Statistics are collected from 40 learning sessions with 60 rollouts in each session.
The first three rollouts of ARCHER are done with large random exploratory noise, which
explains the big variance at the beginning.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of rollouts

D
is

ta
nc

e 
to

 ta
rg

et
 [m

]

PoWER

ARCHER



Robotics 2013, 2 142

7.6. Experimental Results on the iCub Robot

The real-world robot experimental setup is shown in Figure 9. The experiment was conducted with
iCub [44]. The iCub is an open-source robotic platform with dimensions comparable to a three and a
half year-old child (about 104cm tall), with 53◦ of freedom (DOF) distributed on the head, torso, arms,
hands and legs.

Figure 9. Experimental setup for the archery task. A position-controlled 53-DOF humanoid
robot, iCub, learns to shoot arrows using a bow and learns to hit the center of the target using
the RL algorithm and visual feedback from a camera. Real-world experiment using the iCub.
The distance between the target and the robot is 2.2 m. The diameter of the target is 50 cm.

In the experiment, we used the torso (three DoF), arms (seven DoF each) and hands (nine DoF each).
The thick blue arrow shows the relative position of the two hands, which is controlled by the learning
algorithm during the learning sessions.

To robot’s arms are controlled using inverse kinematics solved as an optimization under an inequality
constraints problem. The posture of the iCub’s arms and the grasping configuration for the bow and the
arrow are shown in Figure 9. During the experiment, while the robot is learning, between every trial
shot, it is adjusting the relative position and orientation of the two hands, which, in turn, controls the
direction and speed of the arrow. The desired relative position between the two hands is given by the
learning algorithm before each trial. The orientation of the two hands is calculated in such a way that
the bow is kept vertical.

The real-world experiment was conducted using the proposed ARCHER algorithm and the proposed
image processing method. During the real experiments, the ARCHER algorithm needed less than
10 rollouts to converge to the center.

For the archery task, we can conclude that a local regression algorithm, like ARCHER, performs
better than a state-of-the-art RL algorithm. The experiments show significant improvement in terms of



Robotics 2013, 2 143

speed of convergence, which is due to the use of a multi-dimensional reward and prior knowledge about
the optimum reward that one can reach.

8. Summary and Comparison of the Robot Learning Tasks

Table 2 summarizes the high-level properties of the three presented RL problems (rows 1–3).
In addition, a comparison is made with three other robot skill learning problems (rows 4–6) in which,
also, the goal is to learn motor skills. Based on the empirical results about the best-performing approach
in each of these particular situations, the following conclusions can be drawn:

• Reinforcement learning is well suited for highly-dynamic tasks, where there is a clear measure
about the success of the task;
• Imitation learning works well for slow tasks, which are easy to demonstrate and which do not have

a clear optimal way of execution;
• Regression-based learning performs well in cases when the goal is known in advance, and it is

possible to exploit a multi-dimensional feedback in the learning algorithm.

Table 2. Comparison of the three presented RL problems (rows 1–3) with three other robot
skill learning problems (rows 4–6). DMP, Dynamic Movement Primitives; CoM, center
of mass.

No. Task Dimensionality Task dynamics
Noise and
uncertainty

Best performing
approach

1
Pancake
flipping

High (positions and
stiffness for each
attractor)

Very high High RL + DMP

2
Walking
optimization

Medium (continuous
trajectory of CoM)

High High
RL + evolving
policy

3 Archery
Low (relative pose of
hands)

Low (static
shooting pose)

Medium Regression

4 Ironing [3]
Medium (pose of
end-effector)

Low
(slow movement)

Low

Imitation learning
+
DMP

5
Whiteboard
cleaning [6]

Medium (pose and
force at end-effector)

Low
(slow movement,
medium forces)

Medium

6
Door
opening [3]

Medium (pose and
force at end-effector)

Low
(slow movement,
high forces)

Medium

9. The Future of Reinforcement Learning in Robotics

What does the future hold for RL in robotics? This seems difficult to predict for RL, but it is relatively
easier to predict the near-future trend for robotics. Robotics is moving towards higher and higher DoF



Robotics 2013, 2 144

robots, having more nonlinear elements, variable passive compliance, variable damping, flexible joints,
reconfigurability, fault tolerance, independence, power autonomy, etc. Robots will be progressively
going out of the robot labs and into everyday life.

As the robot hardware complexity increases to higher levels, the conventional engineering approaches
and analytical methods for robot control will start to fail. Therefore, machine learning (and RL,
in particular) will inevitably become a more and more important tool to cope with the ever-increasing
complexity of the physical robotic systems. Furthermore, the future RL candidates will have to address
an ever-growing number of challenges accordingly.

10. Beyond Reinforcement Learning

Turning back to Table 1, in the bottom row, we have made a prediction, based on extrapolation of
the trend in the existing approaches for teaching robots. The result of this extrapolation has lead us
to a hypothetical approach that we call goal-directed learning. For example, a goal could be “throw
the basketball through the hoop”, and it could actually be specified as human-readable text and require
natural language processing to understand it. Note that this is different from unsupervised learning,
where there is not any goal specified by a teacher, but the system is performing self-organization.

The hypothetical goal-directed learning could be “emulated” using the existing RL methods, but it
would be extremely inefficient. For instance, it would be similar to learning how to play chess based on
only terminal reward (win, lose or draw) without the possibility to assess any intermediate chessboard
configurations. This means that in goal-directed learning, novel mechanisms should be invented to
autonomously guide the exploration towards the goal, without any help from a human teacher, and
extensively using a bias from the previous experience of the agent.

Another promising direction is to move towards semantics, where the robot will have direct
knowledge about the goal and the meaning of achieving it. This is contrary to the current approaches,
where the robot never has any direct information about the goal of the task, and it blindly executes
trajectories without realizing their outcome and meaning in the real world.

Ideally, the robot should be aware of what it is doing, what the goal is and should be able to evaluate
its own partial incremental progress by itself, using a self-developed internal performance metric. This
is a far more natural mechanism for self-improvement than the currently employed method of providing
an externally-imposed reward function.

11. Conclusions

We summarized the state-of-the-art for RL in robotics, in terms of both algorithms and policy
representations. We identified a significant number of the existing challenges for policy representations
in robotics. Three examples for extensions of the capabilities of policy representations on three
real-world tasks were presented: pancake flipping, bipedal walking and archery aiming. In these
examples, we proposed solutions to six rarely-addressed challenges in policy representations:
correlations, adaptability, multi-resolution, globality, multi-dimensionality and convergence. Finally,
we attempted to have a peek into the future of RL and its significance to robotics.



Robotics 2013, 2 145

Acknowledgments

This work was partially supported by the AMARSi European project under contract FP7-ICT-248311,
and by the PANDORA European project under contract FP7-ICT-288273.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Billard, A.; Calinon, S.; Dillmann, R.; Schaal, S. Robot programming by demonstration.
In Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Secaucus, NJ, USA, 2008;
pp. 1371–1394.

2. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from
demonstration. Robot. Auton. Syst. 2009, 57, 469–483.

3. Kormushev, P.; Calinon, S.; Caldwell, D.G. Imitation learning of positional and force skills
demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 2011, 25, 581–603.

4. Akgun, B.; Cakmak, M.; Jiang, K.; Thomaz, A. Keyframe-based learning from demonstration. Int.
J. Soc. Robot. 2012, 4, 343–355.

5. Nehaniv, C.L.; Dautenhahn, K. Imitation and Social Learning in Robots, Humans and Animals:
Behavioural, Social and Communicative Dimensions; Cambridge University Press: Cambridge,
UK, 2007.

6. Kormushev, P.; Nenchev, D.N.; Calinon, S.; Caldwell, D.G. Upper-Body Kinesthetic Teaching of a
Free-Standing Humanoid Robot. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3970–3975.

7. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA,
USA, 1998.

8. Pastor, P.; Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Schaal, S. Skill Learning and Task Outcome
Prediction for Manipulation. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3828–3834.

9. Stulp, F.; Buchli, J.; Theodorou, E.; Schaal, S. Reinforcement Learning of Full-Body Humanoid
Motor Skills. In Proceedings of the IEEE International Conference on Humanoid Robots
(Humanoids), Nashville, TN, USA, 6–8 December 2010; pp. 405–410.

10. Peters, J.; Schaal, S. Policy Gradient Methods for Robotics. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Beijing, China, October 2006;
pp. 2219–2225.

11. Coates, A.; Abbeel, P.; Ng, A.Y. Apprenticeship learning for helicopter control. Commun. ACM
2009, 52, 97–105.

12. Rosenstein, M.T.; Barto, A.G.; van Emmerik, R.E.A. Learning at the level of synergies for a robot
weightlifter. Robot. Auton. Syst. 2006, 54, 706–717.



Robotics 2013, 2 146

13. Kormushev, P.; Calinon, S.; Caldwell, D.G. Robot Motor Skill Coordination with EM-Based
Reinforcement Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010; pp. 3232–3237.

14. Kormushev, P.; Calinon, S.; Saegusa, R.; Metta, G. Learning the Skill of Archery by a
Humanoid Robot iCub. In Proceedings of the IEEE International Conference on Humanoid Robots
(Humanoids), Nashville, TN, USA, 6–8 December 2010; pp. 417–423.

15. Kormushev, P.; Calinon, S.; Ugurlu, B.; Caldwell, D.G. Challenges for the Policy Representation
When Applying Reinforcement Learning in Robotics. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 2819–2826.

16. Peters, J.; Schaal, S. Natural actor-critic. Neurocomputing 2008, 71, 1180–1190.
17. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Mach. Learn. 1992, 8, 229–256.
18. Kober, J.; Peters, J. Learning Motor Primitives for Robotics. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009;
pp. 2112–2118.

19. Theodorou, E.; Buchli, J.; Schaal, S. A generalized path integral control approach to reinforcement
learning. J. Mach. Learn. Res. 2010, 11, 3137–3181.

20. Rubinstein, R.; Kroese, D. The Cross-Entropy Method: A Unified Approach to Combinatorial
Optimization, Monte-Carlo Simulation and Machine Learning; Springer-Verlag: New York, NY,
USA, 2004.

21. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary
Computation; Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E., Eds.; Springer: Berlin, Germany,
2006; Volume 192, pp. 75–102.

22. Stulp, F.; Sigaud, O. Path Integral Policy Improvement with Covariance Matrix Adaptation.
In Proceedings of the International Conference on Machine Learning (ICML), Edinburgh, UK,
26 June–1 July 2012.

23. Guenter, F.; Hersch, M.; Calinon, S.; Billard, A. Reinforcement learning for imitating constrained
reaching movements. Adv. Robot. 2007, 21, 1521–1544.

24. Kober, J.; Peters, J. Policy search for motor primitives in robotics. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2009; Volume 21,
pp. 849–856.

25. Schaal, S.; Mohajerian, P.; Ijspeert, A.J. Dynamics systems vs. optimal control a unifying view.
Progr. Brain Res. 2007, 165, 425–445.

26. Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Trajectory Formation for Imitation with Nonlinear
Dynamical Systems. In Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS), Maui, HI, USA, 29 October–3 November 2001; pp. 752–757.

27. Hoffmann, H.; Pastor, P.; Park, D.H.; Schaal, S. Biologically-Inspired Dynamical Systems
for Movement Generation: Automatic Real-Time Goal Adaptation and Obstacle Avoidance.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe,
Japan, 12–17 May 2009; pp. 2587–2592.



Robotics 2013, 2 147

28. Kober, J. Reinforcement Learning for Motor Primitives. Master’s Thesis, University of Stuttgart,
Stuttgart, Germany, 2008.

29. Peters, J.; Schaal, S. Applying the Episodic Natural Actor-Critic Architecture to Motor Primitive
Learning. In Proceedings of the 15th European Symposium on Artificial Neural Networks (ESANN
2007), Bruges, Belgium, 25–27 April 2007; pp. 1–6.

30. Pardo, D. Learning Rest-to-Rest Motor Coordination in Articulated Mobile Robots. Ph.D. Thesis,
Technical University of Catalonia (UPC), Catalonia, Spain, 2009.

31. Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat.
Neurosci. 2002, 5, 1226–1235.

32. Huys, R.; Daffertshofer, A.; Beek, P.J. The evolution of coordination during skill acquisition:
The dynamical systems approach. In Skill Acquisition in Sport: Research, Theory and Practice;
Williams, A.M., Hodges, N.J., Eds.; Routledge: London, UK, 2004; pp. 351–373.

33. Bernikera, M.; Jarcb, A.; Bizzic, E.; Trescha, M.C. Simplified and effective motor control based
on muscle synergies to exploit musculoskeletal dynamics. Proc. Natl. Acad. Sci. USA 2009, 106,
7601–7606.

34. Calinon, S.; Sardellitti, I.; Caldwell, D.G. Learning-Based Control Strategy for Safe Human-Robot
Interaction Exploiting Task and Robot Redundancies. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010;
pp. 249–254.

35. Calinon, S.; Li, Z.; Alizadeh, T.; Tsagarakis, N.G.; Caldwell, D.G. Statistical Dynamical Systems
for Skills Acquisition in Humanoids. In Proceedings of the IEEE International Conference on
Humanoid Robots (Humanoids), Osaka, Japan, 29 November–1 December 2012; pp. 323–329.

36. Bernstein, A.; Shimkin, N. Adaptive-resolution reinforcement learning with polynomial
exploration in deterministic domains. Mach. Learn. 2010, 81, 359–397.

37. Moore, A.W.; Atkeson, C.G. The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces. Mach. Learn. 1995, 21, 199–233.

38. Kormushev, P.; Ugurlu, B.; Calinon, S.; Tsagarakis, N.; Caldwell, D.G. Bipedal Walking
Energy Minimization by Reinforcement Learning with Evolving Policy Parameterization.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 318–324.

39. Ugurlu, B.; Tsagarakis, N.G.; Spyrakos-Papastravridis, E.; Caldwell, D.G. Compiant
Joint Modification and Real-Time Dynamic Walking Implementation on Bipedal Robot cCub.
In Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey,
13–15 April 2011; pp. 833–838.

40. Miyamoto, H.; Morimoto, J.; Doya, K.; Kawato, M. Reinforcement learning with via-point
representation. Neural Netw. 2004, 17, 299–305.

41. Morimoto, J.; Atkeson, C.G. Learning biped locomotion: Application of poincare-map-based
reinforcement learning. IEEE Robot. Autom. Mag. 2007, 14, 41–51.

42. Wada, Y.; Sumita, K. A Reinforcement Learning Scheme for Acquisition of Via-Point
Representation of Human Motion. In Proceedings of the IEEE International Conference on Neural
Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1109–1114.



Robotics 2013, 2 148

43. Shen, H.; Yosinski, J.; Kormushev, P.; Caldwell, D.G.; Lipson, H. Learning fast quadruped robot
gaits with the RL power spline parameterization. Cybern. Inf. Technol. 2012, 12, 66–75.

44. Tsagarakis, N.G.; Metta, G.; Sandini, G.; Vernon, D.; Beira, R.; Becchi, F.; Righetti, L.;
Santos-Victor, J.; Ijspeert, A.J.; Carrozza, M.C.; Caldwell, D.G. iCub: The design and realization
of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 2007,
21, 1151–1175.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	State-of-the-Art Reinforcement Learning Algorithms in Robotics
	Challenges for the Policy Representation in Robotics
	State-of-the-Art Policy Representations in Robotics
	Example A: Pancake Flipping Task
	Task Description
	Proposed Compact Encoding with Coupling
	Experiment
	Experimental Results

	Example B: Bipedal Walking Energy Minimization Task
	Energy Minimization Problem
	Problems with Fixed Policy Parameterization
	Evolving Policy Parameterization
	Evaluation of Evolving Policy Parameterization
	Bipedal Walking Experiment

	Example C: Archery-Based Aiming Task
	Description of the Archery Task
	Learning Algorithm 1: PoWER
	Learning Algorithm 2: ARCHER
	Image Processing Algorithm
	PoWER vs. ARCHER (RL vs. Regression)
	Experimental Results on the iCub Robot

	Summary and Comparison of the Robot Learning Tasks
	The Future of Reinforcement Learning in Robotics
	Beyond Reinforcement Learning
	Conclusions

