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Abstract—This article proposes an approach for coupling
internally-guided learning and social interaction in the context of
a multi-task robot skill acquisition framework. More specifically,
we focus on learning a parametrized distribution of robot
movement primitives by combining active intrinsically-motivated
learning and active imitation learning. We focus on the case where
the learning modalities to use are not specified in advance by
the experimenter, but are chosen actively by the robot through
experiences. Such approach aims at combining experiential and
observational learning as efficiently as possible, by relying on
a skill acquisition mechanism in which the agent/robot can
orchestrate different learning strategies in an iterative manner,
and modulate the use of these modalities based on previous
experiences. We demonstrate the effectiveness of our approach
on a waste throwing task with a simulated 7-DoF Franka Emika
robot, where at each iteration of the learning process the robot
can actively choose between observational/imitation learning and
experiential/intrinsically-motivated learning.

I. INTRODUCTION

Humans and other animals acquire and refine skills in an
open-ended manner through lifelong learning, and are hence
autonomous and versatile for interacting and learning in their
environments. Despite the important progress in Artificial In-
telligence, robots still lack this capacity. Endowing robots with
the capability to autonomously discover and solve multiple
tasks incrementally and in an open-ended manner is one of
the greatest challenges of robotics today and is the goal of
the growing field of developmental robotics [1]. In particular,
humans have the ability to use several learning modalities,
and most interestingly to arbitrate their choice based on their
reliability [2]–[4]. In this article, we explore a possible route
towards such a goal by proposing a principled computational
approach combining intrinsically-motivated learning and imi-
tation learning.

In robotics, skills acquisition is most often studied by
concentrating on a single learning strategy, or by predefining
a basic sequence of learning strategies in advance (e.g., a rein-
forcement learning problem initialized with a demonstration).
This led to large research efforts dedicated to the develop-
ment of very elaborated algorithms specialized in a single
domain (learning from demonstration, reinforcement learning,
curiosity-driven learning). We argue that this complexity could
be reduced by allowing several learning strategies, and by
providing a mechanism to select these learning modalities in
an open-ended and interactive manner. In the same way as
we cannot learn to play football only by watching TV and

that we cannot learn football tactics from scratch only based
on the rules of the game, we believe that robots should rely
on multiple learning strategies, whose sequence can only be
determined during the course of learning, in a lifelong learning
fashion.

The above argument is motivated by studies in various fields
including cognitive science [1, 5], ethology [3, 4], neurocom-
puting [2, 6] and robotics [7]–[11], all proving insights, in
different forms, about the importance of combining multiple
learning modalities to acquire skills. In particular, several
developmental studies such as [3, 4, 12] have shown that
learning by imitation is a key component of social learning
in child development. Children tend to imitate what they are
shown, even if some of the observed actions are not necessarily
useful.

From a developmental robotics point of view, we argue
that orchestrating multiple learning strategies during the skill
acquisition process can better cope with the specific advan-
tages and limitations of each individual strategy. Indeed, these
strategies are often complementary to each other, hence the
necessity to combine them. Intrinsically-motivated learning
requires no external guidance, i.e., no presence of a human,
but it usually involves a long interaction process with the
environment. Imitation learning, on the other hand, requires
the presence of a human, but demonstrations provide a lot of
information which would have required a tremendous amount
of time to autonomously acquire.

In this article, we propose an active learning approach that
can act on different fronts: at a meta-level, by deciding about
the currently most appropriate learning modality in an open-
ended manner, and at a low-level, by deciding about which
of the condition/situation/context the agent currently needs to
experience on its own or request as demonstration.

Our contribution is a Bayesian computational framework for
learning robot movement primitives providing this high-level
and low-level arbitration capability, namely:
• Strategy selection: the robot chooses actively between

imitation learning and intrinsically-motivated learning,
based on its previous experiences.

• Demonstration choice: in the imitation learning strategy,
the robot chooses actively the goal that is expected to
yield the most interesting demonstration.

• Policy exploration: in the intrinsically-motivated learning
strategy, the robot chooses actively which movement is



going to improve the most its knowledge of the task.
To the best of our knowledge, our work is the first to

integrate these three learning aspects in a computational frame-
work.

Our paper is organized as follows. First, we review the
existing literature in Sec. II. In Sec. III, we introduce our
Bayesian computational framework, and in Sec. IV, we derive
two active learning strategies as well as an arbitration strategy.
Our experimental results are presented in Sec. V.

II. RELATED WORK

A. Intrinsically-motivated learning

Intrinsically-motivated learning (a.k.a. curiosity-driven
learning) has emerged as an efficient approach for autonomous
lifelong learning in robots [13, 14]. It is inspired by the ability
of humans to discover how to produce interesting effects in
their environments [15]–[17]. In [17], psychologists suggested
that exploration might be triggered and rewarded for situations
that include novelty/surprise. They observed that the most
rewarding situations were those with an intermediate level of
novelty, between already familiar and completely new situa-
tions. This also seems to be confirmed by recent neuroscience
studies showing that dopamine might be released, not only
for predicting external rewards such as food, but also for
internal rewards such as prediction errors [18]. This suggests
that intrinsic motivation systems might be present in the brain,
potentially by the presence of signals related to prediction
errors. Given this background, a way to implement an intrinsic
motivation system might be to build a mechanism which can
evaluate the degree of novelty of different situations from
the point of view of a learning robot, and then designing an
associated reward being maximal when these features are in
an intermediate level. Maximizing this reward can then create
an active exploratory behavior [13, 19].

B. Active imitation learning

A popular social learning modality is imitation learning, also
known as learning from demonstration (LfD). It is widely used
in robotics as it offers an intuitive framework for non-expert
users to (re)program robots. In the context of LfD, active
imitation learning [20] is a topic gaining interest. It indeed
proposes a possible solution to the problem of choosing what
constitutes a good demonstration in terms of generalization
capability. The demonstration acquisition being often costly,
choosing the demonstrations actively is crucial since it permits
to reduce the total number of demonstrations required, and
hence the user burden. Active imitation learning has been
successfully applied to a variety of robotic tasks such as
autonomous navigation [21, 22]. In [23], the authors leverage
the uncertainties on a discrete hypothesis space to request
meaningful demonstrations from a human teacher. Several
approaches have also been proposed in the context where
the learner does not request full demonstrations, but only the
action to take at a given state [20, 24, 25].

The main component of an active learning framework is a
metric allowing to select the demonstration that is expected

to yield the greatest improvement. Traditionally, this metric
is based on uncertainties [26]. When building statistical mod-
els, two different kinds of uncertainties arise: aleatoric and
epistemic uncertainties. Aleatoric uncertainties represent the
variations in the demonstrations, i.e., different possible ways
to achieve a task. This is for example the uncertainty that is
captured by probabilistic movement primitives (ProMPs) when
fitting a Gaussian or a Gaussian mixture model (GMM) to
the demonstrations [27]. Aleatoric uncertainties can typically
be employed within a minimal intervention control strategy,
where perturbations are corrected only if they have an impact
on the task, which results in adaptive tracking gains that take
into account the variations of the task [28, 29]. In contrast,
epistemic uncertainties represent the uncertainty due to a lack
of data, which is crucial information for active learning [26].
In [30], Gaussian process regression (GPR) is used to learn a
trajectory given a context. It is applied to a reaching task where
the context is the desired end-effector position. Although
Gaussian processes are efficient for capturing epistemic un-
certainties (model uncertainties), they do not capture aleatoric
uncertainties (variations of the task). In [27], an active learning
method is proposed for learning movement primitives based
on Gaussian mixture models. The context to query (final end-
effector position) is selected based on the distance between
this context and the different Gaussians of the mixture. In
this work, epistemic uncertainties are not considered, and the
active learning criterion is based on the aleatoric uncertainties.
In contrast, we aim at capturing both types of uncertainties,
with an active imitation learning criterion based on epistemic
uncertainties. Indeed, work in active learning [26, 31] have
shown that metrics based on aleatoric uncertainties are less
effective than those based on epistemic uncertainties.

C. Combining intrinsically-motivated learning with social
learning

Psychologists have observed on a tool use task that
intrinsically-motivated learning can be more efficient if chil-
dren can see an agent solve the task [12]. This suggests that
a learning robot could benefit from combining intrinsically-
motivated learning and social learning (e.g., imitation), instead
of acquiring skills with a single learning modality. Several
works in developmental robotics have indeed studied methods
combining those modalities. In [32], Oudeyer et al. pro-
pose an algorithm for combining intrinsically-motivated self-
exploration and imitation learning. In particular, a solution is
proposed to the problem of choosing what learning strategy is
the most appropriate. In the context of a throwing task, they
show that there is a significant gain in combining several learn-
ing strategies and actively choosing between them. Besides
the fact that their method was only evaluated on a one degree
of freedom robot, there is a fundamental difference between
their approach and ours. They base the choice of their learning
strategy on values of interest levels, which are computed
with the progress previously observed when choosing the
different modalities. This supposes a notion of competence
(reward) to choose between the modalities. In contrast, our



work bases its strategy selection process on uncertainties that
are computed with a statistical model representing the data
(intrinsically-motivated trials and demonstrations), and hence
does not require the notion of an external reward. Additionally,
the computation of the interest values in [32] requires the
evaluation of the competence before and after each episode,
which implies executing a large number of movements to
measure the mean distance to the goal. While this does not
present any problem in simulation, this is a major drawback
for a real robotic application requiring many robot trials. Our
method is based on an internal reward related to intrinsic
motivation and alleviates therefore this limitation.

An extension of [32] relied on the use of procedures to com-
bine predefined primitive policies [33], but suffers from the
same limitations by relying on the same interest model, which
does not scale up well to physical robots in the real world. An
interest model for goal babbling is also used in [34], by relying
on an external reward. In this work, Nguyen et al. show that
social learning through human demonstrations can bootstrap
the performance of an intrinsically motivated robot learner.
In a simulated fishing task experiment in which the robot
needs to learn how to reach various goals with a fishing rod, a
demonstration is given at constant frequency, chosen randomly
from the set of goals. They show that this permits to reduce
the task cost compared to a purely intrinsically-motivated
learning framework. As mentioned in the conclusions of the
above papers, an interesting improvement would be to have
the possibility to interactively choose the switching between
those modalities. Our paper proposes a possible solution to
this problem.

III. BAYESIAN MOVEMENT REPRESENTATION

In this section, we present the movement representation.
We build upon the widely used framework of probabilistic
movement primitives (ProMPs) [35], which we extend with a
Bayesian perspective.

A. Probabilistic movement primitive (ProMP)
A ProMP is a probability distribution over trajectories built

from a series of N demonstrations (trajectories) of length
T and of D dimensions. A demonstration τi ∈ R(T×D) is
approximated by a sum of M basis functions, which are often
chosen as radial basis functions (RBF)

τi = Φwi+ε, with Φ = Φ1d ⊗ ID, (1)

where ⊗ represents the Kronecker product, ε is zero-mean
i.i.d. Gaussian noise, wi of size MD×1 is the weight asso-
ciated to the ith demonstration, Φ1d

T×M is the basis function
matrix with Φ1d

t,m = Φm(t) corresponding to the mth basis
function indexed at time t, and ID is the identity matrix.

The weight vectors associated to each demonstration are
learned through least squares with

wi = (ΦTΦ)−1ΦT τi. (2)

A probability distribution p(w) can then be learned from the
demonstrations {wi}Ni=1, usually with a multivariate Gaussian
or a GMM.

This probability distribution p(w) can then be used for
generalization/adaptation to different environments, typically
by conditioning on trajectory keypoints.

B. Bayesian Gaussian Mixture Model (BGMM)

In this section, we present the learning of the joint distri-
bution of weights with a BGMM.

1) Joint distribution: The joint distribution is defined by
a mixture of K multivariate normal distributions (MVNs)
with means µ={µk}Kk=1, precision matrices Λ={Λk}Kk=1 and
mixing coefficients π={πk}Kk=1 as

p(w|π,µ,Λ) =

K∑
k=1

πkN (w|µk,Λ−1k ). (3)

A Normal-Wishart prior is used for means and precision
matrices, and a Dirichlet prior is put on the mixing coefficients,
with

p(µ,Λ) =

K∏
k=1

N (µk|(β0Λk)−1)W(Λk|Wk, νk), (4)

p(π) = Dir(π|α0). (5)

The means, the precision matrices and the mixing coeffi-
cients maximizing the posterior distribution are estimated
using closed-form update equations similar to those of the
Expectation-Maximization (EM) algorithm for the maximum
likelihood solution, see Section 10.2.1 in [36] for further
details. Also, they are available as parts of standard machine
learning libraries (e.g., scikit-learn for Python).

Given N demonstrations W = {wi}Ni=1, the predictive
density of a new weight ŵ is equivalent to a mixture of
multivariate t-distributions with mean m̂k, covariance matrix
L̂k, mixing coefficient π̂k and degrees of freedom ν̂k [36],
namely

p(ŵ|W ) =

K∑
k=1

π̂k t(ŵ|m̂k, L̂k, ν̂k), (6)

where

π̂k =
αk∑K
k=1 αk

,

ν̂k = νk+1−MD,

L̂k =
(νk+1−MD)βk

1+βk
Wk,

m̂k = mk,

(7)

where αk, βk and mk are derived from statistics of the data.
We do not include the full equations here, but the reader can
refer to Equations (10.41)–(10.63) of [36] for more details.

2) Conditional distribution: The weights represent the evo-
lution of the state with time. For instance, the state can
represent the joint angle values of a robot manipulator, or
the Cartesian position of an object. We can then condition
on a particular value ŵi of an input dimension (e.g., dimen-
sions representing the object) to get the conditional posterior
predictive distribution p(ŵo|ŵi,W ) of an output dimension



(e.g., dimensions representing the robot joint space), as in [36]
(Section 10.2.3), namely

p(ŵo|ŵi,W ) =

K∑
k=1

π̂oik t(ŵi|m̂oi
k , L̂

oi
k , ν̂

oi
k ), with (8)

π̂oik =
π̂k t(ŵi|m̂i

k, L̂
i
k, ν

i
k)∑K

j=1 π̂j t(ŵi|m̂i
j , L̂

i
j , ν

i
j)
, (9)

ν̂oik = ν̂k+Di, (10)

m̂oi
k = m̂o

k+L̂oik L̂
ii−1

k (ŵi−m̂i
k), (11)

L̂oik =
ν̂k+(ŵi−m̂i

k)>L̂ii
−1

k (ŵi−m̂i
k)

ν̂oik
·

(L̂ook −L̂oik L̂ii
−1

k L̂oi
>

k ), (12)

where we have decomposed L̂k =

[
L̂iik L̂

oi>

k

L̂oik L̂ook

]
.

Due to the linear relation from trajectory space to weight
space, a useful property of ProMPs and other trajectory
distributions is the possibility to condition on a trajectory via-
point/s τ̂ i directly to get p(ŵo|τ̂ i,W ). This is done simply by
replacing all m̂∗

k and L̂∗k in (8)–(12) by Φm̂∗
k and ΦL̂∗kΦ>,

and ŵi by τ̂ i, respectively.

C. Quantifying the uncertainties
We propose here a method to derive and quantify epistemic

uncertainties, which will be the core of our active learning
approach. First, we show how aleatoric and epistemic uncer-
tainties can be separated when conditioning. Then, we propose
a closed-form information gain metric based on the entropy
of the conditional distribution.

1) Uncertainty decomposition: The conditional posterior
predictive distribution of the Bayesian ProMP encodes two
types of uncertainties: the aleatoric uncertainty (possible vari-
ations of the task, the one learned with standard ProMPs) and
the epistemic uncertainty (representing the lack of knowledge).

The covariance matrix of the conditional posterior predictive
distribution of (12) can be decomposed into aleatoric and
epistemic parts [25, 36] as

L̂oik = L̂al
k +L̂ep

k , where (13)

L̂al
k =

ν̂k
ν̂oik

(L̂ook −L̂oik L̂ii
−1

k L̂oi
>

k ), (14)

L̂ep
k =

(ŵi−m̂i
k)>L̂ii

−1

k (ŵi−m̂i
k)

ν̂oik
(L̂ook −L̂oik L̂ii

−1

k L̂oi
>

k ).

(15)

Notice that the aleatoric uncertainty does not depend on the
context ŵi, while the epistemic uncertainty grows quadrat-
ically with it, which was for example observed in [36] for
Bayesian linear regression. Such a decomposition is partic-
ularly useful in the context of ProMPs, because we can
have access to the aleatoric uncertainty to design minimal
intervention control behaviors, or the epistemic uncertainty for
quantifying the lack of knowledge of the model.

2) Uncertainty measurement: The most general and com-
mon uncertainty measure is the Shannon entropy [36, 37].
Initially proposed for discrete random variables, the Shannon
entropy has been extended to continuous probability distribu-
tions, in which case it is called continuous (or differential)
entropy. We propose to quantify the uncertainty of our con-
ditional ProMP by calculating the (continuous) entropy of its
epistemic part.

The entropy of a mixture of multivariate t-distributions
cannot be obtained analytically. To avoid computationally
expensive Monte Carlo sampling methods, we propose to
approximate the distribution with a GMM, for which there is
a closed-form lower bound of the entropy. The epistemic part
of the conditional ProMP distribution can be approximated by
a mixture of K Gaussians using moment-matching:

π̃k(c) = π̂oik , µ̃k(c) = m̂oi
k , Σ̃k(c) =

ν̂oik
ν̂oik −2

L̂ep
k (c).

(16)

We propose to use the closed-form lower bound introduced
in [38], which has been shown to be tight. It is expressed
as (to simplify the notation, we omit the fact that all GMM
parameters depend on c)

Hlower(p
ep(ŵo|ŵi,W )) =

1

2

(
K log 2π+K+

K∑
i=1

π̃i log|Σ̃i|
)

−
K∑
i=1

π̃i log

K∑
j=1

π̃je
−Cα(pi,pj),

(17)
where Cα(pi, pj) is the Chernoff α-divergence distance func-
tion between ith and jth Gaussians for α ∈ [0, 1]:

Cα(pi, pj) =
(1−α)α

2
(µ̃i−µ̃j)>

(
(1−α)Σ̃i+αΣ̃j

)−1
(µ̃i−µ̃j)

+
1

2
log

(
|(1−α)Σ̃i+αΣ̃j |
|Σ̃i|1−α|Σ̃j |α

)
.

(18)
In practice we choose α = 1/2, in which case the Chernoff
divergence corresponds to the Bhattacharyya distance1.

We will now show how we can use the learned statistical
model to build different active learning modalities.

IV. ACTIVE LEARNING MODALITIES

In this section, we derive two active learning strategies from
the learned joint model: imitation and intrinsically-motivated
learning, and a criterion for choosing which learning modality
is better suited at the current learning stage. To facilitate the
presentation of the approach, we will introduce the approach
in the context of a specific robot experiment, where the aim
is to learn to move an object to different positions. First, we
present the task and the goal of the active learning framework.
Secondly, we present the proposed method for active imitation

1It is shown in [38] that choosing α = 1/2 gives the tightest lower bound
for a homoscedastic mixture of Gaussians. In our heteroscedastic case, one
could optimize over α to find the tightest lower bound, but we observed that
this did not yield any improvement in practice, and hence fixed α = 1/2.



learning. Then, we propose a method for active intrinsically-
motivated learning. Finally, a criterion for actively choosing
whether imitation or intrinsically-motivated learning is better
suited is presented.

A. Manipulation task

We present our approach in the context of learning to
manipulate an object with a robot. The trajectory is composed
of the robot joint states τ robot and the object position τ obj,
which implies that the ProMP weights w are a concatenation
of robot weights wrobot and object weights wobj.

The goal of the task is to move the object to different desired
final object positions τ obj,t=T

des . We denote the goal space G as
the space of all desired final object positions we would like
our robot to be able to generalize to. Formally, this means
that there exists an unknown ground truth target distribution
pGT(w) = pGT(wrobot,wobj) which can be used to generate
robot movements pGT(wrobot|τ obj,t=T

des ) that bring the object to
the position τ obj,t=T

des .
We aim to learn this unknown joint distribution by combin-

ing imitation and intrinsically-motivated learning.

B. Imitation learning

We suppose here that there exists a human demonstra-
tor/oracle that can be queried to demonstrate a robot movement
that brings the object to any desired final position τ obj,t=T

des
in G. Acquiring these demonstrations is usually cumbersome,
therefore we would like the demonstrations to be as informa-
tive as possible. We propose to choose the demonstration with
active learning to alleviate this limitation.

Given a current database of movements W , we propose to
leverage the uncertainties learned by the BGMM and choose
the goal τ obj,t=T

des for which the entropy of the epistemic part of
the conditional distribution p(wrobot|τ obj,t=T

des ,W ) is maximal.
As explained in the previous section, this entropy is not easy to
compute for GMMs, so we instead maximize a closed-form
lower bound. The full active imitation learning algorithm is
shown in Algorithm 1.

C. Intrinsically-motivated learning

We present here another learning modality, where the robot
can try out a movement by itself and observe the environment
changes in an open-ended manner. Namely, the robot chooses
to execute a particular movement and observes the movement
of the object. In contrast to imitation learning, one major
advantage of intrinsically-motivated learning is that it does
not require the presence of a human demonstrator.

We propose to select a robot movement based on how uncer-
tain we are about the object movements it will cause. Formally,
we would like to try the robot movement that maximizes the
entropy of the epistemic part of the conditional distribution
p(wobj|wrobot,W ), but this poses several problems. From a
robotics point of view, doing so might pose safety problems as
the movement retrieved might be very far from the underlying
distribution pGT(wrobot) we aim to learn. From an active
learning point of view, our active learning selection scheme

Algorithm 1: Active imitation learning

Data: Movement database W = {wrobot
i ,wobj

i }Ni=1,
goal space G

Result: goal τ obj,t=T
des∗ at which to request a

demonstration

Learn joint distribution of
p(w|W ) = p(wrobot,wobj|W ) with BGMM;

Calculate
p(wrobot|τ obj,t=T

des ,W ) using Eqs (8) to (12);
Isolate the epistemic uncertainty
pep(wrobot|τ obj,t=T

des ,W ) with Eqs (13) and (15);
Approximate the entropy of
pep(wrobot|τ obj,t=T

des ,W ) with Eqs (16) to (18);

Find τ obj,t=T
des∗ =

arg max
τ

obj,t=T
des ∈G

[Hlower(p
ep(wrobot|τ obj,t=T

des ,W ))].

is myopic and such criterion might select robot movements
far away from the underlying distribution, i.e., where no
generalization is required. For these reasons, we propose to
use an information-density method [36]. Namely, we aim to
find a robot movement that both has high information content
(in the sense of the epistemic entropy), and that is close to the
distribution of robot movements probot(wrobot|W ):

wrobot∗ = arg max
wrobot∈Wrobot

[
Hlower

(
pep(wobj|wrobot,W )

)
+βprobot(wrobot)

]
,

(19)
where β is an hyperparameter weighting the relative impor-
tance of the two costs.

The full intrinsically-motivated learning algorithm is shown
in Algorithm 2.

D. Choosing the learning modality

We have presented two different learning modalities: imita-
tion learning and intrinsically-motivated learning2. We propose
here a method to choose between these learning modalities.

A difficulty in choosing the right learning modality is that
the epistemic entropies are not comparable for the two learning
modalities. Indeed, for imitation learning we focus on the epis-
temic entropy of the robot movement conditional distribution
for a given object final position, whereas for intrinsically-
motivated learning we look at the epistemic entropy of the
object movement conditional distribution for a given robot
movement.

We propose to compare these learning modalities in terms of
the expected reduction of the epistemic entropies of the robot
movement given the desired goal. This means that we aim to

2Note that both modalities are based on the same joint model of the
movements that has been learned using a BGMM. What changes in those
scenarios is the input on which we condition, which can be the desired final
object position or the robot movement.



Algorithm 2: Active intrinsically-motivated learning

Data: Movement database W = {wrobot
i ,wobj

i }Ni=1,
robot movement space W robot

Result: robot movement wrobot∗ to execute

Learn joint distribution of
p(w|W ) = p(wrobot,wobj|W ) with BGMM;

Calculate p(wobj|wrobot,W ) using Eqs (8) to (12);
Isolate the epistemic uncertainty
pep(wobj|wrobot,W ) with Eqs (13) and (15);

Approximate the entropy of
pep(wobj|wrobot,W ) with Eqs (16) to (18);

Get the marginal distribution probot(wrobot|W ) from
p(w|W );

Find wrobot∗ =
arg maxwrobot∈Wrobot [Hlower(p

ep(wobj|wrobot,W ))+
βprobot(wrobot)].

minimize the expected (over the goal space) epistemic entropy
on the robot movement when conditioning on the desired goal.
This notion of expected epistemic entropy corresponds to

EE
(
W
)

= E
τ

obj,t=T
des ∈G

[
Hlower

(
pep(wrobot|τ obj,t=T

des ,W )
)]
.

(20)
This expected epistemic entropy permits us to introduce the
notion of expected epistemic entropy reduction, which is the
reduction of the expected epistemic entropy when adding a
datapoint wnew to the database W :

EER
(
wnew

∣∣∣W )
)

= EE
(
W
)
−EE

(
W ∪{wnew}

)
. (21)

In practice, computing the expected epistemic entropy reduc-
tion involves the relearning of the BGMM with the augmented
dataset W ∪{wnew} and computing the expected epistemic
entropy on this new joint model. This notion of expected
epistemic entropy can straightforwardly be extended to a
distribution3 of potential new datapoints pnew(w) with

EER
(
pnew(w)

∣∣∣W)
= Ewnew∼pnewEER

(
wnew

∣∣∣W)
. (22)

We will show now how we can use this to calculate the ex-
pected reduction of epistemic entropy when choosing imitation
learning or intrinsically-motivated learning.

a) Imitation learning: Algorithm 1 returns the goal
τ obj,t=T

des∗ that should yield the most informative demonstration.
Even though we do not know in advance what demonstration
wnew we will get when querying the demonstrator, we can use
our model to compute the distribution of potential demonstra-
tions p(wnew|τ obj,t=T

des∗ ,W ) bringing the object to the desired

3In practice for computational reasons, we approximate
EER

(
pnew(w)

∣∣∣W)
by EER

(
wMP

new

∣∣∣W )
)

, where wMP
new denotes the

most probable datapoint under pnew(w).

goal. This allows us to compute the expected epistemic entropy
reduction if choosing the imitation learning strategy with

EER(Imitation) = EER
(
p(wnew|τ obj,t=T

des∗ ,W )
∣∣∣W)

. (23)

b) Intrinsically-motivated learning: Similarly, Algorithm
2 returns the robot movement wrobot∗ expected to show an in-
teresting object movement. We can also estimate the expected
trajectories p(wnew|wrobot∗ ,W ) when executing this robot
movement. From this distribution, we compute the expected
epistemic entropy reduction if choosing intrinsically-motivated
learning with

EER(Intrinsic) = EER
(
p(wnew|wrobot∗ ,W )

∣∣∣W)
. (24)

In the above, we have proposed a measure to quantify the
informativeness of the different learning strategies, which we
can use to choose the most appropriate strategy by selecting
the one which leads the highest expected epistemic entropy
reduction. The selection process of the best learning strategy
is summarized in Algorithm 3.

Algorithm 3: Choice of learning strategy

Data: Movement database W = {wrobot
i ,wobj

i }Ni=1,
goal space G, robot movement space W robot

Result: the learning strategy (Imitation or
Intrinsically-motivated) that is better suited

Find τ obj,t=T
des∗ with Alg.1;

Compute the expected epistemic uncertainty
reduction of imitation learning EER(Imitation)
with Eq.23;

Find wrobot∗ with Alg.2;
Compute the expected epistemic uncertainty
reduction of intrinsically-motivated learning
EER(Intrinsic) with Eq.24;

if EER(Imitation) > EER(Intrinsic) then
Return Imitation

else
Return Intrinsically-motivated

end

V. EXPERIMENTS

In this section, we show the usefulness of our approaches
in the context of a robotic task. First, we present the waste
throwing task we consider. Then, we evaluate quantitatively
the performance of our approaches for imitation learning,
intrinsically-motivated learning, and the combination of both.

A. Waste throwing task

We consider the task of throwing waste with a 7 DoF Franka
Emika Panda robot simulated in pyBullet [39]. This task is
essential for the broader challenge of automatizing various
forms of recycling. It is also relevant in diverse industrial



applications requiring a robot to sort objects fast within a
limited workspace.

An overview of the simulated setup can be seen in Fig. 1.
The goal of the task is to be able to generate robot movements
that bring a simulated can to different desired positions within
a goal space G. The particularity of this goal space is that,
for a part of it, it is possible to bring the object with a non-
dynamic movement because the desired final position is in the
reachable robot workspace. However, for the rest of the goal
space, the final desired object position is outside of the robot
workspace, so that it requires the robot to throw the can with
a dynamic movement. For benchmarking and reproducibility
purposes, we build our experiments on a precomputed database
of demonstrations. We create 200 non-dynamic demonstrations
and 260 dynamic demonstrations using an oracle, that we
gather in a database of demonstrations D. In Fig. 1, we
illustrate the can trajectory for three dynamic demonstrations
and three non-dynamic demonstrations. In Fig. 2, we show
the final can positions in our database, with the blue color
representing the non-dynamic demonstrations and the orange
color representing the dynamic demonstrations.

The trajectories of our database encode the robot move-
ment at a frequency of 240Hz, with T = 639 timesteps,
representing movements of about 3 seconds. We choose a 10-
dimensional state space containing the 7 joint angle values
of the robot, and the 3-dimensional Cartesian position of the
can. In all experiments, we use N = 30 Gaussian radial basis
functions4 (RBFs) for ProMP. The width of the RBFs are
set as h = (T−1N )2, and the centers {cm}Dm=1 are evenly
spaced between −2h and T+2h. We choose a diagonal
covariance matrix prior, with a standard deviation of 0.1 for
the ProMP weights, and a mean concentration prior of 0.0001.
We use a maximum number of 5 Gaussians, or strictly less
than the number of demonstrations if there are less than 6
demonstrations. Other hyperparameters of the BGMM are the
default hyperparameters of the scikit-learn library [40].

The maximization procedure in active imitation learning and
active intrinsically-motivated learning is performed using a
Bayesian optimization algorithm: the Tree-Structured Parzen
Estimator approach (TPE) [41], implemented in the Python
package hyperopt [42]. A maximal number of iterations of
100 is used in the algorithm. For imitation learning, we use
a 2-dimensional uniform search space corresponding to the
goal space. For intrinsically-motivated learning, as the space
of possible robot movements is of high dimension (30 basis
functions × 7 joint angles), we perform the search on the first
two principal components of {wrobot

i }Ni=1, found by principal
component analysis (PCA) [43]. The search space that we use
is then the marginal distribution p(wrobot) projected to the 2-
dimensional PCA subspace.

We introduce an objective metric for comparing our learning
modalities: the task cost, which is simply a `2 norm between
the final object position and the desired object position,
averaged over the goal space. In practice, we compute this task

4Namely: Φm(t) =
φm(t)∑D
n=1 φn(t)

with φm(t) = exp (− (t−cm)2

2h
).

Fig. 1: Object trajectory for 6 demonstrations of the database
(3 dynamic demonstrations in orange, and 3 non-dynamic
demonstrations in blue).

Fig. 2: Desired final object positions. The grey rectangle
represents the goal space G. Blue/orange dots show the fi-
nal object position of respectively the non-dynamic/dynamic
demonstrations of the database.

cost by computing the maximum a posteriori robot movement
given a goal chosen over a uniform grid of 5×5 goals in the
goal space, execute those 25 movements in simulation, and
average the `2 norms between the final object positions and the
desired object positions. Such a metric presents the advantage
of being directly representative of the quality of the learned
task, while remaining agnostic to the metrics we chose for
active learning. It is important to note here that this metric
based on an external reward is used only for comparison, and
not by our active learning algorithms.

B. Imitation learning

We present here the results of our method in an imitation
learning scenario.

First, we show qualitatively in Fig. 3 our method during
20 iterations of active learning, starting with 2 random initial
demonstrations. We can see in this figure that our method ef-
fectively selects goals that are far from goals already observed
in available demonstrations. Now, we propose to evaluate our
method quantitatively. We benchmark our method against two
different active learning baselines:
• Random: this baseline simply selects a random goal g

from G.
• Minimum likelihood (Min. Lik.): this method, similar

to [27], chooses the goal that is the furthest from our
current task representation. Formally, this means that we
compute the marginal distribution of our BGMM over the
goal space, and choose the goal that has the minimum
likelihood under this distribution.

We initialize the learning process with 2 initial demonstrations
randomly sampled from the database. For our method and



Fig. 3: Evolution of the active imitation learning strategy. The
goal space is represented in this figure. Grey stars represent
the final object position of the available demonstrations, and
orange stars the selected goal to query. The transparent ellipses
show the marginal distribution of the BGMM on the goal
space.
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Fig. 4: Evaluation of imitation learning strategy.

the baselines, the experiment is reproduced 20 times, starting
from different initial demonstrations. The results are shown
in Fig. 4. We can see that our method outperforms both
baselines in terms of task cost reduction across the learning
process. Notably, it performs around 30% better than the
random strategy at all stages of the learning process (at 5,
10, 15, and 20 iterations), and about 50% better than the
minimum likelihood strategy. This shows that the epistemic
uncertainty seems to be a good criterion for goal selection.
Also, it confirms the usefulness of this low-level arbitration
capability deciding where the agent currently needs to request
a demonstration.

C. Intrinsically-motivated learning

We present here the results of our intrinsically-motivated
learning method. First, we would like to emphasize quan-
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Fig. 5: Influence of demonstrations for intrinsically-motivated
learning strategy.

titatively the need for combining imitation learning and
intrinsically-motivated learning for this waste throwing task.
Namely, we want to show that using intrinsically-motivated
learning can effectively reduce the task cost. We show in Fig. 5
the task cost (averaged over 20 demonstrations) for:
• 10 random demonstrations;
• 10 random demonstrations + 20 active intrinsically-

motivated trials;
• 30 random demonstrations.

We can see that, starting from 10 initial demonstrations, 20
intrinsically-motivated learning trials can improve the model.
We can notably see that 20 intrinsically-motivated trials reduce
the task cost half as well as 20 additional demonstrations.
This shows that intrinsically-motivated learning can be used to
reduce the burden of the human demonstrator by reducing the
number of demonstrations s/he will be asked. Namely, Fig. 5
shows that intrinsically-motivated learning seems to be a good
learning modality to be combined with imitation learning. We
propose now a baseline to compare our intrinsically-motivated
learning method with:
• Random: This baseline computes the marginal
p(wrobot|W ) from the BGMM, and samples a robot
movement from it. This seems like a reasonable baseline
which already uses the correlations in the observed robot
movements, and samples meaningful robot movements
that are close to the observed demonstrations.

In Fig. 6, we show the performance of our method compared
to this baseline, averaged over 20 experiments, and starting
from 5 or 10 randomly sampled initial demonstrations. We can
observe that our method presents a clear improvement over the
baseline in both cases. Namely, the baseline deteriorates the
task cost across the iterations, whereas our method permits
to reduce the task cost, as observed in Fig. 5 (the mean task
cost is reduced by around 20% after 10 autonomous trials in
both cases). The deterioration of the task cost with the random
approach can be explained by the fact that sampling from the
marginal distribution of the robot movements at each iteration
might end up with samples that are quite far from the original
distribution, hence not useful for the task.

D. Choice of learning modality

Here, we show the usefulness of choosing actively the
learning modality at each iteration of the learning process.
Our results, averaged over 20 experiments, start with 2 initial
demonstrations (randomly sampled). In Fig. 7, we show which
learning modalities are chosen by our method during the
learning process. We can see that, for the first 5 iterations, the
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Fig. 7: Example of a learning process in which the learning
strategy is selected at each step based on the proposed active
learning method.

imitation learning strategy is almost always preferred, while
afterwards the two learning modalities are selected with about
the same probability. On average, the intrinsically-motivated
learning modality is chosen with a probability of 36%.
Leveraging this knowledge, we introduce a baseline which
simply chooses the intrinsically-motivated learning strategy
in a random manner with a probability 0.36, and imitation
learning otherwise. Note that this baseline is already quite
good, as it involves the information of the optimal probability
of selecting the intrinsically-motivated strategy obtained with
our method. The results are shown in Fig. 8. We observe
that our method outperforms this baseline in the beginning of
the learning process (at iteration 5), but gives similar results
later in the training process. This suggests that our method for
choosing the learning modality is useful for the investigated
task, especially in the beginning of the learning process.
In Fig. 8, we also show the performance of two additional
baselines choosing always the same learning modality. We
can see that choosing always intrinsically-motivated learning
results in very poor learning. This is because two initial
demonstrations are not sufficient to be able to generate mean-
ingful movement variations. This is consistent with the fact
that imitation learning should be preferred in the beginning
of the learning process, as our method has automatically
discovered (see Fig. 7). We also observe in Fig. 8 that choosing
actively the learning modalities results in a task cost on par
with only imitation learning across the whole learning process,
which is a nice result because it means that we can reduce
the number of demonstrations by 36% without suffering from
a performance degradation, and therefore reduce the human
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Fig. 8: Evaluation for the choice of the learning strategy.

burden of providing demonstrations. A fairer comparison is to
compare our method against only imitation learning with the
same number of demonstrations 5, which we also plotted in
Fig. 8. We can see that our method outperforms this baseline at
iterations 15 and 20 by around 15%. This therefore motivates
the meta-level arbitration capability of our framework for
orchestrating the different learning modalities.

VI. CONCLUSION

In this article, we proposed a Bayesian representation of
robot movements by extending the widely-used framework
of probabilistic movement primitives. With this Bayesian
representation, we proposed three active learning criteria lever-
aging the knowledge of the model uncertainties (epistemic
uncertainties) that permit two different learning modalities
(imitation learning and intrinsically-motivated learning) as
well a principled method for arbitrating between them in an
open-ended manner. To the best of our knowledge, our work
is the first to integrate those three aspects.

We showed the robustness of our approach with a waste
throwing task with a 7-DoF simulated Franka Emika Panda
robot. We studied the usefulness of each of our active learning
algorithms by comparing them to alternative baselines, and
showed that in all experiments, our algorithms give the best
performance.

The fundamental element of our method lies in that we
model the joint distribution of the movement. By doing so,
we can compute several forms of conditional distributions (in
our case, quantifying the effect of a specific robot movement
on the object for intrinsically-motivated learning, or the robot
movement needed to bring the object to a desired final po-
sition for imitation learning). Also, as intrinsically-motivated
learning and imitation learning are based on the same joint
model of the movement, we have shown that we can compare
these very different learning modalities quantitatively.

In future work, we will study whether additional learning
modalities can be added to the framework. In particular, the
use of human feedback as a learning modality could be
particularly interesting as it would be less cumbersome for the
human user to give the robot partial feedback rather than full

5Namely 0, 5, 8, 10, 13 demonstrations at iterations 0, 5, 10, 15, 20.



demonstrations. More generally, we will also investigate if the
proposed active learning approach can be extended to different
aspects of the skills, in order to allow the different learning
modalities to improve different aspects of the task (e.g.,
acquiring the kinematics aspects through observation learning,
and the dynamical aspects through experiential learning).
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