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Abstract— This research addresses the challenge of perform-
ing search missions in dynamic environments, particularly for
drifting targets whose movement is dictated by a flow field. This
is accomplished through a dynamical system that integrates
two partial differential equations: one governing the dynamics
and uncertainty of the probability distribution, and the other
regulating the potential field for ergodic multi-agent search.
The target probability field evolves in response to the target
dynamics imposed by the environment and accomplished sens-
ing efforts, while being explored by multiple robot agents guided
by the potential field gradient. The proposed methodology
was tested on two simulated search scenarios, one of which
features a synthetically generated domain and showcases better
performance when compared to the baseline method with static
target probability over a range of agent to flow field velocity
ratios. The second search scenario represents a realistic sea
search and rescue mission where the search start is delayed,
the search is performed in multiple robot flight missions,
and the procedure for target drift uncertainty compensation
is demonstrated. Furthermore, the proposed method provides
an accurate survey completion metric, based on the known
detection/sensing parameters, that correlates with the actual
number of targets found independently.

I. INTRODUCTION

Despite significant advancements in maritime technology,
accidents at the sea continue to occur, highlighting the
ongoing need for search and rescue (SAR) missions. The vast
inspection area and the dynamic nature of ocean movement,
introducing additional complexity and uncertainty, make
search missions exceptionally difficult [9]. A critical factor
when considering maritime SAR missions is time, since the
survival rate of missing individuals decreases over time.

To address some of these challenges, unmanned aerial
vehicles (UAVs) have proven to be useful in SAR operations,
particularly in maritime environments, as demonstrated in
[17], [6], [24]. Various approaches have been proposed,
focusing on different aspects such as probability field gen-
eration, dynamic target tracking, multi-agent coordination,
and search strategies. An algorithm for intelligent maritime
response plan generation is proposed in [3], some of which
are analyzed on real maritime SAR scenarios. Regarding
camera sensing systems, a review of methods for automatic
target detection in maritime SAR aerial images is presented
in [18]. A method for oceanic search using dynamically
changing target probability maps, relying on Gaussian mix-
ture models, is presented in [17]. The method also incor-
porates a time-varying ocean velocity field, but they utilize
grid-based domain decomposition. Similarly, [15] applies a
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grid-based method for dynamic target search using multiple
UAVs. It considers UAV communication flaws and data loss.
Related to communication, in [24], UAVs and Unmanned
Surface Vehicles (USVs) are used to construct a temporary
communication network when performing maritime SAR
missions. It also utilizes a grid method and generates a path
plan based on information sea maps and sensor data. Multi-
agent ergodic search utilizing dynamic information maps is
presented in [7]. The search agents utilize low information
sensors for localization and tracking of moving targets.
Genetic algorithm optimization for locating moving targets
with UAVs is utilized in [4]. The search area is defined
as a grid, and the belief map is updated using a Bayesian
approach based on sensing effects. Another technique that
utilized grid-based domain decomposition is presented in
[25]. It utilizes USVs for performing lawnmower pattern
search, but it lacks dynamic probability field evolution. The
work in [6] provides real world experimental results of sea
search missions where the UAVs’ path is pre-computed and
then forwarded for execution. It does not feature probabilistic
sensing or dynamic probability field.

A logical approach to conducting SAR missions is to
prioritize searching areas with higher probability of locating
the target, which can be achieved by employing ergodic
search methods. By specifying a metric of the search success,
and its maximization during the ergodic search process, a
specific coverage of the target probability distribution can be
ensured, effectively distinguishing between explored regions
and those that require further exploration. Most commonly
used ergodic search methods are Spectral Multiscale Cov-
erage (SMC), Model Predictive Control (MPC), and Heat
Equation Driven Area Coverage (HEDAC). SMC, proposed
in [19], utilizes smoothed Fourier basis functions in order
to generate ergodic trajectories for multiple search agents.
The method has been adapted for conducting missions in
dynamical environments in [20], and utilized in [11], where
the authors proposed a search strategy for the missing
MH370 plane that crashed in 2014 in the Indian Ocean. The
dynamics of the probability density field were approximated
using moving Lagrangian particles. Another commonly used
approach is MPC, which formulates the generation of ergodic
trajectories as an optimization problem [1]. In [2], it was
utilized for area exploration and objects’ shape estimation.
An example of MPC ergodic control for searching dynami-
cally changing information distribution is presented in [21],
where it is applied to a coverage and localization problem
with targets’ motion modeled as a diffusion process. Beyond
that, another method which can be used is HEDAC, which
was firstly introduced in [12]. It was additionally formulated
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with the Finite Element Method (FEM) which allowed its
use in irregularly shaped domains with support for inter-
domain obstacles [13], and expanded with probabilistic sens-
ing methods [10]. HEDAC is also employed in real-world
robotics applications, such as cleaning curved surfaces with
a robotic manipulator [5]. To the authors knowledge, the
method has not yet been utilized for searching targets that
exhibit dynamic behavior.

The goal of this letter is to improve the methodology for
dynamic search, particularly for tracking drifting targets in
complex ocean currents. It effectively integrates an evolving
Eulerian probability density model with a potential-based
ergodic search control. The method is designed for use with
robot agents, such as Unmanned Aerial Vehicles (UAVs), that
are not affected by the ocean flow. Additionally, the diffusion
term allows for compensation of uncertainty caused by
potential inaccuracies in the measured flow field. Ultimately,
the proposed methodology enables real-time estimation of
the total target detection probability, which is crucial for
managing and making decisions in ocean SAR missions.

II. DYNAMIC PROBABILITY DISTRIBUTION FIELD AND
SENSING

Let us consider a multi-agent exploration of the domain
Ω ∈ R2 in time t. For now, the agents’ trajectories and direc-
tions, denoted by zi(t) and θi(t) respectively, are considered
known, where i = 1, . . . , n is the index of each agent, and
n is the total number of agents conducting exploration.

The search is conducted based on the probability density
of undetected target presence m(x, t) : (Ω × t) → R. Its
initial value, at t = 0, is denoted as m0(x), and satisfies the
condition ∫

Ω

m0 dx = 1. (1)

The environment dynamics are defined with the field
w(x, t) : (Ω × t) → R2, representing fluid flow that causes
the drifting effects of the targets. Both m0(x) and w(x, t)
are assumed to be known.

Each agent actively explores the domain and its sensing
effect is modeled with a sensing function γi(r), where r(t)
are coordinates in the agent’s local coordinate system. The
sum of all sensing applied by the agents in the global
coordinate system is represented with

Γ(x, t) =

n∑
i

γi (R(θi(t)) · (zi(t)− x)) ,

where R is the rotation matrix defined as

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
.

The movement of the search targets is governed by the
vector field w(x, t), which imposes dynamic behavior of
m. To effectively simulate m and its uncertainties, we
introduce an advection-diffusion partial differential equation
including a sink term simulating the sensing effects of search

agents. The dynamics of the probability of undetected target
presence m(x, t) can be defined as

∂m

∂t
= D · ∇2m−w · ∇m− Γ ·m, (2)

where D is the diffusion coefficient. Diffusion effectively
models the collective uncertainty of the system which can
result from errors of the underlying advection flow field,
errors in setting up the initial undetected target probability
field, and errors in agent localization which directly effects
its sensing. The diffusion coefficient is calculated by using
the equation for mean square displacement of a brownian
particle, represented with

E2(t) = 2 ·D · t,

where E represents the mean displacement of a particle for
time t. To better align this with a physical representation
of uncertainty, the diffusion coefficient will be calculated
based on the approximated distance error of targets drift
e, for time t. It can also be determined with the measured
flow field error value in m/s, if that estimate is known. The
diffusion coefficient for the two-dimensional case can now
be expressed as

D =
e2

2 · t
. (3)

The exploration success is evaluated with the survey
accomplishment metric

η(t) = 1−
∫
Ω

m(x, t) dx.

Since the obvious goal of the search is a rapid and continuous
minimization of survey accomplishment η, we can suitably
define an ergodic search task as

lim
t→∞

∫
Ω

m dx = 0.

Note that the search cannot continue indefinitely, however,
its duration cannot be defined in advance. Since the duration
is unknown, the dynamic distribution exploration cannot be
set up as an optimization problem, and instead we consider
it as an ergodic task.

III. MOTION MODEL

The agents’ motion is modeled with the Dubins model
by appointing constant velocity vi to each agent and varying
their heading angle θi. Therefore, the agents’ trajectories can
be represented with

dzi
dt

=

[
vi · cos θi
vi · sin θi

]
. (4)

The change of the heading angle is governed with the yaw
angular velocity

ωi(t) =
dθi
dt

,

constrained by |ωi| ≤ ωmax
i , which also determines the

agents’ minimal turning radius rmin
i = vi

ωmax
i

.



It’s important to note that we consider a search with flying
robot agents, so the flow filed w has no effect on the agents’
motion.

The motion control is governed by the HEDAC algorithm
[13], which calculates ω(t) based on the potential field
u(x, t) obtained by solving the partial differential equation

α∇2u(x, t)− u(x, t) +m(x, t) = 0, (5)

where α > 0 is a parameter which regulates the balance be-
tween global and local exploration. On the domain boundary
B (and possible obstacles) Neumann boundary conditions are
set as

∂u

∂n

∣∣∣∣
B

= 0,

where n is outward normal vector to boundary B.
For directing the exploration agents we suitably calculate

the unitary gradient of the potential u:

u(x) =
∇u(x)

||∇u(x)||
.

By utilizing the gradient of the potential field u, the yaw
angular velocities can be computed with

ωi =
d

dt
(<) (θi, u(zi))) . (6)

The angular velocity ωi can be either positive or negative,
depending on the turning direction: a positive value indicates
counterclockwise rotation, while a negative value represents
a clockwise rotation.

The last step is performing obstacle avoidance procedure,
which is described in detail in [13], to approve or modify
ωi that results in the final yaw angular velocity value, which
guarantees a collision free trajectory.

IV. IMPLEMENTATION

The implementation of the proposed methodology is
achieved by coupling the solvers for the probability den-
sity advection/diffusion/sensing in (2), the potential field
governed by (5), and search agents’ motion model (4).
The advection and diffusion terms in (2) are solved using
Finite Volume Method (FVM), with the scalarTransport-
Foam solver included in OpenFOAM. Meanwhile, sensing
is explicitly applied to the field m based on agents positions
zi and their sensing functions γi in each time step. FEM-
based solver Netgen/NGSolve [22], [23] is utilized for solving
partial differential equation (5), and obtaining the gradient
of the potential field. Solving the motion model, collision
avoidance procedure, different utility and visualization op-
erations, and integrating all components is done using the
Python programming language.

In method’s implementation, motion control and sensing
are applied with a period of ∆t, while the advection/diffusion
simulations are performed with a smaller time step of ∆t/10
for a duration of a control step ∆t.

The two coupled methods inherently work differently,
HEDAC uses FEM, while OpenFOAM uses FVM. In order
to adapt them to the problems they solve, the underlying

meshes are differently structured. The HEDAC FEM utilizes
two-dimensional triangular mesh, while OpenFOAM uses a
three-dimensional hexahedral mesh (with a single element
in the third dimension) for solving a two-dimensional ad-
vection/diffusion case. In addition, FEM stores values at the
nodes, whereas the FVM stores them at the cell centers,
requiring data value transfer. The methods are combined in
a way that the agents’ sensing effects are directly applied to
the FVM scalar field, and then the m field is projected to the
FEM mesh for the potential field calculation. The projection
is executed by using nearest neighbor interpolation method
due to its computational efficiency. Only probability field
m accumulates for an error, given that the potential field
u is recalculated from updated values m in each time step.
Hence, we consider the use of nearest neighbor method and
its resulting coarseness to be justified.

The entire procedure for the proposed methodology, in-
cluding all vital subprocedures and theoretical references, is
provided in detail in Algorithm 1.

The advection-diffusion framework employs OpenFOAM-
v2406 [16], with case meshes created using either the
blockMesh utility or cfMesh. The HEDAC FEM framework
was implemented using Python 3.12, NumPy 2.1, NGSolve
6.2, Netgen, SciPy, and Gmsh. The visuals are generated
using Matplotlib, PyVista, CMasher, and Seaborn. All the
simulations were computed on a notebook PC with 6-core
2.60 GHz CPU, 16 GB of RAM and SSD hard drive.

Algorithm 1 Procedure for ergodic exploration of dynamic
distribution

procedure MOTION CONTROL WITH DYNAMIC PROBABILITY FIELD
function INITIALIZATION

Initialize general parameters, agents, FEM
Normalization and setting m field in FES ▷ (1)
Saving normalized m field to the the OpenFOAM case for t = 0
Setting OpenFOAM vector field w
Setting OpenFOAM case diffusion coefficient
t = 0

end function
function SOLVE TRAJECTORIES

Obtain scalar field m(t) from OpenFOAM case
for i = 1 . . . n do ▷ For all agents

Apply sensing to field m(t) ▷ sensing in (2), γi
end for
Saving m field with applied sensing to the OpenFOAM case
Updating m field in FES
Solving potential u ▷ Equation 5
Calculating agent’s directions ▷ (6)
Collision avoidance procedure ▷ Equivalent to [13]
Updating agent’s positions
Scalar transport of m in OpenFOAM for ∆t ▷ adv./diff. in (2)
Increase the time: t = t+∆t

end function
end procedure

V. TEST CASES

The method was tested in simulations based on two search
scenarios. The first scenario showcases a search mission in
a rectangular domain where the dynamics of the targets is
imposed by a cavity lid-driven flow. Furthermore, it demon-
strates search performance gains by using the proposed
dynamic target probability density field compared to the



static field. The second scenario represents a simulation of
a realistic ocean search scenario using UAVs. The targets’
dynamic behavior is governed by the transient ocean flow
field. The search start is delayed to account for the movement
of targets between their last recorded location and the actual
start of the search. Additionally, the search is completed in
multiple phases, taking into account the time needed for UAV
battery replacement, and the targets motion during that time.
The second test case also showcases the benefits of diffusion
utilization for managing uncertainty.

Supplementary materials and video animations for the
computed test cases are available on the Open Science
Framework repository: https://osf.io/3a6xc/.

A. Search simulations setup and evaluation metrics
Each case contains a total of 1000 simulated targets which

are advected with the flow field w and the initial distribution
of targets at t = 0 matches the initial probability of
undetected target presence m0. The search targets’ positions
remain consistent over time across all simulations that share
the same flow field, and it is governed by particle Lagrangian
motion law

dy

dt
= w(y, t).

Search scenarios are evaluated using two metrics: the survey
accomplishment metric η, which reflects the system’s per-
ception of survey completion, and the target detection rate
κ, which represents the proportion of detected targets relative
to the total number of targets, providing a realistic measure
of survey completion.

B. Synthetic case - Cavity flow
The search domain is defined with an 1 × 1 m square

which includes a rectangular obstacle represented with a
bounding box from (0.7, 0.2) m to (0.8, 0.6) m. The flow field
inside the domain is considered as known. It was computed
with the simpleFoam solver utilizing the k-ω SST turbulence
model. The velocity boundary condition on all rectangle sides
was set to no slip condition, implying that the fluid that is
touching the boundary has a velocity of 0 m/s in reference
to that boundary, and the pressure boundary condition is set
as zero gradient. The fluid motion is caused by moving the
upper boundary of the domain rectangle at the velocity of 2e-
2 m/s, and the kinematic viscosity of the fluid which is equal
to 1e-6 m2/s. The flow field, represented with a vector field,
matching streamlines, and contour plot of velocity intensity
is displayed in Fig. 1. It is steady throughout the whole
duration of the search, and the average flow field velocity
magnitude is 3e-4 m/s.

The search targets are randomly distributed across five
distinct areas of varying shapes. In the two upper areas, the
targets follow a standard distribution centered within each
area, whereas in the remaining areas, they are uniformly
distributed. The positions of the simulated targets are shown
in Fig. 1.

The domain is explored with 3 identical search agents for
the time T = 900 s, with the search and agents’ motion
parameters provided in Table I.

Fig. 1. Cavity lid-driven flow field represented with a vector field,
streamlines, and velocity intensity contour plot. Positions of simulated
search targets at t = 0 are displayed as red dots.

Each agent is equipped with a sensor that has a circular
detection radius rd = 0.015 m. The target is detected in
one flyover with a chance of µa = 0.8, if the target is
directly below the search agent, but the detection chance
drops from that point following the standard distribution with
a standard deviation of σa = 0.015 m. The corresponding
sensing rate function in the local (agent’s) coordinate system
can be described with

γa = − ln(1− µa)

2
· µa · e−0.5( d

σa
)
2

,

where d is the distance from the current agent’s location zi(t)
and the observed point.

TABLE I
CONTROL AND MOTION PARAMETERS USED IN SIMULATED SEARCH

SCENARIOS

Search parameters Cavity Unije
Channel Units

Agents’ velocity v 0.015 10 m/s
Agents’ minimum turning radius Rmin 0.01 100 m
Agents’ minimum clearance distance δ 0.01 50 m
Time step ∆t 0.2 3 s
Alpha α 5e-2 1e5 -

The search is performed using the proposed method, which
considers the dynamic properties of the probability distribu-
tion influenced by the underlying flow field. This approach
is compared to a baseline search conducted with a method
assuming a stationary target probability distribution. The
results of both simulations are compared and shown in Fig. 2.
Predictably, the proposed method demonstrated superior per-
formance, achieving a target detection rate κ approximately
50% higher than the baseline throughout the entire duration
of the search simulation. The survey accomplishment metric
η corresponds to κ in the simulation conducted with the
proposed method, reflecting an accurate perception of survey
completion and representing the realistic state of the search.
In contrast, for the baseline method, η does not align with

https://osf.io/3a6xc/


κ, as the algorithm indicates much higher survey completion
than is realistically achieved.

Additionally, an analysis was conducted to examine the
impact of the flow field’s and search agents’ velocities on the
search performance in both scenarios, using the proposed and
baseline methods. To conduct this analysis, a new variable,
λ, is introduced, representing the ratio of the agents’ velocity
to the flow field’s average velocity. This variable highlights
the relationship between the agents’ velocity and the flow
field.

The analysis was completed using the same cavity case
since, conveniently, the target probability and the targets
circulate inside the domain and are unable to escape it.
The survey performance was analyzed for different values
of λ in range [0.25, 1000]. Lower λ values indicate that the
flow field’s average velocity is higher relative to the agents’
velocities, and vice versa. To achieve achieve different λ
values, the flow field used in the test case presented above
was scaled while the agent velocity remained constant. This
ensured that only the intensity of the flow field was modified,
while its structure remained unchanged.

For reference, the realistic λ value for performing a search
mission in the sea coastal region would be somewhere around
the value of 50, considering a search with multi-rotor UAVs
with a velocity of 10 m/s searching in a submesoscale sea
flow with an average velocity of 0.2 m/s [14], [8].

As evident from Fig. 3, the proposed method offers much
better search performance than the baseline method in the
realistic range of λ values. For really high λ values, the
effects of the underlying flow field can be largely ignored
and the baseline static probability search method performs
the same as the proposed method. In case that the flow
field has higher velocity than the search agents λ < 1, both
methods have similar target detection rate κ, since the flow
is too chaotic and the targets essentially end up catching the
agents rather than the other way around. One thing to notice
here is even that κ is similar, for the proposed method κ
corresponds to the survey accomplishment metric η, while
the same cannot be said for the baseline method.

C. Realistic search case - Unije Channel search

This test case was designed to simulate a realistic search
scenario on the ocean. The exploration domain is the Unije
Channel, located in the Adriatic Sea between the islands of
Unije and Lošinj. The search has a 3 hour delay from the
time simulated targets were placed in the ocean at known
locations, matching m0. The search is conducted in a total
of 6 phases, with each phase representing the UAV swarm
flying for the duration of one battery charge, which lasts 25
minutes. The swarm consists of 5 identical search agents,
as described in Table I. The UAVs are deployed from the
coastal region, and in between each search phase, there is
a 5 minute delay simulating the UAVs’ return to base and
battery replacement.

UAVs are equipped with a camera sensor that captures
a rectangular area of 160 m in width, and 90 m in height,
where the height direction corresponds to UAVs’ heading.

The probability of detecting the target within the sensor’s
scope during a single flyover is µb = 0.75. The matching
sensing function is described with

γb = − ln(1− µb)

9
· µb.

The flow field in this scenario is transient, so it changes in
respect to time, which is evident in the drift direction change
of simulated targets during the simulation. The flow field
for t = 0 and t = T was generated utilizing OpenFOAM,
while the complete transient flow simulation was computed
by employing the method presented in [14]. The velocity
intensity of the generated flow field is in [0, 0.4] m/s, which is
equivalent to a measured real flow field surface layer velocity
[14], [8]. The flow field and simulated search targets at t = 0
and t = T are shown in Fig. 4.

In the scope of this search scenario we considered un-
certainties that may be present in a real-world scenario. For
example, the flow field may not be completely accurate, and
therefore the targets drift will not precisely align with the
effects of the flow filed. To simulate the uncertainties of the
system, error was introduced in the advection of simulated
search targets. The error for each particle was introduced
by emulating the Brownian motion phenomenon defined as
stochastic differential equation

dy(t) = w(y, t) dt+ σ dB,

where B denotes a Wiener process for standard Brownian
motion with standard deviation σ. The realistic targets’ drift
error was determined experimentally in [14], from where we
can linearly extrapolate the drift error value at 3h (half of
our advection simulation time), which is roughly e = 330 m.
To replicate that effects, and achieve an error of about 330
m after 3 h of advection, we introduce error every ∆t = 3
s, with a standard deviation of σ = 5.4772 m.

In order to compensate for the introduced error, we calcu-
lated the diffusion coefficient by using (3), and the resulting
diffusion is equal to D = 5 m2/s. The results of the search
using diffusion for uncertainty compensation were compared
to a case without uncertainty compensation, as shown in Fig.
5. During the initial stages of the search, there is only a
minor difference between the two cases, up until about 45%
of target detection rate, since in both approaches first search
the area of highest target probability density. As the time
goes on, the performance of the diffused case becomes better
because of two reasons: firstly the case with no diffusion does
not compensate for the drift error, and secondly, the target
error distance increases in time.

At the end of the search t = T , the method without
uncertainty compensation found 883, and the method with
uncertainty compensation found 922 out of 1000 total targets.
That would equate to 4.4% better search performance with
uncertainty compensation. Another advantage of the of using
uncertainty compensation is that the survey accomplishment
metric η is a good representation of the target detection rate
κ. In that case, η = 0.9191 and κ = 0.922, while η = 0.9859
and κ = 0.883, for the case without compensation. Having



Fig. 2. Comparison of the static probability search and the proposed method. The figure features the search domain at t = 500 s, with the underlay of the
potential field displayed with the purple-white shaded heat-map for both cases. It displays agents’ trajectories and the simulated search targets. Under the
domain plots, the figure includes a search performance analysis graphs containing survey accomplishment η and target detection rate κ metrics in relation
to search time. The difference in the agent behavior recognized by observing the agents’ trajectories, where the agents in the static probability scenario
focus their search only on the area covered by the initial target probability distribution m0, while in the agents’ motion in the dynamic case. The search
performance improvement can be seen by comparing the target detection rate between the cases, furthermore, the survey accomplishment in the proposed
method stays true to the target detection rate.

an incorrect approximation of survey accomplishment could
lead to wrong decision making during search mission. For ex-
ample, if the mission is considered finished when η = 98%,
the actual value would be 10% lower in the uncompensated
case. As a result, the next search phase, which could further
increase η and potentially locate the target, would not be
executed.

During the simulation, computation time was measured
on same computer configuration as defined in section IV,
with the results shown in Fig. 6. From that we can conclude
that the algorithm is suitable for real time control of UAVs
since the computation time never exceeded the control time
step of 3 s. The FEM mesh is composed of 18289 triangular
elements and 9357 mesh nodes. The FVM mesh is comprised
of 61340 hexahedral cells and 124628 points. The area
represented by the search domain is equal to 95.9 km2.

VI. CONCLUSION

The work showcases an ergodic area exploration method
with a dynamic target probability density field, aimed to
be used in a maritime search scenario where the ocean
flow field determines the effects of targets’ motion. The

method is based on the HEDAC ergodic search framework
providing motion control, collision avoidance, and sensing,
while OpenFOAM scalar transport is used for advection
and diffusion of the probability density field, capturing its
dynamic effects. The method was compared to a baseline
HEDAC approach with a static probability density field
on a synthetic case, where, as expected, it demonstrated
a significant performance increase. The most notable im-
provement was seen within the realistic ratio of UAVs’
velocity and the average sea flow field velocity. It was also
utilized in a simulated realistic maritime search scenario
where the domain was explored by 5 UAVs equipped with
sensors capturing a rectangular area imitating a camera.
It featured a delayed search start time and multiple UAV
flight missions with breaks considering battery replacement
time. Furthermore, it demonstrated uncertainty compensation
method employing the diffusion of the probability density
field, which accounts for the targets’ drift error, possibly
caused by imperfect measurements of the flow field. The
survey accomplishment of the method in both test cases was
validated using simulated targets that were deployed in the
flow field and drifted by its effects.



Fig. 3. Survey accomplishment rate and target detection rate in relation to λ
which represents the ratio of UAV velocity and average flow field velocity.
The dashed line at λ = 50 represents the average estimated value for
maritime search mission utilizing multirotor UAVs. The graph was generated
using the synthetic cavity test case for different λ values, by scaling the flow
field. It showcases increased performance of the proposed method, compared
to the baseline static probability approach, in the range of realistic values
at different times of the search T .

Fig. 4. Visual representation of the flow field and simulated targets’
positions at the start of advection t = 0, and at the end of the search
t = T for the Unije Channel test case. The executed search mission is
started at t = 3 h.

The proposed methodology provides the capability for
real-time estimation of the total target detection probability
and multi-agent survey control in a complex search envi-
ronment. This is of significant importance for managing of
resources and guiding decision-making processes in ocean
search and rescue missions, where timely and accurate in-
formation is crucial for mission success.
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