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Abstract. Close collaboration between humans and robots needs a sens-
ing infrastructure to monitor the robot environment and secure human-
robot interaction. In this context, we investigate sparse optical range
sampling using a distributed network of robot mounted Time-of-Flight
(ToF) sensors. We present an evaluation of sensor candidates, provide
experimental characterization of an early prototype and show strategies
for environment modeling and object reconstruction.
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1 Introduction

The effectiveness of Human-Robot Collaboration (HRC) strongly depends on
the perceptual capabilities of the involved robotic system. To improve task per-
formances and overall safety, a sensing architecture containing external (E1, E2)
and robotic/robot-mounted (R1, R2, R3) sensors can enhance the robotic aware-
ness, see Fig. 1(a). But, as shown in Fig.1 (b), external sensors can suffer from

shared Workspaceclear
slow
stop

Worker

Cobot

E1 E2

R1

R2

R3 y

x

WorkerCobot

E1
E2

Proximity

occluded
sensor field

y

x

WorkerCobot

R1
(x̂2, ŷ2)
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Fig. 1: Safe collaboration of human and robot in a production line can be realized,
for instance, by (a) a Cobot equiped with (b) external (E1, E2 . . . ) or (c) robot
mounted (R1, R2 . . . ) sensors.
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Table 1: Non exhaustive list of optical time-of-flight proximity sensors with light
detection and ranging (LIDAR) on integrated circuits (LoIC).

Role Manufacturer Model Package Sensor Laser
Name No. Type ToF Type Resol. Range Type λ [nm]

P
ro
x
im

it
y STMicro. VL53L8 LoC pulsed SPAD 8× 8 4 m on chip 940

OSRAM TMF8828 LoC pulsed SPAD 8× 8 4 m on chip 940
SHARP GP2APx LoC pulsed SPAD 1× 1 1.2 m on chip 940
OnSemi MicroFC Sensor pulsed SiPM 1× 1 10 m sep. 905

occlusions and blind spots as well as from the need of a perfect calibrated envi-
ronment. Especially in close proximity of robot and human, the occlusion of the
line of sight can have critical consequences. Alternatively, industrial robots can
be equipped with additional sensors that are integrated directly into the robotic
platform (Fig.1 (c)).

A distributed network of sensors can cover the robot body and allow the
proximity of the robot to be analyzed. In the current paper we neglect tactile
sensing and investigate a network of distributed laser ranging sensors (LIDAR),
as in [1], [2], [3]. The presented work was carried out within the SESTOSENSTO
project (HORIZON-CL4-Digital-Emerging Grant 101070310). This work reports
the collaborative work of multiple partners within the consortium. Further read-
ing can be found online [4].

2 Optical range sampling in robot proximity

A task-oriented evaluation of optical range imaging sensors must be based on
task-related constrains and, in addition to their physical performance, consider
a hypothetic cost function SSWAP-C(x), that evaluates Size, Weight And elec-
trical Power consumption as well as the sensor’s Costs (SWAP-C). Here, the
sensor’s costs cover not only the economic trade value but incorporates also
computational cost: data transfer loads and processing efforts.

Proximity monitoring has to cover the environment all around the robot
within a hemisphere from very close (few centimeter) to, at least, the maximum
range of the robotic arm. In this case, the optical resolution is initially of sec-
ondary importance, as it is only used for a rudimentary environmental model
that is intended to distinguish open movement areas from fixed installations. In
addition, and more important due to work safety issues, spatial coverage has to
ensure reliable localization of human employees. Therefore, we decided to use a
network of distributed sensors to provide complete coverage of the environment
and avoid shadowing of areas by the robot itself.

Optical time-of-flight sensors are available in a compact size as LIDAR on
integrated circuits (LoIC). In table 1 we provide an overview of a selection of
LoIC candidates (green highlighted parameters meet requirements).



Sparse optical sampling in the close proximity of a robotic arm 3

(a) (b) (c)

Fig. 2: Sensor network consisting of a bracelet with (a) 10 distributed LIDAR
sensors and a micro-controller unit (MCU). The sensor is mounted on a robotic
arm (b). The data of the robotic environment can be displayed (c) as a sparse
point cloud.

3 Experimental evaluation

We have built an experimental setup to evaluate different sensors for proxim-
ity monitoring. The sensors were mounted on a robotic arm (UR10, Universal
Robotics) and used in a synthetic scene consisting of a human silhouette and
walls with light (white paper) and dark (black fabric) surfaces.

As illustrated in Fig. 2 (a), we set up networks of LoIC sensors in the form
of a bracelet or waistband. Each unit consisted of 10 LoIC sensors and a micro-
controller unit (MCU, Espressif, EPS32). The MCU is connected to the individ-
ual LoICs to control the automated data acquisition and to read out data. The
bracelets were mounted on the individual robotic arm segments as illustrated in
Fig. 2 (b). The recorded data is transmitted through a wireless network connec-
tion to a main processing unit (PC). High level data processing such as fusion
and display of point clouds (Fig. 2 (c)), building an environment model (e.g.
SLAM), the reconstruction of objects (Sec. 4), control and adaption of the robot
motion as well as human robot interaction (HRI) will be realized on the main
processing unit.

In our experiments, we used the LoICs TMF8828 (ams OSRAM) and VL53L8
(ST Microelectronics), respectively. Each individual sensor measures a point
cloud of 8 × 8 range values in a field of view of 40◦ × 60◦. Thus, the group
of 10 sensors cover a disk shaped area (360◦ × 40◦) perpendicular to the arm
segment. In this area, we were able to monitor the proximity of the robotic arm
from close range (ca. 2 cm) to a maximal distance of about 3 m with a point cloud
update rate of up to 5 Hz. The maximum range is impacted by the ambient light
level which can alter the signal to noise level. Further the surface characteristics
such as reflectance and orientation can effect the results. A detailed analysis is
pending. Again, in our first approach we were able to cover a disk shaped area.
In later application, the position (place and orientation) of the sensors mounted
on the robot has to be optimized for maximal coverage and to comply with work
task specific requirements.
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4 Object reconstruction

Sampled distance information can be used to learn signed distance fields (SDFs)
in order to reason about making contact with the environment or objects of
interest. For this purpose, piecewise polynomial basis functions can be leveraged
as an underlying model to represent continuous and smooth SDFs, with direct
access to gradients. These properties make such representations directly usable
for guiding movement in robotic manipulation tasks [5].

Fig. 3: Piecewise polynomial SDF of the 035 power drill object from the YCB
dataset [6]. The ground truth mesh with 700 non-uniformly distributed training
samples is shown on the left. The center and right image show the reconstructed
mesh and level sets (positive in red and negative in blue).

Fitting a piecewise polynomial SDF model amounts to learning a number of
basis function weights from sampled distance data. A simple way of doing this is
through least squares regression. Learning only from surface points and normals
requires additional regularization terms in order to provide valid representations
of distance [7]. In an online setting, data collected in batches or point-by-point
can be used to update an arbitrary prior model through an incremental formu-
lation of least squares [8]. Figure 3 shows an example object reconstruction. The
training procedure for a 2D case is illustrated in Figure 4.

Fig. 4: Incremental learning of an SDF represented using piecewise polynomial
basis functions, with level sets displayed as gray and blue contours. Starting from
a spherical prior, the model is incrementally updated with n incoming samples,
shown in red. Regularization is enforced on points shown in black.
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5 Conclusions

We have evaluated different LoIC sensors to be used in a sensor network mounted
on the robot skin. Our sensor networks can monitor the robot environment
from close range several meters and sample a sparse point cloud which covers a
disk shape area all around the robot arm without self occlusion or blind spots.
In principle, these results comply with the requirements for a application in a
safety and control system for human-robot-collaboration (HRC). Furthermore,
we have investigated the reconstruction of object shapes from a small set of sam-
ple points. Our approach uses piecewise polynomial basis functions to implicitly
represent shapes as signed distance fields (SDFs). Thus, without the need of a
dense point cloud we are able to develop an environment model which can be
used for further high level operations. Future developments foresee the design
and implementation of a dedicated middleware architecture to provide efficient
access to different proximity data representations. Moreover, the methods and
technologies presented in this paper will be extended to real-world applications
which are relevant for industrial manufacturing and agriculture scenarios.
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