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Learning Constrained Distributions of Robot
Configurations with Generative Adversarial Network

Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Sylvain Calinon

Abstract— In high dimensional robotic system, the manifold
of the valid configuration space often has a complex shape,
especially under constraints such as end-effector orientation or
static stability. We propose a generative adversarial network
approach to learn the distribution of valid robot configurations
under such constraints. It can generate configurations that are
close to the constraint manifold. We present two applications
of this method. First, by learning the conditional distribution
with respect to the desired end-effector position, we can do fast
inverse kinematics even for very high degrees of freedom (DoF)
systems. Then, we use it to generate samples in sampling-based
constrained motion planning algorithms to reduce the necessary
projection steps, speeding up the computation. We validate the
approach in simulation using the 7-DoF Panda manipulator and
the 28-DoF humanoid robot Talos.

Index Terms—Motion and Path Planning; Deep Learning
Methods; Whole-Body Motion Planning and Control

I. INTRODUCTION

GENERATIVE Adversarial Network (GAN) [1] is a pow-
erful method to learn complex distributions. It is partic-

ularly popular in computer vision to learn the distribution of
images from a dataset. Some of the applications include gen-
erating high resolution images [2], text-to-image synthesis [3],
and interactive art [4]. Considering the recent success of deep
learning techniques in robotics, e.g., [5], we propose to adapt
GAN to the context of robotics, i.e., to learn the distribution
of valid robot configurations in constraint manifolds.

In robotics, configuration space refers to the space of
possible robot configurations that may include joint angles
for revolute joints, joint translations for prismatic joints, and
the base pose for floating-based robots. This concept is very
important in motion planning, because the planning often
needs to be done in the configuration space. Due to the
presence of constraints, the valid configurations lie in some
manifold of the configuration space, the shape of which can
be complicated and often cannot be parameterized explicitly.
Inequality constraints, such as obstacle avoidance, result in a
manifold with non-zero volume, and the standard approach
to sample from this manifold is to do rejection sampling.
For equality constraints (such as fixed feet locations or end-
effector orientation), however, the manifold volume is reduced
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Figure 1. Using GAN for obtaining approximate IK solutions. The targets
are depicted in yellow. In (a), the target is reachable. When the target is out of
reach (b), GAN still outputs a configuration close to the constraint manifold.
We can also give the four limbs position as the IK targets (c).

to zero, as the manifold has lower dimension than the original
space. Rejection sampling does not work in this case because
there is zero probability that the random sample will be on
the manifold. A common approach is to project the random
samples to the manifold, and this projection step takes a
significant portion of the planning computation time. By using
GAN to learn the distribution of valid robot configurations on
a manifold, we can sample from this manifold effectively, such
that the generated samples are close to the desired manifold.

Having learned the valid distributions, we show that it
can be used in two applications: inverse kinematics (IK) and
sampling-based constrained motion planning. Analytical IK
is typically only available for robots with 6-DoF or lower.
For higher DoF robots, the most common method is to use
numerical IK where we start with an initial robot configuration
(often selected randomly by uniform sampling), and rely on
optimization to find the configuration that reach the desired
pose while satisfying the constraints. In our proposed frame-
work, we show that GAN can produce good initial configu-
rations that are close to achieving the target, resulting in a
faster numerical IK with higher success rate as compared to
uniform sampling initialization. Furthermore, sampling-based
constrained motion planning also involves a high number of
projections of random samples to the constraint manifold. We
show that by replacing the uniform sampling with GAN, the
planning time can be reduced significantly.

One particular difficulty of learning a distribution is when
the target distribution is multimodal, as is the case in many
robotic systems. For example, the conditional distribution of
a 6-DoF manipulator given a desired end-effector pose is
multimodal because there are many different configurations
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Figure 2. The proposed GAN framework for learning the distribution of valid robot configurations. The generator consists of an ensemble of Nnet neural
networks, while the discriminator consists of a single neural network. Besides a Gaussian noise as in standard GAN, we also add the end-effector target(s)
as additional input to the generator. The output of the generator is then augmented by additional features, i.e., the corresponding end-effector poses, before
being given to the discriminator.

that are associated with the pose. To overcome this, we propose
to use an ensemble of neural networks as the generator in
GAN. Each neural network can converge to a different mode,
and we get better coverage of the distribution as compared to
using a single network.

The remainder of the paper is as follows. In Section II, we
review existing work on learning sampling distributions and
constrained-based motion planning. Section III describes the
GAN framework and how we use it for inverse kinematics
and constrained motion planning. The experiments with 7-
DoF Panda and 28-DoF Talos [6] are presented in Section IV.
Finally, we conclude with a few remarks in Section V.

II. RELATED WORK

A. Learning sampling distribution

In [7], [8], Gaussian Mixture Model (GMM) is used to learn
the sampling distribution based on previously planned paths.
The distribution is used to either generate biased samples for
the sampling algorithm or to construct a repetition roadmap
that guides towards finding the solution. It speeds up the com-
putation as compared to uniform sampling, but it is difficult
to generalize to different situations (e.g., different obstacles).
Moreover, GMM does not scale well to higher dimensional
systems. GMM is also used in [9] to learn the feasibility
constraint of center of mass (CoM) position with respect to the
whole body dynamics. Conditional Variational Autoencoder
(CVAE) is used in [10], also trained based on data from
demonstrations or planned paths, but it is not implemented
on constrained systems. Convolutional Autoencoder is used
in [11] to learn the motion manifold of human motion, but
not in the context of motion planning.

In contrast to the above approaches, we propose to use
Generative Adversarial Network (GAN) to learn the sampling
distribution of constrained robotic systems and apply it to
the 7-DoF Panda and the 28-DoF Talos. GAN scales better
with higher dimensions as compared to GMM, and it is easy
to learn a conditional distribution with respect to some task
(such as end-effector pose). We use it to initialize IK very
efficiently while considering various constraints (joint limit,
static stability, foothold location). A similar effort to initialize
IK is done in [12] by storing previously computed end-effector

configurations in an octree data structure, indexed by the
end-effector positions. However, in that work, each limb is
treated separately from the body, and only the kinematics
is considered without any stability criterion when retrieving
the initial guess. Our GAN approach produces configurations
that are already close to the constraint manifold, which can
include the stability criterion. In [13], GAN is successfully
used to learn inverse kinematics and dynamics of 8-DoF robot
manipulator with the real data, but it does not consider any
constraint on the robotic system. Furthermore, we show that
the GAN sampler can also be used to improve the sampling-
based constrained motion planning algorithm.

B. Constrained motion planning

A review of various approaches in sampling-based motion
planning for constrained systems can be found in [14]. Among
the others, projecting the samples to the constraint manifold
is a simple but very generalizable way of extending the stan-
dard Rapidly-exploring Random Tree (RRT) to constrained
problems. Instead of doing rejection sampling, the samples
are projected to the constraints manifold [15], [16]. While it
works well, the projection steps take most of the planning
time. In [17], Yang et al. compare various algorithms for
motion planning of humanoid robot. They report that the
projection step takes more than 95% of the planning time.
Several research lines attempt to reduce this time computation.
For example, in [18], Stilman et al. use the tangential direction
of the constraint manifold to always move while staying close
to the manifold. In [19], Kanehiro et al. simplify the humanoid
structure by splitting it into multiple 6-DoF structures and then
perform analytical IK.

In our proposed method, we can generate samples that are
already close to the constraints manifold, and the approach
is generalizable to most robotic systems. This will reduce
the necessary number of projection steps significantly and
hence lower the computation time. Additionally, optimization-
based approaches such as CHOMP [20] and TrajOpt [21] can
solve constrained planning quickly by including the constraints
in the optimization problem. However, since the problem is
highly nonlinear, these methods often require good initial
guesses, otherwise they may have a lower success rate even
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for simple problems [22]. In contrast, sampling-based motion
planning can find a global solution with probabilistic com-
pleteness guarantee [16], provided that the sampler can cover
the entire feasible configuration space, which is the case for
uniform sampling.

III. METHOD

In this section, we present the proposed GAN framework
for learning the robot distribution. We then propose two appli-
cations: inverse kinematics and constrained motion planning.

A. Generative Adversarial Framework

In the generative adversarial framework [1], a generator
G(z;θG) is trained to transform the input noise {z} drawn
from pz(z) (typically a unit Gaussian) into samples {q} that
look similar to the data distribution. To do this, a discriminator
D(q;θD) is trained in parallel to output the probability p(q)
that tells whether q comes from the dataset or the generator.
The training of GAN is therefore like a game between the gen-
erator and the discriminator where one tries to beat the other.
The generator and discriminator are neural networks (with
parameters θG and θD, respectively) trained with Stochastic
Gradient Descent (SGD).

In our approach, GAN is trained to generate configurations
{q} that lie in some constraints manifold. The following
sections explain some changes to standard GAN that we
propose to better suit robotic applications. Unlike in images,
we can more easily incorporate several forms of prior knowl-
edge of what constitutes good configurations in the form
of additional cost functions and transformations. To better
handle multimodal distributions, we use an ensemble of neural
networks as the generator. The framework is depicted in Fig. I.

1) Additional inputs: In standard GAN, the input to the
generator is a noise sampled from a Gaussian distribution.
To obtain a conditional distribution, we include the task
parameters as additional inputs to the generator. The task
parameters here correspond to the desired end-effector pose(s),
but other additional tasks are also possible.

2) Additional costs: The training cost for the generator
normally consists of the cost of tricking the discriminator to
classify its samples as dataset samples. In robotics, however,
we can add other costs that can be used to evaluate the quality
of the samples based on the knowledge of the robotic system.
Here we include several costs:

• The cost of end effector targets cee(q). From the samples
generated by G, we can compute the forward kinematics
to obtain the end-effector positions and compare this to
the desired end-effector target (given as the input to the
generator).

• The cost of static stability cs(q). To achieve static stabil-
ity, the CoM projection on the ground should be located
inside the foot support polygon.

• The cost of joint limits cl(q). The cost is zero if it is
within the limit, and increasing outside the limit.

(a) (b) (c)

Figure 3. Illustrative example of a 2-DoF robot with obstacles. (a) shows
the robot with circular obstacles. The configurations (i.e., joint angles) that
are not in collision are plotted in (b) and (c) as red circles. We learn this
distribution using GAN. In (b), we use one neural network as the generator,
and the GAN samples are plotted as blue crosses. We see that the samples
do not cover the whole distribution. Using an ensemble of 5 networks in (c),
we manage to cover most of the distribution.

3) Output Augmentation: Instead of feeding the configura-
tions directly to the discriminator, we augment the configura-
tions by some transformations, e.g., end-effector poses. This
helps the discriminator to discern between good and bad sam-
ples according to the relevant features. Other transformations
such as CoM location can also be added.

4) Ensemble of networks: When the desired distributions
are multimodal, GAN often converges to only some modes of
the distribution. This is known as the Helvetica scenario or
mode collapse [1]. For example, when the desired distribution
is a GMM, GAN may converge to only some of the mixture
components, and not all of them. This is a major prob-
lem in the robotics context, especially for motion planning,
because omitting some portion of the configuration space
means reducing the probability of finding feasible solutions. To
overcome this, we use an ensemble of Nnet neural networks
as the generator. Given an input, each network generates a
corresponding robot configuration, and each one is trained
as a stand-alone generator. When the desired distribution is
multimodal, each network may converge to a different mode.

The advantage of using an ensemble of networks as the
generator can clearly be seen using an illustrative 2-link robot
example. Fig. 3a shows the setup of the robot surrounded by
obstacles. The configuration consists of the two joint angles.
The valid configurations (i.e., the ones without collision) are
plotted in Fig. 3b and Fig. 3c as red circles, and GAN is
trained to learn this distribution. When using only one network
for the generator, GAN converges to only some part of the
configuration space, as depicted in Fig. 3b (the GAN samples
are plotted as blue crosses). Using Nnet = 5 networks, we
manage to cover most of the configuration space (Fig. 3c).

B. Inverse Kinematics

For high-dimensional robots where analytical IK is not
tractable, numerical IK is the standard approach. Given a
desired end-effector pose pref and the initial configuration q0,
an iterative optimization is used to find the value of q such
that the corresponding end effector pose p(q) is equal to
the desired pose pref. One common approach is to use the
Gauss-Newton Algorithm, which we use in this paper. At its
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most basic formulation, the inverse kinematics is formulated
as minimizing the following quadratic cost,

c(q) =
1

2
r>r, (1)

where r = p(q) − pref is the residual vector that we want
to reduce to zero. Starting from the initial guess q0, the next
solution is obtained by

qi+1 = qi − αJ†r, (2)

where J = ∂r
∂q is the Jacobian of the residual function, α is the

step length, and the subscript † denotes the (Moore-Penrose)
pseudo-inverse operator. The step is iterated until the residual
norm is smaller than a specified threshold value.

This formulation can be extended to more residual func-
tions, each of which corresponds to a particular constraint that
we want to enforce to the system. For example, in the case of
IK for humanoid, we can define the cost function as

c(q) =
1

2
(r>

eeree + r>
s rs + r>

l rl),

where the subscripts (ee, s, l) refer to the residuals correspond-
ing to the constraints on the end-effector pose, static stability,
and joint limit. Note that the Gauss Newton algorithm can
only be applied to least-square problems, hence each of the
cost term should be a square function of the residual.

Furthermore, with the pseudo-inverse method, we can
implement some hierarchy in the constraints by using the
nullspace projection [23]. For each level of the hierarchy, we
can define a cost function as in (1). Let J1 and J2 refer
to the Jacobian of the residuals of the main and secondary
constraints. The nullspace projection operator due to the first
Jacobian, N1, can be obtained as N1 = I − J†1J1. We can
use this nullspace operator to prevent the secondary constraints
from affecting the main constraints. Starting from the initial
guess q0, the next solution is obtained by

qi+1 = qi − α1dq1 − α2dq2, (3)

where dq1 and dq2 are the steps corresponding to the main
and secondary constraints, defined as

dq1 = J†1r1, and

dq2 = (J2N1)†(r2 − α1J2dq1),

and (α1, α2) are the corresponding step lengths. In this work,
we use the secondary constraint to maintain the configuration
around a nominal posture qnom. More details about the cost
functions can be found in the appendix.

To determine the step length α1 and α2, we need to perform
line search. We use the Armijo condition [24] as the stopping
criteria. Finally, to improve the stability of the pseudo-inverse,
we add a damping term λI , defined as

λ = µr>r + µ̄, (4)

where µ and µ̄ are manually-defined constants. The damping
term hence depends on the residual magnitude. As shown
in [25] and also observed in our experiments, it helps the
convergence when starting far from the optimum solution.

The computation time for numerical IK really depends
on how close the initial guess is to the optimal solution.
As discussed in Section III-A, we can obtain good initial
guesses by sampling from GAN while giving the end-effector
poses as additional inputs to the generator. The resulting
configurations would be close to the desired poses and the
constraint manifold, reducing the required number of IK
iterations significantly.

Finally, although the formulation here is presented for in-
verse kinematics, the same formulation can be used to project
robot configurations to the constraint manifold by omitting
the cost on the end-effector position. Further details will be
provided in Section IV.

C. Constrained Motion Planning
The standard approach in sampling-based constrained mo-

tion planning [16] is largely based on RRT, with the addition
of the projection step; each sample to be added to the tree
is projected first to the constraint manifold. The projection
step is formulated as an optimization problem as discussed in
Section III-B. Algorithm 1 describes the steps for constrained
RRT (cRRT) for reaching a goal in task space, starting from
an initial configuration q0. We refer to [16] for more details
of the algorithm.

First, we start with a tree G initialized with the node q0.
From the given goal task in Cartesian space, we compute K
goal configurations (by numerical IK). The following iterations
then attempt to extend the tree to one of these goals. At
each iteration, a random sample qrand is generated. Nearest
neighbor algorithm is used to find the nearest node qanear in
the tree, and we then extend the tree from qanear to qrand. The
last configuration obtained from the extension step is denoted
as qareached. Next, we extend the tree from qareached to one of
the goal configurations, qg,k, chosen to be the one nearest to
qareached. The last configuration obtained from the extension step
is denoted as qbreached. If qbreached is equal to qg,k, we stop the
iteration, and compute the path from the root node q0 to qg,k.
Otherwise, we continue with the next iteration until the goal
is reached or the maximum number of iteration is exceeded.

In the extension step, we iteratively move from qanear to qrand
with a step size ∆qstep, project the resulting configuration to
the manifold, and check for collision. The extension stops
when the projection fails or it is in collision.

1) GAN sampling: As reported in [17], the projection steps
dominate the computation time with more than 95% of the
total time. Instead of uniform sampling, we propose to use
the GAN framework to generate the samples. This will give
us samples that are already quite close to the manifold and
hence reduce the computation time significantly.

To generate samples from the GAN framework, we first
determine the task space region of interest, i.e., a box that
covers the reachable points of the robot’s end-effector. We
sample points inside this box and use it as the target for
the generator. Together with the Gaussian noise, we can then
obtain a set of configurations that are near to the target
and require fewer projection steps. As the generator consists
of Nnet neural networks, we choose one out of the Nnet
configurations randomly as the output of the sampler.
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Algorithm 1 Constrained RRT with goal sampling
INPUT: q0,xg

OUTPUT: the path {qi}|Ti=0

1: G.init(q0)
2: {qg,i}|Ki=0 ← SampleGoal(xg)
3: while n < max iter do
4: qrand ← SampleConfig()
5: qnear ← NearestNeighbor(G, qrand )
6: qa

reached ← ConstrainedExtend(G, qnear, qrand )
7: qg,k ← NearestNeighbor({qg,i}|Ki=0, q

a
reached )

8: qb
reached ← ConstrainedExtend(G, qa

reached, qg,k )
9: if qb

reached = qg,k then
10: P ← ExtractPath(T, q0, qg,k)
11: return P
12: end if
13: end while

IV. EXPERIMENTAL RESULTS

We implemented the proposed method on two systems: the
7-DoF Panda and 28-DoF Talos. The dataset is created by
uniformly sampling random configurations and then projecting
them to the constraints manifold. A data point corresponds to
a robot configuration that satisfies the specified constraints.
We use N = 25000 samples to train GAN for both Panda
and Talos. The training time takes under 15 minutes, which
is quite fast due to the additional cost functions in Section
III.A that help the convergence of the GAN training. The
generator consists of Nnet = 10 neural networks with 2
hidden layers, each has 200 nodes, while the discriminator is
a neural network with 2 hidden layers (each has 20 nodes for
Panda and 40 nodes for Talos). Nnet is determined by training
the generator several times with different numbers of neural
networks and choose the one with the best performance on the
motion planning task. ReLu is used as the activation function.
We train the networks using SGD. All experiments1 are run
on a processor Intel i7-8750H CPU @ 2.20GHz × 12.

A. Projection and Inverse Kinematics (IK)

As described in Section III-B, the projection and IK are
formulated as optimization problems by defining several cost
functions based on the desired constraints. The optimization
problem is solved using Gauss-Newton algorithm. µ and µ̄ are
set to 10−4 and 10−6. We compare initializing the projection
and IK by GAN sampling against uniformly sampling random
configurations within the joint limits, which we denote as
uniform sampling. We set a certain threshold for each cost
function, and the optimization is run until all the residuals are
below the thresholds.

a) Panda: Panda’s configuration consists of 7 joint an-
gles. The main cost function for IK consists of 3 terms: a) joint
limit, b) EE orientation constraint, and c) EE position. The
orientation is constrained such that the gripper is always in the
horizontal position. We also add a secondary cost function, i.e.,
a posture cost that regularizes around a nominal configuration.
The projection has the same set of cost functions as IK, except
for the EE position.

1The implementation codes are available at https://github.com/teguhSL/
learning distribution gan

(a) (b)

(c) (d)

Figure 4. Samples generated by GAN for Panda (a) and Talos (b) using
the proposed GAN framework. The samples correspond to the desired end-
effector positions as shown in red. GAN manages to generate multimodal
configurations with large variance. In contrast, (c) and (d) shows the samples
generated by the same framework but when the discriminator is omitted. We
see here that the ensemble of networks converges to only one mode with very
low variance both for Panda (c) and Talos (d).

b) Talos: Talos’ configuration consists of 28 joint angles
(7 for each arm, 6 for each leg, and 2 for the torso) and
6 numbers for the base pose. The main cost function for
IK consists of the following terms: a) joint limit, b) static
stability, c) the feet pose, and d) the right-hand position. The
secondary cost function is defined as the posture cost around
the nominal configuration, which is chosen to be the initial
configuration given to the IK solver except for the left arm
(which is regularized around a default posture). The EE is set
to be at the right hand. The feet are constrained to remain at
the same location. The task is to reach the desired location
of the right hand, while respecting the constraints. For the
projection, we omit the cost on the EE position.

We evaluate the methods with N = 500 tasks, and the result
is shown in Table I. Tave is the average computation time
when considering all tasks, while T ∗ave and Opt. Steps∗ denote
the average computation time and the number of optimization
steps of only the successful tasks. We can see that using GAN
speeds up both projection and IK computation significantly,
around 2-5 times faster than uniform sampling, even when
considering only the successful results. GAN samples only
require around 2-4 optimization steps to achieve convergence.
Uniform sampling also has a lower success rate, as can be
expected for a nonlinear optimization problem (starting far
from the optimal solution reduces the success rate). When the
optimization cannot find the solution, it continues optimizing
until reaching the maximum iteration, hence spending high
computational time (namely, Tave is higher than T ∗ave). In
practice, Tave is the one we actually observe, since there is
no way to avoid bad random samples.

Besides the quantitative results shown in Table I and II,
we observe that GAN produces configurations that are still
close to the manifold even when the target is infeasible, i.e.,
too far from the arm reach (Fig. 1b). Additionally, we can
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Table I
COMPARING PROJECTION AND IK INITIALIZED BY UNIFORM SAMPLING VS GAN SAMPLING. THE ASTERISK SIGNIFIES THAT THE CORRESPONDING

VALUES ARE COMPUTED ONLY FOR THE SUCCESSFUL TRIALS.

Robot Task Sampling Method Success Tave(ms) T ∗
ave(ms) Opt. Steps∗

Panda
Projection Uniform 98.6 4.2 ± 6.8 3.6 ± 3.6 6.5 ± 6.2

GAN 100.0 1.0 ± 0.2 1.0 ± 0.2 1.9 ± 0.4

IK Random 76.4 29.3 ± 43.5 8.8 ± 7.5 7.9 ± 5.4
GAN 88.6 12.5 ± 30.2 2.2 ± 2.2 2.9 ± 1.7

Talos
Projection Uniform 84.4 20.5 ± 25.3 10.5 ± 9.8 8.7 ± 7.3

GAN 100.0 2.1 ± 1.2 2.1 ± 1.2 2.1 ± 1.0

IK Uniform 82.6 28.7 ± 31.1 15.7 ± 13.0 10.4 ± 7.8
GAN 100.0 2.8 ± 0.7 2.8 ± 0.7 2.5 ± 0.6

Table II
COMPARING CONSTRAINED RRT USING UNIFORM SAMPLING VS GAN SAMPLING.

Robot Sampling Method Success Tave(s) Opt. Steps E

Panda Random 100.0 1.44 ± 1.23 2065.7 ± 1763.2 116.5 ± 93.6
GAN 99.0 0.74 ± 0.66 902.5 ± 796.5 59.7 ± 60.7
Hybrid 100.0 0.90 ± 0.77 1200.3 ± 1036.8 68.1 ± 56.6

Talos (Task 1) Uniform 100.0 1.20 ± 0.99 464.4 ± 390.7 16.2 ± 12.4
GAN 100.0 0.28 ± 0.13 74.0 ± 34.3 10.2 ± 7.3
Hybrid 100.0 0.43 ± 0.25 131.4 ± 80.0 13.5 ± 10.0

Talos (Task 2)
Uniform 100.0 0.92 ± 0.82 327.8 ± 306.7 13.9 ± 13.1
GAN 100.0 0.60 ± 0.35 127.0 ± 74.9 36.7 ± 29.4
Hybrid 100.0 0.66 ± 0.44 182.3 ± 130.0 25.9 ± 19.5

Talos (Task 3) Uniform 100.0 3.94 ± 3.63 1154.0 ± 1083.2 98.7 ± 72.4
GAN 100.0 1.05 ± 1.43 179.0 ± 197.0 52.1 ± 158.6
Hybrid 100.0 1.11 ± 0.94 228.7 ± 203.0 40.8 ± 51.1

(a) (b) (c) (d)

Figure 5. Constrained motion planning tasks for Panda (a) and Talos ((b), (c) and (d)).

also extend the target variables to include the left hand and
both feet, so that we can do approximate IK for all the four
limbs simultaneously using GAN (Fig. 1c). We refer to the
supplementary video for better visualization of the infeasible
target IK and the multi-limbs IK.

B. Motion Planning
To use the GAN sampling in a sampling-based motion plan-

ner, the sampler must have good coverage of the distribution,
especially when it is multimodal. We have shown in Fig. 3
that using the ensemble of neural networks help GAN to cover
a complex distribution. In addition to this, the discriminator
also helps to increase the coverage. Indeed, without providing
the dataset to the discriminator and train it together with the
generator, even the ensemble of neural networks cannot have
good coverage of the distributions, and often they converge
to one mode only. Fig. 4a-b shows samples generated by

GAN for Panda and Talos by giving the desired EE position
(shown in red). We can see that in both robots the generated
samples belong to multiple modes with good variance. In
contrast, the samples in Fig. 4c-d shows samples generated
by GAN while removing the discriminator and training using
only the additional cost functions in Section III.A (to be
strict in terminology, this makes it no longer an adversarial
network, but this is done to demonstrate the necessity of the
discriminator). Without the discriminator, the samples do not
have large variance and they converge to only one mode,
despite using the ensemble of networks.

We then use GAN sampling in sampling-based constrained
motion planning for both Panda and Talos, as described in
Algorithm 1. For Panda, the task is to move the end-effector
from above the table to one of the shelves, as shown in Fig. 5a,
while maintaining the gripper in the horizontal position. For
Talos, we consider three different environments in Fig. 5b-d
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in increasingly more difficult order, similar to the ones used
in [17]. The task is to move from a random initial configuration
above a table to reach a specified target position with the
right hand below the table while satisfying the static stability
and joint limits. For each environment, we run N = 100
random tasks. We compute K = 10 goal configuration for
each task. Each task is run until it is successful or it reaches
the maximum number of extension steps, which is set to be
500. In the case of failure, the planning is repeated until a
maximum of two times and the total time is taken.

We compare three different sampling methods: uniform,
GAN, and hybrid sampling. Hybrid sampling is a combination
of uniform and GAN sampling. It outputs GAN samples with
a probability of p and uniform samples with a probability
of 1 − p. By including the uniform sampling, we can keep
the probabilistic completeness guarantee of the planner. From
the experiment, we observe that a value of p = 0.8 performs
the best. An adaptive value is also possible, i.e., starting with
p = 1 and decreasing it as the number of extensions grows,
such that it converges to uniform sampling when the planner
still cannot find any solution after a long time.

The result can be seen in Table II. Tave, Opt. Steps, and E
denote the average planning time, the number of optimization
steps, and the number of extension steps in planning (Con-
strainedExtend in Algorithm 1) for one task.

For both Panda and Talos, GAN results in a significant
reduction in the computation time, around 2-4 times faster
than the uniform sampling. This gain is mainly due to the
fewer optimization steps necessary to project the resulting
configurations, as discussed in the previous section. The high
success rate of GAN sampling also indicates that it manages
to cover a good proportion of the configuration space, at least
for the tasks that we consider here.

On the other hand, the comparison between GAN and hybrid
sampling strategy is quite interesting. In most cases, GAN
is still faster than hybrid sampling. However, if we look at
the number of extension steps, hybrid sampling sometimes
requires fewer extension steps than GAN. We also observe
that GAN sometimes fails a task, while hybrid sampling is
successful, such as the case in the Panda experiment. This
shows that hybrid sampling can explore the distribution more
effectively than GAN in these tasks. Its overall computation
time is still higher than GAN, though, because it requires more
optimization steps due to the uniform sampling components.

C. Discussion

From the experiment results, we show that GAN can learn
to generate good quality samples close to the desired manifold.
In addition, we can conclude from the motion planning results
that it has good coverage over the distribution of robot config-
urations. There is no guarantee, however, that the distribution
is perfectly covered, so in some rare cases the motion planning
may fail to find a feasible solution, but using a hybrid sampling
strategy recovers the completeness guarantee.

We manage to get good performance even with quite a
basic GAN structure. Note that the GAN framework is trained
without considering collision, unlike in the example of the

2-link robot in Section III.A. This means that the resulting
sampler does not depend on the environment, and it works
directly in any environment even with moving obstacles. We
also show that the framework is easily adapted to different
robots by the experiments on the Panda and Talos robot.
Given any new robot and its constraints, we only need to
formulate the cost functions corresponding to the constraints
and generate the dataset, then the GAN framework can be
trained quickly.

The stability criteria that we use here is static stability.
In [13] and [26], GAN has been shown to work well for
problems with dynamics, so it would potentially be possible
to extend our approach to generate more dynamical motions
by including dynamic stability criteria such as Zero Moment
Point (ZMP) [27] or Contact Wrench Cone Margin [28].

Since GAN is a very flexible tool, there are a lot of potential
improvements. As in [10], by generating many planning data
in a given environment, we can condition GAN on initial and
goal configurations to obtain samples that are relevant for
the task, instead of trying to cover the whole distributions.
GAN also works well with high dimensional inputs such as
images, so it would be possible to train with the environment
representation (e.g., voxel data or heightmap) to generate
samples that avoid collisions in different environments. Since
GAN can be conditioned on the desired target location, we
can also use it to generate biased samples in task space.

In this paper, we use an ensemble of networks as the
generator to cover the multimodal distribution. There are also
other methods that attempt to handle this mode collapse issue,
e.g., using Wasserstein loss [29] or unrolled GANs [30]. We
will investigate these approaches in our future work.

V. CONCLUSION

We have presented a GAN framework to learn the distri-
bution of valid robot configurations under various constraints.
The method is then used for inverse kinematics and sampling-
based constrained motion planning to speed up computational
time. We validate the proposed method on two simulated
platforms: 7-DoF manipulator Panda and 28-DoF humanoid
robot Talos. We show that in all settings, the proposed method
manages to reduce the computational time significantly (up to
5 times faster) with a higher success rate. The method is very
general and easily applicable to other robotic systems.

APPENDIX
A. Cost Functions for Projection and IK

We list here the cost functions for the projection and IK.
Each cost function is a square function of the corresponding
residual. We use the fast rigid body dynamics library pinoc-
chio [31] to compute the forward kinematics and the cost
derivatives analytically. The optimization is stopped when each
residual’s norm is lower than the specified threshold.

1) End-effector pose cost: The residual for this cost is
defined as

ree(q) = log(T−1ref T (q)), (5)

where Tref and T (q) are the reference and the current pose,
represented as SE(3), and log is the logarithm function that
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map SE(3) to se(3). The residual has 6 components, 3 for
the position and 3 for the orientation. Depending on the
constraints, we can set different weights for each of these
components. For example, to set the orientation constraint for
the Panda robot such that the gripper is always horizontal, the
weights for the last rotation component and for the position
components are set to zero, while the rest is set to one.

2) Posture cost:

rp(q) = (q − qnom). (6)

rp(q) measures the distance of the configuration q from a
nominal configuration qnom. In this paper we often use the
initial values given to the projector as qnom, so that the
projector will project the configuration to the manifold while
keeping it as close as possible to the initial configuration.
This is especially important for the ConstrainedExtend step,
because without this, the interpolated configurations may be
projected differently, causing them to be discontinuous.

3) Joint limit cost: Given the joint lower and upper limit
(ll, lu), the residual cost associated to the joint limit is
computed as the distance to the nearest limit when the corre-
sponding joint angle is out of the joint limits,

cl(q) = min(q − ll,0) + max(q − lu,0). (7)

The function min and max set the residual component to zero
if the corresponding joint angle is within the bounds.

4) Static stability cost: To achieve static stability, the center
of mass (CoM) projection on the ground should fall on the
support polygon formed by the feet. We approximate this
polygon by a rectangle surrounding the feet. The lower and
upper limit of the horizontal CoM values, (ll, lu), are given by
this rectangle. Similar to the joint limit cost, the cost residual
for the static stability is given as

rs(q) = min(pcom − ll,0) + max(pcom − lu,0), (8)

where pcom is the center of mass position at q.
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