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ABSTRACT

We propose a Geometry-aware Policy Imitation (GPI) approach that rethinks im-
itation learning by treating demonstrations as geometric curves rather than col-
lections of state–action samples. From these curves, GPI derives distance fields
that give rise to two complementary control primitives: a progression flow that
advances along expert trajectories and an attraction flow that corrects deviations.
Their combination defines a controllable, non-parametric vector field that directly
guides robot behavior. This formulation decouples metric learning from policy
synthesis, enabling modular adaptation across low-dimensional robot states and
high-dimensional perceptual inputs. GPI naturally supports multimodality by pre-
serving distinct demonstrations as separate models and allows efficient compo-
sition of new demonstrations through simple additions to the distance field. We
evaluate GPI in simulation and on real robots across diverse tasks. Experiments
show that GPI achieves higher success rates than diffusion-based policies while
running 20× faster, requiring less memory, and remaining robust to perturba-
tions. These results establish GPI as an efficient, interpretable, and scalable al-
ternative to generative approaches for robotic imitation learning. Project website:
https://yimingli1998.github.io/projects/GPI/.

1 INTRODUCTION

Robots are increasingly expected to perform complex tasks in unstructured environments, rang-
ing from dexterous manipulation to interactive collaboration. Imitation learning offers a promising
path toward this goal, as it enables robots to acquire policies directly from expert demonstrations
without relying on explicit dynamics models or simulation. Existing imitation approaches can be
grouped into three families. Explicit policies treat imitation as supervised regression from states to
actions (Calinon et al., 2007). They are fast at inference but struggle with multimodality and gener-
alization. Implicit policies learn energy functions over state–action pairs (Florence et al., 2022), but
are hard to train and slow to optimize at deployment. Generative policies, such as diffusion or flow-
matching models (Chi et al., 2023; Lipman et al., 2023), excel at modeling multimodality but remain
computationally heavy and brittle under distribution shifts. Despite their differences, all three ap-
proaches compress demonstrations into parametric models that must be retrained to incorporate new
data and that often discard the geometric structure underlying expert behavior.

We argue that imitation learning can be made more direct, interpretable, and efficient by adopting
a geometric approach. At its core, imitation means: (i) following the expert’s direction of motion,
while (ii) approaching expert states as closely as possible. Viewed this way, a demonstration is
not just a collection of samples but a geometric curve in state space, annotated with tangents that
indicate expert actions. This perspective motivates our approach, Geometry-Aware Policy Imita-
tion (GPI). GPI represents demonstrations as distance fields that can be projected onto the robot’s
actuated subspace, where control is applied. From these fields naturally emerge two complemen-
tary primitives: a progression flow that advances along expert trajectories, and an attraction flow
that pulls current states toward them. Superimposing these flows defines a controllable vector field
that drives imitation (Li & Calinon, 2025). This approach provides an approximation that reduces
deviation while advancing along expert behaviors (Figure 1). In addition, the policy is guided by a
distance field composition that retrieves flow fields from the most similar demonstrations, promoting
coherent behavior and enabling robustness even under unknown dynamics.
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Figure 1: Overview of Geometry-Aware Policy Imitation (GPI). GPI treats demonstrations as geometric
curves that induce distance fields in the full state space. (Top) The state space is projected onto the robot’s ac-
tuated subspace, where control is applied. The projected distance field gives rise to two complementary flows:
an attraction flow from the negative gradient (red arrow) and a progression flow from trajectory tangents (yel-
low arrow). Together, they define a dynamical system that reduces the distance to demonstrations and advances
along them, thus imitating expert behavior. The resulting action u is executed through the system’s dynamics,
yielding state evolution

∫
f(x, u) dt in the full state space. Multiple demonstrations can be composed naturally

via Boolean operations on distance fields. Despite unknown system dynamics, the resulting trajectory aligns
closely with the most similar demonstration as determined by the distance metric. (Bottom) On the PushT
benchmark, GPI achieves multimodal imitation with a higher reward, runs 20–100× faster than diffusion poli-
cies (DDIM with 10 steps), and requires substantially less memory.

A key strength of GPI is its decoupling of imitation into two modular components: (i) metric learn-
ing, which defines how states are represented and compared; and (ii) behavior synthesis, which
constructs policies directly from distance and flow fields. This separation offers substantial flexibil-
ity: low-dimensional states can use Euclidean or geodesic distances, while high-dimensional obser-
vations can rely on latent embeddings from pretrained or task-specific encoders. Policy synthesis
itself is non-parametric and lightweight, enabling efficient composition of demonstrations without
retraining and supporting multimodality by preserving distinct trajectories as separate flows (Pari
et al., 2022). Moreover, because GPI only requires a state representation that supports distance
computation, rather than directly fitting a full policy function, the learning problem is considerably
simpler than in generative models. Lightweight encoders are typically sufficient, which reduces
training complexity and enables fast inference at deployment.

We evaluate GPI extensively in both simulation and on real robots. In simulation, we bench-
mark across diverse domains—including planar pushing, 6-DoF manipulation, and dexterous hand
control—with state spaces ranging from low-dimensional control vectors to raw vision inputs. For
visual observations, we study multiple feature representations, from pretrained encoders to self-
supervised embeddings. On real hardware, we demonstrate GPI on both a Franka arm and the
Aloha bimanual system, showing that it scales robustly beyond controlled environments.

In summary, our contributions are:

i) Geometry-Aware Policy Imitation (GPI), which represents demonstrations as geometric
curves that induce composable distance fields, providing a unified representation for both met-
ric reasoning and action synthesis;

ii) A simple and modular formulation, where state representation relies only on a suitable dis-
tance metric and action synthesis is realized through compositions of control primitives. Both
components are lightweight, flexible, and grounded in well-studied principles;

iii) Extensive validation in simulation and on real robots, showing that GPI achieves higher per-
formance and enables efficient policy imitation—over 20× faster than state-of-the-art diffusion
policies—while remaining interpretable and multimodal.

2 GEOMETRY-AWARE POLICY IMITATION

GPI constructs policies directly from demonstrations by representing them as geometric curves in
state space. Each demonstration induces a distance field that encodes state similarity and gives rise
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to two complementary control primitives: (i) a progression flow that advances along demonstrated
motions, and (ii) an attraction flow that corrects deviations by pulling states toward the trajectory.
Their superposition defines a dynamical system that imitates expert behavior. Local policies derived
from individual demonstrations are then composed via distance-based weighting, producing a coher-
ent global policy that is efficient, interpretable, and robust to perturbations. Figure 1-top illustrates
these components schematically.

2.1 METHOD

We are given N expert demonstrations D = {Γ(i)}Ni=1, where each Γ(i) is a trajectory consisting of
a sequence of states and actions

Γ(i) = {(x(i)
t ,u

(i)
t )}Ti

t=0, (1)

with states x(i)
t ∈ X , actions u(i)

t ∈ U , and horizon Ti.

State and actuated subspace. A state x may include both environment variables (e.g., object poses,
images) that are unactuated, and robot variables that are directly actuated by control inputs. We
denote by x′ = P (x) the projection of x onto the actuated subspace X ′ ⊆ X , where P : X → X ′

is the projection operator. Each trajectory Γ(i) can then be viewed as a geometric curve in state
space, which induces a distance field d(xo | Γ(i)) measuring the proximity between a query state
xo and the demonstration.

Action space. We assume velocity control in the actuated subspace, i.e., ut = ẋ′
t. Each demon-

stration Γ(i) then defines a curve x
(i)
t whose actions u(i)

t are the tangent directions in X ′. Velocity
control is used here for clarity, but it is not a prerequisite: the formulation extends naturally to
accelerations or torques, which can be executed through the robot’s kinematics or dynamics models.

Policy as flow field in actuated space. From the distance field d(xo | Γ(i)) induced by a demon-
stration Γ(i), we derive two complementary flows in the actuated subspace: Progression flow, given
by the demonstrated tangent action u

(i)
κ(xo)

= ẋ
′(i)
κ(xo)

, which advances along the expert trajectory;
and Attraction flow, obtained from the partial derivative of the distance field with respect to actuated
coordinates, −∇x′

o
d(xo | Γ(i)), which corrects deviations by pulling states back toward demonstra-

tions. Their superposition defines a policy in the actuated subspace:

πi(xo) = λ1(xo)u
(i)
κ(xo)

− λ2(xo)∇x′
o
d(xo | Γ(i)), (2)

where κ(xo) = argmint d(xo,x
(i)
t ) denotes the nearest demonstrated state, and λ1, λ2 ≥ 0 are

weights—either constant or distance-dependent chosen so that attraction dominates far from demon-
strations, while progression dominates near them. This policy has been shown to yield a stable first-
order dynamical system that asymptotically converges to the demonstrated trajectory if the state
and action variables are continuous (Li & Calinon, 2025)1. This can be achieved by representing
a discrete trajectory with continuous functions such as splines. Thus, the robot’s behavior remains
robust, predictable, and safe even under environmental changes or perturbations.

Composition across demonstrations. To obtain a global policy, we compose local flow-based
policies across multiple demonstrations. Given the K nearest demonstrations, the global policy is

π(xo) =

K∑
i=1

wi(xo)πi(xo), wi(xo) =
exp

(
− β d(xo | Γ(i))

)∑K
j=1 exp

(
− β d(xo | Γ(j))

) , (3)

where πi(xo) is the local policy induced by demonstration Γ(i), d(xo | Γ(i)) is the distance from
query state xo to the trajectory Γ(i), and β > 0 is a temperature parameter controlling the sharpness
of selection. This distance-based composition ensures that flows are retrieved from the most relevant
demonstrations, yielding coherent behavior even under unknown dynamics. A detailed description
of GPI is provided in Algorithm 1 (Appendix B).

1See Appendix A for the proof.
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Figure 2: Typical ways to obtain latent embedding z from raw inputs x. (i) train a task-specific lightweight
model to capture task-relevant features; (ii) use a VAE to learn task-agnostic features; or (iii) apply a pretrained
model to obtain features without additional training.

2.2 CHOICE OF DISTANCE METRIC

A central design choice in GPI is the distance metric d(xo | Γ(i)), which measures the similarity
between a query state and a demonstration. The state naturally consists of two complementary
parts: the robot-actuated variables (e.g., joint angles, end-effector pose) and the environment-related
variables (e.g., object poses, images). Accordingly, the distance metric can be decomposed into a
robot feature drob and an environment feature denv, where the former also shapes the attraction flow
in actuated space and the latter only influences demonstration selection and weighting.

Robot distance drob. For joint or end-effector positions x ∈ Rn, Euclidean distance is standard:

dEuc(x1,x2) = ∥x1 − x2∥2. (4)

For end-effector orientations represented as quaternions, geodesic distances on S3 respect rotational
geometry:

dquat(x1,x2) = 2 arccos(|⟨x1,x2⟩|) . (5)
These two cases cover the most common representations in joint space and task space for robotics.

Environment distance denv. This compares task-relevant but indirectly controllable variables, such
as object poses or scene images. For low-dimensional object poses, denv can be computed with Eu-
clidean or geodesic distances, reusing the formulations above. For high-dimensional observations,
it is common to define denv in a latent space. Let z = Ψ(x) denote the latent embedding of x. Then

denv(x1,x2) = denv(z1, z2) , (6)

where z1 = Ψ(x1) and z2 = Ψ(x2) are latent embeddings produced by a parametric model Ψ that
maps raw observations to a latent space, and d(·, ·) denotes a suitable distance (e.g., Euclidean or
cosine). This formulation supports multiple sources of embeddings: (i) task-specific models, where
z could encode predicted object poses or desired robot actions learned via supervision; (ii) latent
variables from variational autoencoders (VAEs) trained with self-supervised objectives (Kingma &
Welling, 2013); and (iii) pretrained vision or multimodal encoders such as SAM (Kirillov et al.,
2023), DINO (Siméoni et al., 2025), and CLIP (Radford et al., 2021), see Figure 2 for an overview.
Classical dimensionality-reduction methods, such as principal component analysis (PCA), can also
be used to obtain a compact latent feature (Hotelling, 1933).

While both drob and denv contribute to the overall distance metric, their roles differ: denv influences
only the similarity ranking across demonstrations, whereas drob additionally shapes the attraction
flow in the actuated subspace. This decomposition makes explicit how environmental features guide
demonstration selection, while robot features govern the actual corrective control.

2.3 A 2D EXAMPLE

To illustrate GPI, we consider a simplified 2D setting where the state consists only of actuated
variables x′. This abstraction is common in kinematic planning tasks, where environment dynamics
are ignored. In this case, the distance field reduces to the robot-related term, d(xo) = drob(x

′
o),

so that state evolution and policy flows are fully contained in the same space. While prior work
typically trains diffusion or flow-matching models for policy generation in this setting (Jiang et al.,
2025), GPI instead addresses the problem in a fully non-parametric manner, relying directly on the
distance and flow fields.

Figure 3(a) shows two demonstrations forming a Y-shaped pattern: Γ(1) (green) and Γ(2) (blue)
overlap initially and then diverge into separate branches. Temporal progression is indicated by
transparency from t = 0 to t = 1. Each demonstration induces a Euclidean distance field whose
valleys align with its trajectory; composing them yields a global distance field (Figure 3b) visualized
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(a) Demonstrations (c) Flow field with action u = ẋ

(b) Energy landscape (d) Flow field with u = λ1ẋ− λ2∇xd

Figure 3: From demonstrations to policy flows. (a) Demonstrations. (b) Energy from composed distances.
(c) Progression-only flow u = ẋ may drift off the demonstrations. (d) Adding attraction u = λ1ẋ − λ2∇xd
pulls states toward the demonstrations and along them, ensuring convergence.

as an energy landscape with dense corridors along the demos and a natural decision boundary at the
bifurcation. Figures 3(c,d) show the resulting flow fields: each row includes the single-demo flow
(left) and the composed flow (both demos), with rollout trajectories overlaid on the energy land-
scape (right). Panel (c) depicts the progression flow, which follows the local tangent of the nearest
demonstration; Panel (d) augments this with an attraction term that pulls states toward the trajec-
tories, ensuring stable convergence. The rollout trajectories (red) show the integrated trajectories
in two cases. From this perspective, diffusion policies perform well because their denoising steps
implicitly induce an attraction flow toward demonstrations rather than relying solely on progression.

By representing demonstrations as distance and flow fields, policy imitation shifts from fitting a
parametric model to geometric reasoning grounded in similarity, curvature, and composition, yield-
ing several benefits: Efficiency—new demonstrations enrich the distance field by adding basins of
attraction without retraining, and inference reduces to distance evaluations plus weighted averag-
ing of expert actions, making it lightweight and parallelizable; Flexibility—decoupling similarity
measurement from action synthesis keeps the framework modular, allowing task-specific distance
metrics and flow compositions; Multimodality—each demonstration defines its own distance and
flow field, preserving distinct behaviors so the policy branches smoothly toward the nearest demon-
strated mode instead of averaging conflicting actions; Interpretability—the distance metric reveals
which demonstrations influence the current action, while actions remain a linear superposition of
demonstrated behaviors and corrective flows, ensuring safe, bounded outputs.

3 EXPERIMENTAL RESULTS

3.1 SIMULATION EXPERIMENTS

We first evaluate GPI on the PushT benchmark, a widely adopted task in which a robot must push a
T-shaped object into a target configuration (Chi et al., 2023). This environment is particularly suit-
able for evaluation: it has well-established baselines for comparison, requires handling inherently
multimodal pushing strategies, and involves contact-rich dynamics that cannot be solved by simple
kinematic planning.

For state-based inputs, demonstrations consist of the agent position, the object position, and the
object orientation. Distances are computed as a weighted combination of these components. The
actuated subspace corresponds to the agent position, with its first-order derivative (velocity) serving
as the action. Note that the original environment specifies actions in position control, which we adapt
to velocity control for consistency with our flow-based formulation. Control policies are synthesized
from the flow fields induced in the actuated subspace by corresponding demonstrations, and then
executed in the environment with unknown interaction dynamics. For vision-based inputs, the state
comprises the agent pose and an RGB image. Distances are computed jointly over the agent pose and
an image embedding. To align with the state-based formulation, we train a lightweight task-specific
model to produce the image embedding as the predicted object pose.
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Table 1: Performance comparison on Push-T (state-based vs. vision-based).

Push-T (state-based) Push-T (vision-based)

Method (Avg./Max.) score Training / Inference Time Memory (Avg./Max.) score Training / Inference Time Memory

DDPM 82.3 / 86.3 1.0 h / 641 ms 252 MB 80.9 / 85.5 2.5 h / 647 ms 353 MB
DDIM 81.5 / 85.1 1.0 h / 65 ms 252 MB 79.1 / 83.1 2.5 h / 67 ms 353 MB
GPI (Ours) 85.8 / 89.0 0 h / 0.6 ms 0.7 MB 83.3 / 86.9 0.3 h / 3.3 ms 44 MB

Experiments were conducted on an NVIDIA RTX 3090 GPU. Further details appear in Appen-
dices C.1 and C.2. We report performance using three complementary metrics: (i) Average / maxi-
mum reward, evaluated over multiple random seeds and environment variations, following the same
protocol as the baselines; (ii) time, including training time and per-step inference time; and (iii)
memory footprint, including memory cost for model parameters and stored demonstrations. Re-
sults are summarized in Table 1. We compare GPI with Diffusion Policy (Chi et al., 2023) using
both 100-step Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and 10-step De-
noising Diffusion Implicit Models (DDIM) (Song et al., 2021). Note that, unlike diffusion policies
which require predicting an action horizon (e.g., H = 8), our approach naturally supports reactive
planning and operates with horizon H = 1. GPI achieves higher success rates than the diffusion
policy while being substantially more efficient.

In the state-based setting, inference involves only low-dimensional, non-parametric distance evalu-
ations and flow field composition, resulting in a latency of 0.6ms—nearly 100× faster than Diffu-
sion Policy with 10 DDIM denoising steps. Although GPI requires storing all demonstrations for
distance measurement, the overall memory footprint remains lower than that of training large neural
policies2 Moreover, the underlying computations are lightweight and naturally parallelizable, further
contributing to its efficiency. For vision-based inputs, we employ a ResNet-18 encoder trained solely
for feature extraction rather than precise action prediction, which simplifies training and improves
efficiency. As a result, training completes in only 0.3 hours (compared to 2.5 hours for Diffusion
Policy) and inference runs at 3.3ms per step (compared to 67ms for Diffusion Policy). Memory re-
quirements are also reduced, since we store only the lightweight encoder and latent embeddings of
demonstrations rather than raw images or large policy networks. Additionally, this modular structure
allows the visual encoder to be reused across different tasks.

Figure 4: Robustness to action horizons.

We further conduct a series of ablations to highlight the
distinctive properties of GPI:

Robustness. We evaluate GPI’s robustness along three
complementary dimensions.

Planning horizon: GPI is reactive by default (H = 1),
but it can also be extended to a receding-horizon scheme
by updating the distance every H steps. As shown in Fig-
ure 4, performance remains stable for horizons up to 16,
showing GPI can operate either as a purely reactive con-
troller (robust to external disturbances) or as a receding-
horizon planner (with improved temporal consistency).

Number of neighbors: In action composition, we compare K = 1, 3, 5, 10. As shown in Figure 5,
the curves are nearly overlapping in both relative and absolute state settings, confirming that per-
formance is largely insensitive to the choice of K. This highlights the reliability of GPI’s local
composition mechanism.

State representation: We compare object-centric (relative) and global (absolute) state formulations
(Figure 5). Both achieve strong performance, but relative states consistently yield slightly higher
scores, especially in data-scarce regimes. This suggests that GPI is robust to representation choices,
with relative states offering an advantage when demonstrations are limited.

Scalability with data sizes. A distinctive advantage of GPI is that, being non-parametric and
training-free in the state-based setting, it enables direct study of how performance scales with the
number of demonstrations, without the need for retraining. To this end, we augment the dataset with
up to 160K samples regenerated from the original diffusion policy work and evaluate how perfor-

2See Appendix D.1 for a detailed explanation.
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Figure 5: Robustness of GPI with respect to demonstrations, K (neighbors), and state representations.

mance evolves as the demonstration set grows. This setting is particularly suitable for GPI, since
demonstration density directly influences both the distance query and the selection of actions in the
composed policy. As shown in Figure 5, success rates increase consistently as the dataset expands
from 1K to 20K demonstrations, after which performance begins to saturate. This trend reveals two
key insights: (i) larger demonstration sets provide denser coverage of the state space, thereby reduc-
ing approximation errors introduced by the chosen distance metric, and (ii) our approach can serve
as a practical diagnostic tool—indicating how many demonstrations are sufficient to achieve reliable
policy performance before training parametric models. The method also accommodates incremental
incorporation of new demonstrations, without the need for full retraining.
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Figure 6: Noise-level ablations for score
and diversity.

Stochasticity and multimodality. To induce stochastic-
ity and multimodality, we inject Gaussian noiseN (0, σ2)
into the query state in the actuated space (corresponding
to the agent’s position). This perturbation alters the effec-
tive distance fields used in composition, thereby modify-
ing the synthesized flow field and inducing multimodal
behavior. In Figure 6, we compare the average score
achieved under different noise levels. To quantify diver-
sity, we measure the average distance among trajectories
generated with different random perturbations sampled
from the same noise distribution. The results show that
larger noise values increase trajectory diversity but de-
grade performance, whereas smaller noise levels yield more deterministic behavior. Importantly,
GPI exhibits multimodal behavior even under low noise (e.g., σ = 0.2), as illustrated in Figure 1
(bottom left). Beyond Gaussian perturbations, stochasticity can also be enhanced by randomly sub-
sampling the set of demonstrations at each inference time. We found that this strategy can improve
performance in practice, for instance, by helping the robot escape from regions where it would
otherwise become stuck.

Figure 7: Ablations on two control primi-
tives.

Natural composition of control primitives. We inter-
pret progression and attraction as two basic control prim-
itives that can be naturally combined within the flow field.
By varying their relative weights (λ1, λ2), we interpolate
between velocity-like (progression-driven) and position-
like (attraction-driven) control. As shown in Figure 7,
GPI maintains consistently high scores across a wide
range of weightings, demonstrating flexibility in compos-
ing these primitives at test time rather than relying solely
on fixed neural network outputs. In this view, progression
promotes forward motion and task advancement, while
attraction provides goal alignment and stability.

Generalization across tasks. We evaluate GPI on
RoboMimic (Lift, Can, Square) (Mandlekar et al., 2021)
and Adroit (Door, Pen, Hammer, Relocate) benchmarks (Rajeswaran et al., 2018), spanning state
spaces of 9–46 dimensions and action spaces of 7–30. GPI consistently matches or exceeds the
performance of Diffusion Policy without requiring any parametric training (Table 2), demonstrating
robust generalization across diverse domains. The snapshots of those tasks are shown in Figures 11
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and 12 (in Appendix D.2) respectively. Additionally, we test GPI on 2D Maze task (Chen et al.,
2025; Janner et al., 2022) and visualization results in shown in Figure 13 in Appendix D.3.

Table 2: Task description and performance on Robomimic and Adroit Hand benchmarks.

Robomimic Adroit Hand

Task / Method Lift Can Square Door Pen Hammer Relocate

Description
State Dim 9 16 16 39 45 46 39
Action Dim 7 7 7 28 24 26 30
Demonstrations 300 300 300 5000 5000 5000 5000

Results
DP 1.00 0.94 0.87 1.00 0.89 0.83 0.91
Ours 1.00 0.96 0.82 1.00 0.95 0.88 0.91

Generalization across visual representations. As discussed in Section 2.1, GPI naturally accom-
modates multiple choices of latent embeddings, including task-specific encoders, VAEs, and pre-
trained models. We evaluate three variants on PUSHT: (i) a ResNet feature (He et al., 2016) pre-
trained within the Diffusion Policy implementation, with PCA applied for dimensionality reduction;
(ii) an unsupervised variational autoencoder (VAE) trained solely on RGB images, serving as a task-
agnostic feature extractor; and (iii) a pretrained Segment Anything (SAM) model (Kirillov et al.,
2023) followed by a pose-estimation module whose predicted object pose serves as the embedding.
Implementation details are provided in Appendices C.3 (ResNet+PCA), C.4 (VAE) and C.5 (SAM).

Table 3: Performance of various visual rep-
resentations on the pushT task.

Feature Extractor Avg. Score
Diffusion Policy 85
Task-specific Head 87
ResNet+PCA 84
VAE 88
Pretrained SAM 41

Results in Table 3 show that GPI with the same ResNet
features followed by PCA achieves performance compa-
rable to Diffusion Policy, which uses the same ResNet
features with a diffusion head. Interestingly, a lightweight
VAE encoder trained only for reconstruction also yields
strong performance. A plausible explanation is that the
KL regularizer encourages latents to stay near the prior
N (0, I), yielding a smoother latent space where linear
interpolations tend to remain on-manifold. Notably, this
VAE trains in ∼ 0.3 hours and runs at ∼ 4 ms per infer-
ence—similar to our task-specific head (Table 1). This
highlights GPI’s robustness across vision features for non-parametric policy composition. In con-
trast, off-the-shelf SAM underperforms, likely due to sensitivity to segmentation quality and the
downstream pose estimation module; we expect fine-tuning to improve results.

3.2 ROBOT EXPERIMENTS

Figure 8: Real-robot flipping task. GPI successfully completes the
task via multimodal behavior (Top 3 rows) and demonstrates robust-
ness to visual disturbances (Bottom).

To further evaluate GPI, we con-
duct robot experiments on two
challenging tasks:

(i) Box flip. The robot must
flip a box by exploiting con-
tacts among the end-effector, the
box, and an aluminum crossbeam,
which is challenging due to un-
known, highly nonlinear dynamics.
We collect 121 demonstrations on
an ALOHA platform (Aldaco et al.,
2024). The dataset contains over
50, 000 RGB images and action pairs. A lightweight neural network takes a raw RGB image as
input and predicts an action; this predicted action serves as the image embedding. Distances are
computed jointly over the robot joint configuration and the action embedding to construct the dis-
tance field, from which the flow field is derived for the robot’s execution. We observe an inference
time of approximately 7 ms and a memory footprint of 140 MB, comprising 139 MB for the feature-
extraction model and 1 MB for storing latent features.
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(ii) Human–robot fruit handover. A human hands fruit to the robot. The robot must exe-
cute a smooth, anticipatory interaction while synchronizing its timing with the human and re-
maining robust to unpredictable motions and sensing noise. This task is run on a Franka robot.

Figure 9: Real robot experiment on human-
robot interaction task.

We collect a single demonstration to align the robot’s mo-
tion phase with the human hand trajectory. At execution
time, a pretrained CLIP model (Radford et al., 2021) pro-
vides a fruit-detection score, which we combine with the
deviation from the demonstrated hand trajectory to define
the distance field. This field determines the robot’s phase
and progression; the robot follows the progression flow
until the desired phase is reached, yielding synchronized
and fluid handovers.

More details about the robot platform, experimental
setup, and training details are illustrated in Appendices
C.6 and C.7, respectively. The robot behavior during two
tasks is shown in Figures 8, 9 and the attached video.

4 RELATED WORK

Among approaches to acquiring robotic skills—reinforcement learning (Sutton & Barto, 1998)
and optimal control (Bertsekas, 1995), imitation learning (IL) (Osa et al., 2018) stands out for not
requiring explicit task models or cost functions, making it especially appealing when dynamics
are hard to model. Even when such models exist, demonstrations can accelerate and improve
solutions (Nair et al., 2018; Razmjoo et al., 2021). Early approaches focus on time-dependent
dynamical movement primitives, such as Dynamic movement primitives (DMP) (Ijspeert et al.,
2013) and Probabilistic Movement Primitives (ProMP) (Paraschos et al., 2013), or time-independent
dynamical systems (Khansari-Zadeh & Billard, 2011). They provide well-established approaches
and efficient frameworks, but are usually limited in capturing complex, multi-modal demonstration
patterns. Recent learning-based approaches, such as Implicit Behavior cloning and Diffusion policy,
address this issue and have demonstrated impressive performance across a range of tasks (Florence
et al., 2022; Chi et al., 2023; Zhang & Gienger, 2024). However, these methods introduce challenges
such as hard to train, slow inference, and need multi-step inference (LeCun et al., 2006; Du &
Mordatch, 2019; Song & Ermon, 2019; Nijkamp et al., 2020; Zhang & Gienger, 2024). GPI bridges
dynamical systems and modern learning by representing demonstrations as distance fields—linking
naturally to metric learning for high-level scene representations while inducing flow fields for
low-level control. The closest prior, VINN (Pari et al., 2022), learns visual representations via
self-supervision and retrieves policies with kNN, achieving strong visual imitation. In contrast, GPI
supports diverse latent representations and synthesizes policy flows—demonstrating effectiveness
on tasks with complex dynamics.

5 LIMITATION AND CONCLUSION

We present Geometry-aware Policy Imitation (GPI), which treats demonstrations as geometric
curves that induce a distance field and policy flows. This perspective yields a simple, flexible,
efficient, multimodal, and interpretable policy that composes behaviors and integrates with diverse
latent representations. Our approach has a few limitations that are worth exploring in future work:

Choice of distance metric. The metric is a primary design lever that shapes induced flows. Making
it learnable and co-optimized with policy synthesis—optionally conditioned on task or context—can
improve robustness and out-of-distribution generalization. Leveraging large models to provide task-
relevant robotic features is especially promising (Intelligence et al., 2025; Barreiros et al., 2025).

Scene dynamics and stability. Our current results treat environment dynamics as unknown. A nat-
ural extension is to incorporate known or learned dynamics models and analyze when the resulting
closed loop is stable and robust, e.g., via Lyapunov or contraction certificates with perturbation and
model-mismatch bounds.

Scalability of demonstrations. Although GPI stores only latent features, memory still scales lin-
early with the number of demonstrations. Future work could improve data efficiency with compact
implicit distance parameterizations, while preserving geometric fidelity and fast retrieval.
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APPENDIX

A CONVERGENCE OF THE FLOW POLICY

We prove convergence of the policy introduced in Section 2.1, which combines progression and
attraction flows to form a stable dynamical system in the actuated subspace. For clarity, we rewrite
the flow policy (equation 2) as

ẋ = λ1ẋt∗ − λ2∇d(x), (7)
where d(x) is the distance to the demonstration, ∇d(x) its gradient, ẋt∗ the tangent velocity at the
projection point xt∗ , and λ1, λ2 ≥ 0 weight progression and attraction.

We analyze stability using the Lyapunov function

V (x) = 1
2d

2(x) ≥ 0, (8)

which vanishes only on the demonstration. Its time derivative is

V̇ (x) = d(x)∇d(x)⊤ẋ. (9)

Substituting the dynamics gives

V̇ (x) = d(x)∇d(x)⊤
(
λ1ẋt∗ − λ2∇d(x)

)
. (10)

To simplify this expression, we use the fact that the projection point xt∗ is defined as the minimizer
of the squared distance

∥xt − x∥2. (11)
At this minimizer, the derivative with respect to t must vanish:

(xt∗ − x)⊤ẋt∗ = 0. (12)

This condition implies that the displacement vector xt∗ − x, and therefore the gradient ∇d(x), is
orthogonal to the trajectory tangent ẋt∗ :

∇d(x)⊤ẋt∗ = 0. (13)

With this orthogonality property, the Lyapunov derivative reduces to

V̇ (x) = −λ2d(x)∥∇d(x)∥2 ≤ 0, (14)

with equality only if d(x) = 0. This shows that the system is globally stable and asymptotically
converges to the demonstrated trajectory in the actuated space.
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B GPI ALGORITHM

Algorithm 1 Geometry-Aware Policy Imitation

Require: D = {Γ(i)}Ni=1, each Γ(i) = {(x(i)
t ,u

(i)
t )}Ti

t=0; projection P ; encoder Ψ; robot/environ-
ment distances drob, denv; mixing αrob, αenv > 0; weights λ1(·), λ2(·); temperature β; top-K

Ensure: Control u ∈ X ′ at query xo

1: x′
o ← P (xo), zo ← Ψ(xo)

2: for all i ∈ {1, . . . , N} (parallel over demonstrations) do
3: Per-time distances

d
(i)
rob ←

(
drob(x

′
o,x

′(i)
t )

)
t
, d(i)

env ←
(
denv(zo,Ψ(x

(i)
t ))

)
t

4: Combined distance: d(i) ← αrobd
(i)
rob + αenvd

(i)
env

5: Nearest time index and scalar distance:

κ(i)(xo)← argmin
t

d
(i)
t , d(xo | Γ(i))← min

t
d
(i)
t

6: Progression flow: u
(i)
κ ← u

(i)

κ(i)(xo)
= ẋ

′(i)
κ(i)(xo)

7: Attraction flow: u
(i)
att ← −∇x′

o
drob

(
x′
o,x

′(i)
κ(i)(xo)

)
8: Local policy:

πi(xo) ← λ1
(
d(xo | Γ(i))

)
u(i)
κ + λ2

(
d(xo | Γ(i))

)
u
(i)
att

9: Top-K selection by demonstration distance: IK ← indices of the K smallest d(xo | Γ(i))

10: Softmax weights over selected demos: wi(xo)←
exp

(
− β d(xo | Γ(i))

)∑
j∈IK

exp
(
− β d(xo | Γ(j))

) (i ∈ IK)

11: Global policy: u = π(xo) =
∑
i∈IK

wi(xo)πi(xo)

12: return u
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C IMPLEMENTATION DETAILS

C.1 PUSHT TASK WITH STATE-BASED INPUTS

For low-dimensional states, each demonstration is represented as

x
(i)
t = [xa, ya, xb, yb, θb] ∈ R5,

where (xa, ya) denote the agent position, (xb, yb) the block position, and θb the block orientation.
The associated action specifies the target location for a low-level controller:

u
(i)
t = [xtarget, ytarget],

which we rewrite for velocity control as the relative displacement:

u
(i)
t = [xtarget − xa, ytarget − ya].

All state variables are normalized to [0, 1] before computing distances. The distance field d(x,Γ(i))
is defined as the weighted sum of three components:

d(x,x
(i)
t ) = wobj ∥(xb, yb)−(x(i)b , y

(i)
b )∥2+wagt ∥(xa, ya)−(x(i)a , y(i)a )∥2+wθ ang(θb, θ

(i)
b ), (15)

where ang(·, ·) denotes angular distance. Unless otherwise stated, the weights are set to wobj =
wagt = wθ = 1.0.

Each demonstration induces a distance field and an associated flow policy. At inference time, the
global policy is formed by composing the K nearest demonstration policies, with λ1 = λ2 = 1.0.
Evaluation is performed on environment seeds 500–510 using three distinct policy seeds.

We further explore several variants to improve the flexibility of GPI:

Relative vs. absolute state representation. The PushT task involves nonlinear contact dynam-
ics, so the choice of state representation is important. In the relative variant, the agent position is
expressed in the object’s coordinate frame:

p̃a = R(−θb)
(
(xa, ya)− (xb, yb)

)
, (16)

where R(−θb) is the SE(2) rotation matrix aligning the block’s orientation to the x-axis. The
demonstrated action ut is similarly transformed. During execution, the predicted action ũ is mapped
back to global coordinates via the inverse transformation:

u = R(θb) ũ+ (xb, yb). (17)

Smooth flow fields. When the action horizon is set to 1, the controller is highly reactive and may
produce abrupt changes whenever the nearest demonstration switches. To mitigate this, we apply
first-order smoothing to the action sequence:

usmooth
t = αut + (1− α)usmooth

t−1 , (18)
where α ∈ [0, 1] is a smoothing parameter.

Recent-action suppression. To mitigate oscillatory behavior arising from repeatedly selecting near-
identical actions, we maintain a sliding-window memoryM of the most recent M actions. During
action selection, if the candidate ut lies within a tolerance ϵ of any element inM, it is suppressed
and the next-best candidate from the composed policy is chosen. This mechanism enforces diversity
over short horizons, prevents immediate backtracking to previously executed actions, and ensures
the policy explores novel trajectories while preserving responsiveness.

Perturbed query states. To evaluate robustness, we perturb the query agent position with additive
Gaussian noise:

x̃′ = x′ + ϵ, ϵ ∼ N (0, σ2I), (19)
where x′ = (xa, ya) is the agent substate. The noise variance σ2 is annealed over time, decaying
from σ = 0.1 at the beginning of execution to σ = 0.001 at later steps. This perturbation injects
stochasticity into the query states, which increases variability in the retrieved flows and can induce
multimodal behaviors.

Subsampled demonstrations. For efficiency and robustness, instead of using all demonstrations,
we randomly sample a subset Γsub ⊂ Γ at each query. The global policy is then composed over Γsub.
Empirically, we find that subsampling does not reduce performance; in some cases, the induced
stochasticity even helps the agent escape undesirable cycles or “stacked” behaviors.
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C.2 PUSHT TASK WITH VISION-BASED INPUTS

In the PushT environment, observations consist of an RGB image I together with agent positions
(xa, ya). Each demonstration state is represented as

x
(i)
t = [xa, ya, I ].

Vision encoder. To obtain compact image features, we use an encoder ψ with a ResNet-18 backbone
(group normalization) and a projection head (MLP with sizes [512, 256, 128, 3]). The encoder is
trained with a mean squared error (MSE) loss to predict the object position and orientation:

ψ(I) ≈ [xo, yo, θo], LMSE = 1
B

B∑
i=1

∥∥x(i)
pred − x

(i)
target

∥∥2
2
.

Training is performed for 200 epochs using the Adam optimizer with a learning rate of 0.001.

Distance metric and policy synthesis. After training, each demonstration image is embedded as

z
(i)
t = ψ(I

(i)
t ),

and for a query state xo = [xa, ya, I],
zo = ψ(I).

Distances are defined in this learned feature space and policy synthesis then proceeds identically to
the state-based inputs.

C.3 PUSHT TASK WITH RESNET-18 ENCODER AND PCA

We construct a compact observation embedding by reusing the same ResNet-18 encoder from
the Diffusion Policy implementation (task-pretrained on PUSHT). At inference, this encoder is
frozen and used as a fixed feature extractor. We aggregate features over a short temporal win-
dow (obs horizon = 2), apply PCA for dimensionality reduction on the image features, and
concatenate with the last two agent positions (normalized and reweighted to balance scale). Each
demonstration is thus represented in this joint embedding space. At test time, the current observation
is embedded in the same way, and the closest demonstration under cosine similarity is identified. The
policy then follows the flow induced by this demonstration, with progression and attraction weights
set to λ1 = λ2 = 1.0.

Per-timestep features. Given an image I and agent position [xa, ya], we extract a 512-D descriptor
ψ(I) with the frozen ResNet-18 backbone (final FC removed; BatchNorm→ GroupNorm as in the
diffusion policy).

Temporal windowing and dimensionality reduction. With obs horizon T = 2, we flatten the
last T descriptors and apply IncrementalPCA to project them to 16 principal components:

zt = PCA16([ψ(It−1), ψ(It)]) ∈ R16.

Concatenation with agent positions. To balance image and agent information, we concatenate the
PCA embedding zt with the normalized agent positions from the last two steps. All embeddings are
L2-normalized before similarity computations.

Policy selection. At test time, the query embedding is compared to the demonstration database using
cosine similarity, and the flow is executed with λ1 = λ2 = 1.0. To prevent degenerate repeats, the
selected pair is removed from the database at the next step.

C.4 PUSHT TASK WITH VAE

We construct a compact observation embedding using a convolutional variational autoencoder
(VAE) trained directly on PUSHT images. At inference, we discard the decoder and use only the
encoder to produce latent codes, which are concatenated with scaled agent positions to form the fi-
nal embedding. The global policy then follows the flow induced by the closest demonstration under
cosine similarity, with progression and attraction weights set to λ1 = λ2 = 1.0.

16



Preprint

Per-timestep features. Given an image It with pixel values normalized to [0, 1], the VAE encoder
outputs a Gaussian posterior

zt ∼ qϕ(z | It), zt ∈ Rd,

with diagonal covariance. At inference, we use only the posterior mean µt as the latent feature.

Retrieval. At test time, we encode the current observation window to obtain zt, normalize it, and
compute cosine similarity against the stored database features. The demonstration with the highest
similarity is selected, and its associated action sequence defines the flow. Cosine similarity achieved
slightly higher performance (average return ≈ 0.88) compared to Euclidean distance (≈ 0.85).

Training Setup. We train the VAE with a standard Gaussian prior p(z) = N (0, I) and a Gaussian
reconstruction likelihood p(x | z) = N

(
x̂(z), τ2I

)
with fixed τ = 2 × 10−1. This choice of τ

balanced the reconstruction and KL terms: with τ = 0.2 both the reconstruction loss and the KL
divergence decreased steadily, whereas using smaller τ values led to optimization stalling (neither
term decreased). Training was performed for 25 epochs with the Adam optimizer (learning rate
1× 10−4). At inference, we discard the decoder and use only the encoder’s posterior mean.

C.5 PUSHT TASK WITH SAM-BASED POSE EMBEDDING

We estimate object pose directly from images using a pretrained SAM/SAM2 pipeline (no fine-
tuning). From each frame we obtain a binary mask of the T-block, from which we extract its centroid
(xb, yb) and axial orientation θb (defined modulo π). Combined with the agent position (xa, ya), this
yields the state

xt = [xa, ya, xb, yb, θb ] ∈ R5.

All variables are normalized to [0, 1] before distance computations; angular differences use the same
axial angular distance as in the state-based setup. Distances and policy composition follow the same
formulation, with weights wobj = wagt = wθ = 1.0 and flow execution with λ1 = λ2 = 1.0.

Per-timestep pose extraction. Given a SAM mask, the centroid is

(xb, yb) = centroid(mask),

and the orientation is computed from second-order moments of foreground pixels. Let µpq denote
centralized moments; the principal axis corresponding to the largest covariance eigenvalue indicates
the elongation direction. We define

θb = 1
2 atan2

(
2µ11, µ20 − µ02 + ε

)
,

wrap θb to (−π, π], and treat it as axial (modulo π) for angular distance.

Retrieval and policy selection. At test time, we form xt = [xa, ya, xb, yb, θb], apply the same
normalization as above, and compute distances to all stored demonstration states using the state-
based metric. We retrieve the K nearest neighbors (default K = 1) and execute the composed flow
with λ1 = λ2 = 1.0.

Tracking and prompting details. We use SAM2’s video predictor (sam2.1 hiera tiny) to
track the T-block across frames, re-prompting each step with a skeletal outline derived from the
most recent pose estimate to stabilize mask propagation. To compensate for a small systematic bias
in predicted centroids, we apply a constant offset correction to (xb, yb), calibrated on seeds 500–700.

Limitations. Performance depends on segmentation quality; occlusions and viewpoint changes can
induce drift in the estimated pose, which in turn affects retrieval and control.

C.6 ROBOT-FLIP TASK

Robot teleoperation: We utilized a bimanual robotic system configured with a ViperX300s (fol-
lower) and a WidowX250 (leader), along with a RealSense D405 camera from a top-down view. The
system is built on an open-source platform. By using robot teleoperation, we collected 121 demon-
strations, each contains 200 to 1000 timesteps to complete the flip task. The dataset is structured
in an HDF5 format and includes robot actions and observations, where observations are composed
of effort, images, joint angles, and joint velocities. Specifically, we teleoperated the leader robot
(WidowX250) to control the follower (ViperX300s) robot for manipulation tasks (flip the box). The
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camera records images at an 848×480 resolution with a 30 Hz frequency, and then crops them to a
320×240 resolution for policy training.

Policy imitation. The policy imitation process is similar to the pushT task with vision-based inputs.
Specifically, we use a vision encoder that takes RGB images as input and predicts the desired robot
action as a latent embedding using an MSE loss. Training is performed for 100 epochs using the
Adam optimizer with a learning rate of 0.0001. After training, we calculate the latent feature of
each demonstrated image as a feature database. The online inference involves the computation of a
distance field that includes both distance measurement in this latent space and an additional distance
metric for joint position displacement, guiding the flow field and policy composition. Both attraction
and progression parameters are set to 1.0 during execution. To ensure the temporal consistency, the
task is run with horizon=100.

RealSense D405

BoxWidowX250 ViperX300s

Camera view

Figure 10: ALOHA teleoperation platform.

C.7 HUMAN–ROBOT INTERACTION TASK

We use the openai/clip-vit-base-patch32 CLIP model for vision–language grounding.
Positive and negative text prompts for hand–held object detection are listed below.

Text prompts.

pos_prompts = [
"a photo of a hand holding a banana",
"a hand holding an apple",
"a human hand holding an orange",
"a hand holding a pear",
"a hand holding a strawberry",
"a hand holding grapes",
"a hand holding a piece of fruit",
"a person’s hand holding a fruit",
"close-up of a hand holding a fruit",

]

neg_prompts = [
"an empty hand",
"a hand with nothing in it",
"a hand holding a baseball",
"a hand holding a black ball",
"a hand holding a blue cup",
"a hand holding a plastic cup",
"a hand holding adhesive tape",
"a hand holding a tape roll",
"a hand holding a screwdriver",
"a hand holding a tool",
"a hand holding a non-fruit object",

]
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MEMORY COST

The state-based PUSHT dataset has 25,000× 7 = 175,000 elements, requiring 175,000× 4 ≈ 0.67
MB with float32, consistent with the observed 0.7 MB. For comparison, an MLP with layers
[7, 512, 256, 128, 1] has 168,449 parameters (≈ 0.64 MB), which is at a similar scale. However,
typical models are far larger than simple MLP; e.g., a state-based diffusion policy exceeds 200 MB.

Although GPI’s memory grows linearly with the number of demonstrations, this is practical in our
setting: robot actions are low-dimensional, and high-dimensional observations are stored as compact
latent features. Inference is lightweight, parallelizable, and can use subsampling or approximate
nearest-neighbor search to bound latency. As we demonstrated in the paper, GPI achieves orders-of-
magnitude gains in efficiency over standard baselines in common imitation-learning settings.

D.2 ROBOMIMIC AND ADROIT HAND TASKS

Figure 11: Snapshots of experimental results for Lift, Can, and Square tasks on Robomimic environments.
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Figure 12: Snapshots of experimental results for Door, Hammer, Pen, and Relocate on Adroit hand tasks.

D.3 2D MAZE

We evaluate our approach on the 2D Maze benchmark, previously used by (Chen et al., 2025; Janner
et al., 2022). Unlike these methods, our approach is training-free: at test time we select a suffix of a
single demonstration using a simple distance metric and execute it. Concretely, for demonstration i
of length H and timestep k, we minimize

D(i, k) = 10 ∥x0 − x
(i)
k ∥2 + 5 ∥xg − x(i)

g ∥2 + 0.1 (H − k),

where x0 is the initial state, x(i)
k is the k-th state of demonstration i, xg is the task goal, and x

(i)
g is the

goal state associated with demonstration i. The final term penalizes long remaining horizons; since
2D Maze demonstrations can include detours, this bias favors suffixes that proceed more directly
to the goal. After selecting (i⋆, k⋆), we execute the suffix {x(i⋆)

k⋆:H} as the plan. In doing so, our
method also recovers the effective task horizon H − k⋆, something most alternative approaches
cannot determine directly. Instead, they must either: (i) assume a long horizon and truncate once
the task is completed, (ii) assume a short horizon and repeat until completion, or (iii) try multiple
horizons and select the smallest successful one.
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•
Start End

Figure 13: Results on 2D Maze using our method. Without any training, a simple distance-based criterion
achieves a 100% success rate across all tasks, with an average inference time of 0.08 seconds.

E REPRODUCIBILITY STATEMENT

We will release our code, configuration files, and evaluation scripts upon publication. Key imple-
mentation details and protocols are documented in the main text and appendix to facilitate reproduc-
tion in the interim.

F USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs (e.g., ChatGPT and Claude) to rephrase and polish the manuscript and to assist with
coding tasks. All LLM-generated code was reviewed, edited, and integrated by the authors; the
LLM did not design algorithms or produce experimental results.

21


	Introduction
	Geometry-Aware Policy Imitation
	Method
	Choice of Distance Metric
	A 2D Example

	Experimental Results
	Simulation Experiments
	Robot Experiments

	Related Work
	Limitation and Conclusion
	Convergence of the Flow Policy
	GPI algorithm
	Implementation details
	PushT task with state-based inputs
	PushT task with vision-based inputs
	PushT task with ResNet-18 encoder and PCA
	PushT task with VAE
	PushT task with SAM-based pose embedding
	Robot-flip task
	Human–robot interaction task

	Additional experimental results
	Memory cost
	Robomimic and Adroit Hand tasks
	2D maze

	Reproducibility Statement
	Use of Large Language Models (LLMs)

