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Abstract— In this work, we propose a novel approach to
represent robot geometry as distance fields (RDF) that extends
the principle of signed distance fields (SDFs) to articulated
kinematic chains. Our method employs a combination of
Bernstein polynomials to encode the signed distance for each
robot link with high accuracy and efficiency while ensuring
the mathematical continuity and differentiability of SDFs. We
further leverage the kinematics chain of the robot to produce
the SDF representation in joint space, allowing robust distance
queries in arbitrary joint configurations. The proposed RDF
representation is differentiable and smooth in both task and
joint spaces, enabling its direct integration to optimization
problems. Additionally, the 0-level set of the robot corresponds
to the robot surface, which can be seamlessly integrated into
whole-body manipulation tasks. We conduct various experi-
ments in both simulations and with 7-axis Franka Emika robots,
comparing against baseline methods, and demonstrating its ef-
fectiveness in collision avoidance and whole-body manipulation
tasks. Project page: https://sites.google.com/view/lrdf/home

I. INTRODUCTION

In robotics, the representation of a robot commonly relies
on low-dimensional states, like joint configuration and end-
effector poses. However, this low-dimensional representation
lacks internal structure details and is insensitive to external
factors, limiting the ability to interact with the environment
and respond to real-world. To handle this problem, some
geometric representations have been proposed, like primi-
tives and meshes, with various applications [1], [2]. However,
they either make simplified assumptions or require significant
computational resources to obtain a detailed model.

A natural idea for handling this problem is to encode the
geometry of the robot as signed distance fields (SDFs). Sev-
eral studies in computer vision and graphics have shown the
advantages of such a representation [3], [4]. Not only does it
offer continuous distance information but also exhibits query
efficiency. However, despite several robot representations
that can be transformed into SDFs, they are either inaccu-
rate (sphere), computationally complex (mesh), or memory-
consuming (voxel SDF). Besides, the SDF representation for
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(b) Collision avoidance

(a) Robot SDF (c) Dual-arm lifting

Fig. 1: Overview of this work. (a) A precise SDF model of an
articulated robot is obtained efficiently by our proposed method.
(b) Collision avoidance task based on the SDF representation. (c)
Whole-body lifting task with dual-arm.

articulated objects remains a challenge due to the nonlinear
and high dimensionality.

Following existing robot representations like spheres and
meshes, we exploit the kinematic structure to represent the
distance fields of robots. In contrast to existing methods that
encode the robot shape as its joint angle configuration [5],
[6], we adopt a configuration-agnostic approach during the
learning phase and utilize the kinematic chain of the robot
during the inference phase. This approach simplifies the
problem by learning the SDF for each robot link, reduc-
ing the dimensionality, and making it robust and reliable
for different joint values. During the inference phase, the
kinematic information is used to retrieve the SDF values.
We utilize Bernstein polynomials as the basis function to
represent SDF for each link of the robot for storage and
computation efficiency, with facilitated differentiability in
task space and joint angle space.

Representing robot geometry as distance fields (RDF)
has multiple advantages. First, it provides a continuous
and smooth distance representation, granting easy access
to derivatives. This characteristic is particularly well-suited
for robot optimization problems such as motion planning
and collision avoidance. Further, RDF representation encodes
the robot geometry implicitly and decouples from spatial
resolutions, enabling whole-body manipulation at any scale
without explicitly defining surface points. Finally, RDF al-
lows computationally efficient and precise distance query,
which is crucial for various robot applications that require
precise perception and quick response, especially in dynamic
environments.

We experimentally demonstrate the capabilities of our
RDF in three aspects. First, we provide a quantitative com-
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parison of the produced distance fields against other repre-
sentative methods, showing the advantage of our approach.
Then, we conduct collision avoidance experiments to show
the real-time control performance. Finally, we present a
novel formulation that leverages the RDF representation for
manipulation tasks requiring contact, by generalizing the
robot’s Jacobian matrix from its end-effector to the 0-level set
of SDF. We demonstrate the effectiveness of this approach in
a dual-arm lifting task, showing how our RDF representation
can be seamlessly integrated into first and second-order
optimization problems. In summary, our contributions are:

• We propose a simple and flexible structure that lever-
ages Bernstein polynomials to encode SDFs, showing
high accuracy and efficiency while ensuring continuity
and differentiability.

• The proposed SDF representation is further extended to
articulated robots by leveraging the kinematics chain,
allowing robust interpolation/extrapolation to any joint
configuration while keeping the above properties.

• We demonstrate the effectiveness of our RDF represen-
tation in experiments and show how to integrate it into
optimization problems for whole-body manipulation
tasks without defining any points on the robot surface.

II. RELATED WORK

SDFs for scene/object representation. Representing ob-
jects or scenes as SDFs is an active research topic in
computer vision and graphics due to its query efficiency and
the ability to describe complex shapes [4], [7], [8]. Typically,
it is a scalar field defined over a 3D space that assigns
signed distance values to points, representing the distance
to the surface. The capability of SDFs in modeling object
and scenes have shown in versatile applications like map-
ping [9], [10], grasping [11], [12] and rearrangement [13].
Liu et al. [14] has explored optimizing diverse grasping
configurations based on the object SDF. Driess et al. [15]
proposes to learn kinematic and dynamic models as SDFs
for robot manipulation.

SDFs for motion planning. SDFs can also be utilized
in optimization problems such as robot motion planning
and control [16], [17]. CHOMP [18] proposes to use SDF
to represent the environment and achieve effective motion
planning in trajectory optimization. Schmidt et al. [19] uses
SDF representation to track articulated objects by exploiting
their kinematics structures. Sutanto et al. [20] extends learn-
ing SDFs to approximate generic equality constraint mani-
folds. Liu et al. [5] presents a regularized SDF with neural
networks to ensure the smoothness of SDFs at any scale,
testing it in collision avoidance and reactive control tasks.
Vasilopoulos et al. [21] sample point on the robot surface
and compute their SDF values with GPU acceleration for
motion planning. Although representing scenes as SDFs has
shown several advantages in robotics tasks, the environment
is usually diverse and dynamic, and it is inefficient to obtain
SDFs for arbitrary scenes.

SDFs for robot geometry representation. An intuitive
idea to solve the problem of arbitrary scenes is to represent

the robot as an SDF (in addition, or instead of the scene).
Koptev et al. [6] propose to learn SDFs expressed in joint
space with neural networks, allowing query distance values
with points and joints as input. Similarly, in [5], an SDF
model is trained with joint angles as input to represent a
mobile robot. Michaux et al. [22] introduce a reachability-
based SDF representation that can compute the distance
between the swept volume of a robot arm and obstacles.

The aforementioned methods learn an SDF model cou-
pled with joint angles, and the performance is limited due
to the high dimensional and nonlinear space. In contrast,
our approach exploits the kinematic chain which simplifies
the problem and leads to better accuracy. A concurrent
work [23], conducted in parallel to our work, also proposes
to exploit the kinematic structure with neural networks for
collision avoidance. The differences lie in three aspects: 1)
Our representation provides interpretable parameters, holds
smoothness guarantees and provides an easy way to compute
analytic gradients; 2) We further extend this representation
to contact-aware manipulation tasks instead of pure collision
avoidance; 3) We conduct a detailed comparison with various
SDF representations. All approaches exploit parallel comput-
ing, implemented with batch operation for both points and
joints, consequently showing high computational efficiency.
The accuracy of neural network method (one of our base-
lines) is also better than experimental results in [23]1.

III. LEARNING ROBOT GEOMETRY AS DISTANCE FIELDS

In this section, we present our approach to represent
the robot geometry as distance fields. Specifically, we first
encode the SDF of each robot link through concatenated
Bernstein polynomials and then extend it to the whole body
based on the robot kinematic chain.

A. Problem Notations

Let R(q) ⊂ R3 be a robot in the 3D Euclidean space
at the configuration q, and ∂R(q) denotes the surface of
R. The distance function f(p, q) : R3 → R is defined
with f(p, q) = ±d(p, ∂R(q)), where d(p, ∂R(q)) =
infp′∈∂R(q) |p−p′|2 denotes the minimum distance between
the points p = {x1, x2, x3} ∈ R3 and the robot surface.
Signs are assigned to points to guarantee negative values
within the robot, positive values outside, and zero at the
boundary. The gradient ∇fp points in the direction of
maximum distance increase away from the robot surface. In
consequence, the normal n ∈ R3 with respect to R can be
defined as n = ∇fp.

B. Kinematic Transformation of SDFs

Consider a robot with C degrees of freedom and K
links, characterized by joint angles q = {q1, q2, · · · , qC}
and shapes Ω = {Ω1,Ω2, · · · ,ΩK}. The distance field to
represent the robot geometry is the minimum of all links
SDFs, which can be written as

fR = min(fΩb
1
, fΩb

2
, · · · , fΩb

K
), (1)

1Codes are available at https://github.com/yimingli1998/RDF.

https://github.com/yimingli1998/RDF


Fig. 2: Illustration of iterative learning for a two-dimensional SDF
from samples at different locations. The weights are initialized to
resemble a circular object. Red points are sequentially sampled
for weight updates. The contour of the estimated object shape is
depicted by the blue curve (0-level set of the SDF).

where fΩb
k

is the SDF of link Ωk in the robot base frame.2

The SDF value for point p in the robot base frame fΩb
k

can
be computed through the rigid transformation of SDFs [15],
which involves transforming the query points as

fΩb
k
(p, q) = fΩk

(
bT −1

k (q)p
)
, (2)

where bTk(q) ∈ SE(3) denotes a matrix dependent on q
that performs the transformation from the frame of the k-
th link to the base frame of the robot. The computation
of these transformation matrices can be achieved using
the kinematics chain of the robot, typically represented by
Denavit-Hartenberg parameters [24].

C. Representing SDFs using Bernstein polynomials

Basis functions have been widely used in encoding trajec-
tories in robotics, such as in dynamical movement primitives
(DMP) [25] or probabilistic movement primitives (ProMP)
[26], see [27] for a review. They provide a continuous,
differentiable, and smooth representation of the trajectory,
ensuring the encoded motion appears natural without abrupt
changes. This compact parameterization also enables effi-
cient storage and computation while accurately capturing
complex motions.

Drawing inspiration from these studies, we propose the
adoption of geometric primitives, a three-dimensional exten-
sion of basis functions, to represent the SDF of each link
of the robot. By leveraging basis functions with multivariate
inputs, we aim to preserve the aforementioned advantages.
In this work, we employ Bernstein polynomials, however,
other types of basis functions could alternatively be con-
sidered, such as Radial Basis Functions (RBF) for infinite
differentiability or Fourier basis functions for multiresolution
encoding, see [27] for a review.

The SDF fΩk
for a point pk described in the frame of the

robot link Ωk can be represented as a weighted combination
of N basis functions as

fΩk
(pk) = ⟨Ψpk ,wk⟩, (3)

where ⟨·, ·⟩ denotes inner product operation, Ψpk ∈ R1×N3

is the matrix of basis functions, and wk ∈ RN3×1 is the
matrix of superposition weights corresponding to the k-th
link. We hereby omit the variables k and Ωk in order to
enhance the readability of the text. We define Ψp = ϕ(t1)⊗
ϕ(t2) ⊗ ϕ(t3) using the Kronecker product ⊗, where ti =

2The min(·) in (1) might cause discontinuous gradient when the closest
link changes. A differentiable smooth version of this function can be utilized
to avoid this issue.

Algorithm 1 Recursive learning of superposition weights

initialize B0 = 1
λI , w = w0;

for m← 1 to M do
Given new mini-batch data points: {P̃ , f̃}
Encode points with Bernstein polynomials: Ψ̃ = Ψ(P̃ )
Compute Kalman gain:
Km = Bm−1Ψ̃

⊤(I + Ψ̃Bm−1Ψ̃m
⊤
)−1

Update Bm: Bm = Bm−1 −KmΨ̃Bm−1

Update wm: wm = wm−1 +Km(f̃ − Ψ̃wm−1)
end
return w∗ ← wM

xi−xmin
i

xmax
i −xmin

i
is the normalized version of xi, and reshape it to

a row vector. ϕ(t) ∈ RN is the vector of basis functions
whose n-th element, for Bernstein polynomials, is given by

ϕn(t) =

(
N − 1

n

)
tn(1− t)N−1−n, ∀n ∈ {0, · · · , N −1},

(4)
in analytic form, where t ∈ [0, 1] is a normalized location
of the point. Consequently, the derivative of the n-th basis
function can be expressed as

∇tϕn(t) =
(
N−1
n

)
(1− t)N−n−2tn−1

(
n(1− t)− (N − n− 1)t

)
,

(5)
and the derivatives of Ψ are analytically given by

∇t1Ψ = ∇t1ϕ(t1)⊗ ϕ(t2)⊗ ϕ(t3),

∇t2Ψ = ϕ(t1)⊗∇t2ϕ(t2)⊗ ϕ(t3),

∇t3Ψ = ϕ(t1)⊗ ϕ(t2)⊗∇t3ϕ(t3).

(6)

For T data points denoted as P ∈ RT×3 and their cor-
responding distance values denoted as f ∈ RT , the weight
tensor w can be learned through least square regression as
w∗ = (ΨTΨ)−1ΨTf , where Ψ ∈ RT×N3

contains all basis
functions and points in a concatenated form. Computing the
inverse of large matrices can be computationally expensive
and suffer from memory issues. Instead of a batch evaluation,
a recursive formulation can be used, providing exactly the
same result [28], [29]. To do so, we define a new parameter
B = (Ψ⊤Ψ)−1 and process the data sequentially by
sampling a small batch of points {P̃ , f̃} and updating the
learned weights when new data points become available.
The whole process is depicted in Algorithm 1, and a 2D
example is shown in Fig. 2. After obtaining the optimal
weights w∗, the distance can be decoded efficiently with
(3) during inference. Similarly, this efficiency also extends
the gradients, thanks to the analytic form of the polynomial
structure3.

IV. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed method,
we conduct several numerical comparisons against baseline
methods.

3We refer readers to https://rcfs.ch/ for details about basis functions
encoding with multidimensional inputs.

https://rcfs.ch/


TABLE I: Comparison of baseline methods for representing SDFs

Methods CD, CD, Inference Model
mean (mm) max (mm) Time (ms) size (MB)

TT-SVD 0.22 23.3 - 3.8
NN (2.56× 105 points) 1.86 32.4 0.25 2.4
NN (2.56× 106 points) 0.57 14.4 0.25 2.4

BP (N=8) 0.91 21.8 0.21 0.024
BP (N=24) 0.40 12.6 0.54 0.49

Implement details. We build the distance field for the
Franka Emika Robot with 7 articulations and 9 links (the
fingertips of the gripper are ignored). The superposition
weights of Bernstein polynomials are separately trained for
each robot link. Specifically, we assume a cubic volume
around each link to sample training data. The positions
of points inside the volume are normalized to [0, 1] and
points outside the volume are projected onto the boundary
and the distance is approximated by summing the distances
from the projected point to the boundary. All operations are
implemented with the batch operation and run on an Nvidia
GeForce RTX3060 GPU. The training data is generated
following DeepSDF [4]4.

Effectiveness of basis functions in encoding SDFs.
We first compare the proposed Bernstein Polynomial (BP)
method with two other representative state-of-the-art ap-
proaches: a volumetric-based method, TT-SVD [30] which
utilizes tensor decomposition to compress voxelized SDFs,
and a neural network (NN) based method [4], [23]. We
evaluate the Chamfer Distance (CD) [4], inference time and
model size. For the TT-SVD method, we set the maximum
rank R to 40. For the neural network, we found it could not
represent the SDF well with the same number of data points
we used (2.56× 105), so we additionally trained it with 10
times more data for a more detailed comparison. We report
the result of our lightweight model (with 8 basis functions)
and precise model (with 24 basis functions) in Table I. Our
approach shows competitive accuracy and efficiency with a
more compact structure. Although TT-SVD shows a lower
mean CD, it exhibits a higher max CD, indicating sensi-
tivity to high-frequency data. Besides, it represents discrete
SDFs while our method is continuous and differentiable. We
find BP and NN can encode the shape of the robot links
accurately with similar CD. However, our method based
on recursive ridge regression shows higher data efficiency.
Additionally, our approach offers other benefits. The weights
learned by BP correspond to the key points, which directly
provide interpretable and controllable parameters. Besides,
it also provides a simple and efficient way to compute
analytical gradients by directly leveraging the derivatives of
the basis functions. The continuity and smoothness of the
gradient are also guaranteed by construction.

Quality of RDF. We further compare our approach with
several common approaches to represent the geometry of the
robot.

Spheres have closed-form signed distance functions and
we use 55 spheres to approximate the robot. For meshes, we
compute the signed distance by finding the closest vertex and
normal, which is another widely used approach. The coarse

4we use the library mesh to sdf for implementation.

TABLE II: Comparison with baselines for the produced distance
field. Errors are presented in millimeters (mm).

Points Near Points Far Average Time
MAE RMSE MAE RMSE MAE RMSE (ms)

Sphere-based 6.45 11.3 5.49 9.49 5.91 10.4 2.2
Mesh-based (coarse) 13.6 19.2 6.57 16.8 9.70 18.0 2.9
Mesh-based (precise) 4.09 10.21 1.79 11.78 2.82 11.2 8.7

Neural-JSDF 28.2 31.6 18.7 23.4 23.0 27.4 0.25
NN + K.C. 1.74 3.57 1.30 2.93 1.50 3.24 4.7

BP (N=8) + K.C. 2.85 4.55 2.35 3.93 2.57 4.22 2.4
BP (N=24) + K.C. 1.71 3.59 1.18 2.87 1.41 3.23 5.8

Fig. 3: We show the smoothness of distance and gradient produced
by our approach, in both task space (a) and joint space (b), with
comparisons to several baselines. The distance and gradient from
point t = [0, 0, z] to the surface of link5 with a specific joint are
shown in (a). The distance and gradient from a specific point to the
robot surface at joint q = [0, q2, 0, 0, 0, 0, 0] is shown in (b).

mesh has 1,249 vertices while the precise mesh has 74,647
vertices. Following Neural-JSDF [6], we report the mean
absolute error (MAE) and root mean square error (RMSE)
for points near the robot surface (within 0.03m) and points
far away (over 0.03m) in Table II.

The comparison between Neural-JSDF and other ap-
proaches demonstrates the importance of the kinematic chain
(K.C.) in modeling accurate RDF. With our non-optimized
implementation, the computation time is higher for our
method, but it is still at the millisecond level, allowing
real-time behavior with high frequency. Although coarse
mesh has a more precise shape than spheres, it still fails
to represent an accurate distance field, since the choice of
closest point and normal estimation are usually inaccurate
and noisy. Methods incorporating kinematic chain and SDF
(NN + K.C. and BP + K.C.) improve the accuracy compared
to primitive-based and mesh-based methods. The average
MAE for these methods is about 1mm, which is accurate
enough for tasks that require establishing contacts with the
environment. Figure 3 also shows the distance and gradient
produced by several methods, highlighting the smoothness
of our approach.

V. ROBOT EXPERIMENTS

In this section, we illustrate the effectiveness of our RDF
representation through two dual-arm robot tasks: 1) Collision
Avoidance: While a robot arm tries to reach a target, it

https://github.com/marian42/mesh_to_sdf
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Fig. 4: Collision avoidance experiment in simulation. g1 and g2 represent the target points. Red points on the right arm are sampled with
the level set f = 0.05 to represent the safety threshold surface.
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Fig. 5: Real-world collision avoidance experiment. Here, g is the target point for the right arm. Red/black arrows show the reaching
velocity with/without collision avoidance. Black dashed circles show the potential collision area.

TABLE III: Results for collision avoidance in simulation.

Methods Reaching QP no solution Time cost (ms)
Mesh-based 63% 37% 7.68

NN 74% 23% 11.34
Sphere-based 84% 12% 4.18

BP (N=8) 87% 12% 5.99

must avoid colliding with another. 2) Dual-arm Lifting: Two
robot arms collaborate to lift a large box that cannot be
grasped conventionally. The objective is to plan a pair of
joint configurations for both arms such that they can establish
contact with the box by exploiting their whole bodies to reach
and lift the box.

A. Collision Avoidance

In this section, we integrate the learned distance fields
for collision avoidance, which is crucial in motion plan-
ning tasks. Specifically, we exploit an augmented quadratic
Programming (QP) algorithm [31] to ensure self-collision
avoidance between two robot arms during task execution.

The self-collision avoidance experiments are conducted in
both simulation and real-world scenarios. In simulation, the
goal for both arms is to reach their respective target position
while the right arm should actively avoid collision with the
left arm. The real-world experiment is conducted with a
reactive controller, where the left arm is manually moved by
a human operator in gravity-compensated mode, serving as
a dynamic obstacle for the right arm. For both experiments,
we randomly sampled 256 points on the surface of the left
arm as the input of RDF for the right arm and then used the
minimal distance produced for self-collision avoidance.

We conducted simulation experiments 100 times, utilizing
different initial states for both robot arms, and compared our
proposed method with sphere-based, mesh-based and NN-
based representations. Results are presented in Table III. The
time cost represents the average time for solving the QP
problem once. For Neural-JSDF, we observed large distance
errors with unsuccessful results.

As collision avoidance was established as a hard constraint
in the QP controller, all methods exhibited collision-free
behavior whenever the QP solver converged to a solution.

Nevertheless, attributing to the accuracy and smoothness,
our method demonstrated the highest success rate (87%)
in reaching, as well as the lowest probability (12%) of
not finding a solution for the QP solver, which also led
to a shorter planning time. The left 1% case is that the
QP solver found a solution but the two arms blocked each
other. The poor performance of mesh-based representation
and neural networks indicates the importance of continuous
gradient, which makes the optimizer find solutions more
easily and more efficiently. Figures 4 and 5 depict the
collision avoidance process in simulation and real-world,
showing our method enables the robot arm to respond to
the environment and avoid collisions (see also accompanying
video).

B. Dual-arm Lifting

In this experiment, our focus is on the manipulation of
a large box using a dual manipulator, utilizing the whole
surface of the last four links of the robot. Our underlying
assumption is that the contact points on the object are already
predetermined, and the robot has the freedom to establish
contacts automatically based on the SDF representation
without sampling any surface points on the robot. The task
can be viewed as an optimization problem whose quadratic
cost function can be defined as c(q) = r⊤r, where r =
[rr, rc, r

max
j , rmin

j , rdj ]
⊤ is the residual vector consisting of

several elements: a reaching residual rr to establish a contact
between the robot arms and the object, a penetration residual
rp for collision avoidance, a joint distance residual rdj to
regularize the solution near the robot’s initial configuration,
and joint limit residuals rmax

j and rmin
j to consider joint angle

limits, defined as

rr = f(pc, q), rp = ReLU(−f(pi, q)),

rmax
j = ReLU(q − qmax), rmin

j = ReLU(qmin − q),

rdj = q − qinit,

(7)

where f(p, q) ∈ RT represents the spatial distance between
points p and the robot surface at configuration q. In this
context, pc represents predefined contact points on the object,



Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Fig. 6: Robot experiments for whole-body dual-arm lifting. Top row: the planned joint configurations for grasping the box. Bottom row:
the final states after lifting.

TABLE IV: Results for dual-arm lifting task.

Methods Sphere-based BP (N=8)
Success Rate 36% 77%

Time (per valid configuration) 0.98 0.46

while pi denotes the points uniformly selected within the box
for collision avoidance purposes. qmin, qmax are the physical
joint limits and qinit is the robot initial joint configuration.
The optimization is solved using the Gauss-Newton algo-
rithm as

q = q − αJ†r = q − α(J⊤J)−1J⊤r, (8)

where J = ∂r
∂q is the Jacobian matrix and α is a line

search parameter. The algorithm is terminated when sat-
isfying criteria r⊤

r rr < 0.01, and r⊤
p rp < 0.01, and

qmin,c < qc < qmax,c, ∀c ∈ {1, . . . , C}, and
∑

pc
(1 −

⟨norm(∂f(pc,q)
∂pc

),nc⟩) < 0.1 for normal constraints, where
nc is the normal direction on the contact point. We optimize
the problem in batch to accelerate the planning procedure
with random initialized configurations. Trajectories from
initial to goal configurations are interpolated through cubic
splines. A joint impedance controller is adopted in conjunc-
tion with a smaller desired box size during the planning
phase to generate sufficient force at contact points. The lifting
action is accomplished by elevating the fourth joint of the
robot, which is positioned immediately before the potential
contact links.

We report the success rate among 50 planned joint con-
figurations for both arms and the average planning time
in Table IV. A configuration is considered successful if it
respects all the termination conditions with the exact robot
model. Since batch optimization is usually accompanied by
a larger memory overhead, we only selected the sphere-
based method and our lightweight model for comparison.
Our method shows significant improvement in terms of both
success rate and computation time, which is attributed to the
more accurate robot model compared to the sphere-based
representation.

The experimental results of the real robot implementation
are presented in Fig. 6. In Experiments 1-3, the robot
exhibits the capability to use its last four links to contact
the object. These experiments provide empirical evidence of
the generalization capability of the method across various

poses. In experiments 4 and 5, the robot is constrained to
utilize specific links for contacts. Specifically, the contact is
limited to the sixth link in experiment 4, while in experi-
ment 5, it is restricted to the seventh link. This restriction
narrows down the valid solutions, requiring the robot to
adapt its approach accordingly. The optimization problem
is still able to find appropriate solutions. It can be attributed
to the infinite resolution of the robot arm and the smooth
representation provided by the distance field, which enables
the optimization algorithm to navigate the constrained search
space more effectively, leading to successful solutions even
in scenarios with limited contact options.

VI. CONCLUSION

In this paper, we proposed a novel approach to represent
the geometry of a robot as distance fields. We leveraged the
kinematic structure of the robot to generalize configuration-
agnostic signed distance functions that remain valid for
arbitrary robot configurations, which enables more effective
learning and more accurate inference of distance fields.
The SDF for each link of the robot is represented by
a combination of piecewise multivariate polynomials, en-
suring interpretability, compactness and smoothness while
remaining competitive in terms of efficiency and accuracy.
The approach provides analytic derivatives that can directly
be used for gradient-based (or higher-order) optimization
techniques. Experiments in collision avoidance have shown
the effectiveness of our representation. Furthermore, we have
demonstrated how to integrate this representation into whole-
body manipulation tasks, by defining cost functions based on
the SDF of the robot.

There are some limitations that should be acknowledged.
First, the capability of basis functions to highly complex
shapes has not been thoroughly investigated. Secondly, we
simplified the lifting task by planning joint configurations,
without considering the dynamic model. Finally, the repre-
sentation could be further applied to other complex manip-
ulation tasks, such as pushing and pivoting, by estimating
the interaction forces between SDFs and formulating it as
an optimization problem. We plan to explore this research
direction in future work.
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