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Abstract

Distance functions are crucial in robotics for representing spatial relationships between the robot and the environment.
It provides an implicit representation of continuous and differentiable shapes, which can seamlessly be combined with
control, optimization, and learning techniques. While standard distance fields rely on the Euclidean metric, many robotic
tasks inherently involve non-Euclidean structures. To this end, we generalize the use of Euclidean distance fields to
more general metric spaces by solving a Riemannian eikonal equation, a first-order partial differential equation, whose
solution defines a distance field and its associated gradient flow on the manifold, enabling the computation of geodesics
and globally length-minimizing paths. We show that this geodesic distance field can also be exploited in the robot
configuration space. To realize this concept, we exploit physics-informed neural networks to solve the eikonal equation
for high-dimensional spaces, which provides a flexible and scalable representation without the need for discretization.
Furthermore, a variant of our neural eikonal solver is introduced, which enables the gradient flow to march across both
task and configuration spaces. As an example of application, we validate the proposed approach in an energy-aware
motion generation task. This is achieved by considering a manifold defined by a Riemannian metric in configuration
space, effectively taking the property of the robot’s dynamics into account. Our approach produces minimal-energy

trajectories for a 7-axis Franka robot by iteratively tracking geodesics through gradient flow backpropagation.
Project page: https://sites.google.com/view/geodf
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1 Introduction

In robotics, measuring distances constitutes a fundamental
concept for determining spatial relationships and enabling
effective physical and non-physical interactions with the
environment. These metrics provide a systematic means
for quantifying the geometric relationships between various
entities, such as points, poses, shapes or trajectories.
They are widely applicable across robotic tasks, including
inverse kinematics (Chiacchio et al. 1991) and motion
planning (Ratliff et al. 2009). Signed distance fields
(SDFs), in particular, have gained popularity for representing
geometries using implicit functions, as they enable efficient
distance and gradient queries which are suitable to integrate
into learning (Weng et al. 2022), optimization (Li et al.
2024b) and control (Liu et al. 2022).

SDFs are conventionally employed in Euclidean spaces,
representing the shortest distance from any point in the
environment to the boundary of a given object or surface
(Park et al. 2019). However, many robot tasks inherently
operate in non-Euclidean spaces, with manifolds that can
be described implicitly by a smoothly varying weighting
matrix locally measuring distances. For example, distance
fields can also be applied to joint configuration space, where
SDFs indicate the minimum joint motion required by the
robot to establish contact with a given point or object (Li
et al. 2024a). In this case, the proposed extension to geodesic
distance fields allows inertia, stiffness or manipulability
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ellipsoids to be taken into account in the processing, by
providing a Riemannian metric constructed with a smoothly
varying symmetric positive definite (SPD) weighting matrix
in the robot configuration space. Riemannian geometry
provides a principled and systematic approach to generalize
algorithms from Euclidean spaces to more general manifolds
(Calinon 2020).

In motion planning, many approaches focus on generating
optimal or feasible trajectories having a minimal length, with
Euclidean distance fields often used for their differentiability
and computational efficiency (Ratliff et al. 2009; Koptev
et al. 2022). These trajectories are typically tracked by
controllers to ensure the planned paths are precisely
followed. While effective at the kinematic level, such
methods neglect the robot’s intrinsic dynamic properties,
potentially leading to limitations in performance, stability,
and robustness (Albu-Schiffer and Sachtler 2022). In
contrast, differential geometry enables motion generation
to incorporate these dynamic properties by identifying
minimal-length geodesics on non-Euclidean manifolds. On
such manifolds, the geometric properties reflect the system’s
inherent mechanics, and geodesics represent curved paths
that minimize energy (Bullo and Lewis 2004; Biess 2013).
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Figure 1 shows minimal-distance paths in the Euclidean
space and on another Riemannian manifold, where the latter
provides energy-efficient paths shaped by the manifold’s
geometry, which can for example reflect the robot’s dynamic

property.

Although several methods have been proposed to compute
geodesics on manifolds, these approaches often rely on
local approximations and lack a comprehensive view of
the entire manifold structure (Jaquier and Asfour 2022;
Klein et al. 2023). These limitations can be addressed
by constructing a geodesic distance field through a
propagation/diffusion process, thus extending the notion of
distance fields to Riemannian manifolds. The constructed
geodesic distance field captures the manifold’s global
structure. It provides a continuous and differentiable
representation with efficient distance and gradient queries.
This advancement opens the door to extending distance-
field-based learning, optimization, and control approaches
to non-Euclidean manifolds, enabling more robust and
dynamic-aware solutions for varied robot tasks.

This article investigates the use of geodesic distance
fields on configuration space manifolds, focusing specifically
on Riemannian manifolds defined by kinetic energy and
energy conservation metrics. On such manifolds, distance
fields encode minimal geodesic lengths, corresponding to the
optimal energy required by the robot to perform a movement.
The geodesics (minimal energy trajectories) are obtained by
computing the gradient of the distance field. To construct
these fields, we need to solve a Riemannian eikonal equation,
a first-order partial differential equation (PDE) simulating
the propagation of a wavefront on the Riemannian manifold.
This approach draws inspiration from recent works using
SDFs that utilize viscosity solutions to solve the eikonal
equation (Gropp et al. 2020; Mari¢ et al. 2024). By solving
the eikonal equation for the distance and gradient field on
anisotropic metric spaces, our approach reveals energy flow
patterns on the configuration space manifold, allowing for
iterative geodesic backtracking.

Traditional numerical methods for solving the eikonal
equation, such as Fast Marching Method (FMM) (Sethian
1996) and its extension to the Riemannian manifold
Riemannian Fast Marching (RFM) (Mirebeau 2017), rely
on discretized Cartesian grids. While these methods
provide deterministic solutions under given conditions,
their accuracy depends on grid resolution, and they face
scalability issues in high-dimensional spaces. To address
these limitations, we exploit recent developments in solving
eikonal equations on the Riemannian manifold using neural
PDE solvers (Raissi et al. 2019; Kelshaw and Magri
2024). Unlike grid-based methods, neural solvers compute
gradients through backpropagation, circumventing the curse
of dimensionality and enabling the generation of continuous
energy fields. Moreover, neural networks allow more flexible
parameterization, which is able to encode start and goal pairs
directly for the geodesic flow, whereas numerical methods
typically solve the problem only for a given source point,
see Figure 2. Once the model is trained, it can generalize
to arbitrary state-to-goal pairs, offering rapid inference time
on the order of milliseconds, which enables real-time motion
planning.
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Figure 1. Minimal distance paths as geodesics in the
Euclidean space (a) and in another Riemannian metric space
(b). The ellipses depict the SPD weighting matrices used to
locally compute distances with this metric (isocontours of
inverse matrices). A Riemannian manifold can be described
intrinsically by the depicted metric. For visualization, it can also
be depicted with corresponding extrinsic geometry in a higher
dimensional space (see inset), but geodesic computation does
not require this construction and instead only requires the
metric as an intrinsic geometry representation.

We further extend our approach by introducing a variant
of the Neural Riemannian Eikonal Solver (NES) tailored to
energy-efficient inverse kinematics (NES-IK). This variant
exploits a differentiable forward kinematics function as a
mapping between configuration space and operational space.
Here, the neural network takes a joint configuration (in the
configuration space) and a target end-effector full pose (in
task space) as inputs and predicts the minimal geodesic
distance, indicating the energy-optimal path for the inverse
kinematics solution. In other words, the neural eikonal solver
allows for the propagation from the goal pose to any joint
configurations while respecting the metric constraints of
the configuration space manifold. Both inverse kinematics
and the eikonal equation are simultaneously and implicitly
learned through neural network parameterization. Geodesics
are then backtracked via the derivatives with respect to the
current joint configuration.

A notable advantage of this approach lies in its self-
supervised nature. Both NES and NES-IK directly exploit the
physical laws embedded in the eikonal equation, eliminating
the need for pre-generated training data. This property,
combined with its scalability, flexibility, and real-time
applicability, underscores the potential of our framework for
generating energy-efficient and dynamically-aware motion
policies.

To demonstrate the advantages of our approach, we
first conducted experiments on a planar robot to provide
both quantitative and qualitative results. Subsequently,
we evaluated the approach on a 7-axis Franka robot,
showcasing its capability to handle high-dimensional
systems and generate energy-efficient motion policies on
configuration space manifolds defined by Riemannian
metrics. Furthermore, we explored how to combine this
motion policy with other objectives, such as constrained
motion and collision avoidance, through a task-prioritization
approach. This integration ensures that once the model is
trained to represent energy flows for a manipulator, it can be
re-used as a local motion policy in arbitrary environments.

In summary, the contributions of this work are as follows:
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Figure 2. (a) Configuration space manifold endowed with a Riemannian metric using inertia as weighting matrix (visualized as
isocontours of inverse matrices). The geodesics on this manifold correspond to minimal kinetic energy paths. By starting from a
given point (red star), we can solve the eikonal equation on this manifold, accounting for the distance field (b) and gradient flow (c),
which can then be used to backtrack geodesics in a very rapid manner (in milliseconds), see colored paths for examples of
retrieved trajectories. Here, the source point is fixed for visualization. By using the proposed Neural Riemannian Eikonal Solver
(NES), these points are given as inputs, meaning that geodesics from any starting point to any final point are considered altogether.
(d) Geodesic path (solid line) and Euclidean path (dashed line) on this manifold with corresponding robot motions.

* We extend the principle of configuration distance
fields (Li et al. 2024a) to Riemannian metric spaces,
enabling broader applications in robotics beyond
Euclidean distances, including energy-aware motion
planning.

* To construct distance fields on high-dimensional man-
ifolds, we propose a neural network-based parame-
terization of the Riemannian eikonal equation. This
approach enables continuous distance field represen-
tation and geodesic flow computation, supporting effi-
cient inference and generalizing to arbitrary point pairs
after training.

* We introduce a variant of our neural eikonal solver that
computes distance fields and gradient flows between
task and configuration spaces, providing minimal
geodesic distance solutions for inverse kinematics on
a given configuration space manifold.

* We validate the effectiveness of our method through
experiments with planar robots and a 7-axis Franka
robot, demonstrating the generation of energy-efficient
motion policies. Furthermore, we propose a task-
prioritization scheme to integrate these policies with
other objectives, showcasing the flexibility of our
approach.

The rest of the article is structured as follows: Section 2
provides the necessary mathematical background. Section 3
reviews related work. Section 4 details our proposed method
for solving the Riemannian eikonal equation to compute
distance fields and geodesic flows. In Section 5, we
extend this approach to map task and joint spaces for
inverse kinematics problems. Finally, Section 6 presents
experimental results demonstrating the effectiveness of our
method, and Section 7 concludes the paper with a discussion
of findings and future directions.

2 Background

Constructing a geodesic distance field requires solving a
Riemannian eikonal equation. In this section, we introduce
the mathematical background of Riemannian manifolds,
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geodesics, and the eikonal equation. We also describe the
Riemannian metrics on the configuration space manifolds
that correspond to kinetic energy and energy conservation
metrics.

2.1 Riemannian Metrics and Geodesics

A d-dimensional Riemannian manifold M is a topological
space equipped with a smooth metric tensor G () defined at
each point & € M. The metric tensor G() is a symmetric
positive definite matrix that defines the Riemannian metric,
allowing us to calculate distances and angles on the manifold.
For each point & € M, there exists a tangent space 1M,
which locally linearizes the manifold.

The inner product of two velocity vectors, u and v, in the
tangent space T M at a point & € M is given by

(u,v)g = u G(z)v. (1)

Using this inner product, we define the Riemannian norm of

a vector u as
ulle = v{u, u)q. ()

These definitions allow us to measure vector lengths and
angles within the tangent space T, M. With this, we can
define the Riemannian distance between two points, x; and
T2, on the given manifold as

t1
Uy, x2) = / ()l dt, 3)

to

where x(t) is a smooth curve connecting x; and o,
with x(t9) = «; and «(t;) = 2. The minimization of
this expression allows us to define geodesic distances and
shortest geodesic paths between two points on the manifold.
Correspondingly, the curve energy is defined as

I
E(wl,azg):§/ () 2 g dt. @)
to

Geodesics are curves that minimize this distance, which can
be derived from the second-order differential equation

i + Dl = 0, 5)
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where I‘é .. are the Christoffel symbols given by

i 1 1 (0Gy  0Gy  O0Gj
L 2Gil <(9{L‘k; + (?CIZJ‘ al'l ’ (6)

The Christoffel symbols describe how the coordinate
systems change across the manifold. In the equation, G,
represents the components of the metric tensor, while x;
are the components of the position vector . The geodesic
equation essentially governs the motion of points along the
shortest paths on the manifold, considering how the space
curves.

2.2 Laplace—Beltrami operator

The Laplace-Beltrami operator is a second-order differential
operator that generalizes the classical Laplace operator from
Euclidean space to Riemannian manifolds. This extension
is essential for analyzing functions on curved spaces, as it
accounts for the geometry of the manifold. The Laplace-
Beltrami operator allows us to compute the divergence of
the gradient in more general spaces and is given by the
expression

19 ")
Af = ﬁa (\/|G|Gjajf>7 (N

where G are the components of the inverse of the metric
tensor and |G| is the determinant of G.

An alternative, more compact form of the Laplace-
Beltrami operator is

2
AfG”’(8 fF’“af>, ®)

9,0; g

where Ffj are the Christoffel symbols formulated in (6).
This expression reveals that the Laplace-Beltrami operator
combines the second derivatives of f with terms involving
the Christoffel symbols to account for the curvature of the
manifold.

2.3 Eikonal Equation

The eikonal equation is a nonlinear first-order partial
differential equation (PDE) that models the propagation of
wavefronts. Given a speed model, solving this equation
provides the arrival time of the wavefront from a source
point, which corresponds to the distance field and the
continuous shortest path. The standard form of the eikonal
equation is

IVU|| = e(z) st Uls, =0, )

where U : 2 — d(x1,2) is a distance function defined
over a domain of R", and x; is the fixed source point
that defines the boundary condition. Here, ¢(x) represents
the speed model that influences the propagation of the
wavefront. The function U (z2) with fixed source point z; is
referred to as single-point solution. For global distance field
solutions, we can encode U (1, x2) as a function of arbitrary
source-goal point pairs.

In Euclidean space, the eikonal equation describes the
distance field, giving the shortest path between points.
However, this equation can also be generalized to other
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curved spaces such as Riemannian manifolds:

||VU||G’(m) = C(:l:) s.t. U|m1 =0, (10)
which describes the propagation of wavefronts on a curved
surface, representing the minimal distance between the
source and target points along the manifold endowed with
a Riemannian metric G.

A common numerical approach for solving eikonal equa-
tions is the Fast Marching Method (FMM). Like Dijkstra’s
algorithm, FMM relies on the discretization of the domain
and sequentially propagates information from the boundary
or the solved nodes on the mesh (Sethian 1996). This method
can be extended to non-Euclidean domains, allowing for
the computation of geodesic distances on manifolds (Kim-
mel and Sethian 1998). More recent advancements lever-
age machine learning techniques to approximate solutions,
bypassing the need for discretization and instead producing
continuous, differentiable representations of distance fields
in Euclidean spaces (Grubas et al. 2023) as well as on
nonlinear manifolds (Kelshaw and Magri 2024).

2.4 Robot Dynamics on Configuration Space
Manifolds

The Lagrange method is a common analytical approach for
deriving the motion equation of a dynamic system. The
Lagrangian function, which is used to derive the system’s
equations of motion, is defined as a scalar function

where T'(q, q) is the kinetic energy, P(q) is the potential
energy, and q is the joint angle in the configuration space.
The action functional, which describes the system’s total
action from time ¢y to t;, is obtained by integrating the
Lagrangian:

S(q) = / "L (q().4(8))dt. (12)

to
Among all possible paths that satisfy the boundary
conditions q (¢1) = g1 and q (t2) = g, the Euler-Lagrange
equation finds the path where each configuration q is at the
stationary point, by applying the calculus of variation:

d (0L oL 0
dt \ 9q oq
Substituting the Lagrangian L from the expression above into

the Euler-Lagrange equation results in the system’s equation
of motion under zero external generalized forces:

(13)

M(q)§+b(q,q)q+g(q) =T, (14)

where M (q) is the generalized mass matrix, b(g,q)
contains the Coriolis and centrifugal terms and g(q) is the
gravity vector. We introduce two Riemannian metrics that
correspond to the equations of motion:

2.4.1 Kinetic Energy Metric The kinetic energy of the
robot in generalized coordinates is given by

T(q.4) = 24" M(q)d,

; (1)



where M (q) denotes the inertia matrix, which also defines
the kinetic energy metric on the configuration space
manifold. This metric describes the equation of motion in
the absence of gravity and external forces:

M(q)G + b(q,q)g =0, (16)

The optimal energy trajectory corresponds to the solution
of the eikonal equation (10), with the Riemannian metric
defined by M (q), which is the minimal-length geodesic
path.

2.4.2 Jacobi Metric The Jacobi metric describes the
geometry of the configuration space under energy conserva-
tion, derived from the total energy equation

F=T(q.d)+ Pla) = 3" M(@)i+ Pla),  (17)

where F is the conserved total energy. The Jacobi metric is a
conformal transformation of the kinetic energy metric

1
2(E — P(q))
scaling the kinetic energy metric by a factor based on

the difference between the total and potential energy. The
resulting equation of motion is

M;(q) = M(q), (18)

M(q)d +b(q,q)q = g(q), (19)

where the gravitational term g(q) drives the motion of the
robot.

3 Related Work
3.1

Distance fields are fundamental representations in robotics,
due to their capacity to implicitly encode spatial information
while offering continuous, differentiable representations and
efficient computational properties. This versatility has led
to extensive exploration of signed distance fields (SDFs)
for representing scenes and objects (Millane et al. 2024;
Mari¢ et al. 2024), with demonstrated applications in
collision detection (Macklin et al. 2020), grasp synthesis (Liu
et al. 2021), motion generation (Ratliff et al. 2009), and
manipulation planning (Yang and Jin 2024). Moreover,
distance fields are increasingly utilized as latent geometric
features for downstream tasks such as dynamics models
learning (Driess et al. 2022), grasp pose estimation (Breyer
et al. 2021; Weng et al. 2022), and motion policy
generation (Fishman et al. 2023). Recent advances have
introduced distance fields encoded with joint angles (Liu
et al. 2022; Koptev et al. 2022; Li et al. 2023), enabling
efficient distance queries between arbitrary points and the
surfaces of articulated robots. Building on this foundation,
our previous work (Li et al. 2024a) extended the concept
of distance fields to the configuration space, wherein the
representation measures the minimal joint motion required
for a robot to reach specified points. The representation of
articulated robots using distance fields can be interpreted
as an implicit forward/inverse kinematics model, facilitating
the utilization of distance and gradient information directly

Distance Fields in Robotics
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in joint space. By inherently capturing joint positions and
velocities, this approach opens up new possibilities for
advancing applications in reactive motion planning and
control (Koptev et al. 2024).

3.2 Solving Eikonal Equation for Distance
Fields

The eikonal equation, which models wave propagation, is
widely used to compute the shortest paths from a source
point and finds applications in various domains, such as
seismic tomography (Lin et al. 2009), rendering (Ihrke et al.
2007), image segmentation (Alvino et al. 2007) and collision
avoidance (Garrido et al. 2013). Traditional methods
like the Fast Marching Method (FMM) (Sethian 1996)
solve the eikonal equation using numerical computations on
discretized volumetric grids. However, these approaches face
scalability challenges in high-dimensional spaces. Recent
advances in physics-informed neural network (PiNN) have
addressed these limitations by enabling grid-free solutions
through loss functions that utilize backpropagation for
gradient calculation (Raissi et al. 2019). This technique has
been effectively applied to solve the eikonal equation (Smith
et al. 2020). In robotics, the eikonal equation plays a critical
role in training or regularizing implicit signed distance
fields, which are used for shape representation (Gropp et al.
2020; Xie et al. 2022). The NTField model proposes to solve
neural eikonal equations for motion planning under collision
avoidance constraints in high-dimensional spaces (Ni and
Qureshi 2022, 2023), resulting in fast and scalable motion
generation. Beyond Euclidean space, the eikonal constraint
has been extended to manifolds (Ni and Qureshi 2024). The
Riemannian Fast Marching method (Mirebeau 2017) adapts
the eikonal equation to anisotropic metric spaces, while
the heat method (Crane et al. 2013) computes geodesic
distances efficiently by leveraging heat flow. Furthermore,
recent work has explored solving the neural eikonal equation
on manifold spaces to generate geodesics, expanding its
applicability to diverse domains (Kelshaw and Magri 2024).

3.3 Motion Planning on Manifolds

Recent advances in motion planning leveraged Riemannian
manifolds to tackle complex challenges. Obstacles are often
treated as features that reshape the geometry of the space,
allowing geodesics to naturally navigate around them and
achieve collision-free motion (Ratliff et al. 2015; Laux
and Zell 2021). Building on this concept, Riemannian
motion policies can be used in joint space using a pullback
metric (Ratliff et al. 2018). This framework was later
extended to Geometric Fabrics (Van Wyk et al. 2022)
by incorporating principles of classical mechanics for
more adaptable motion planning. Beyond static obstacle
avoidance, dynamic-aware motions have been explored
through kinetic energy-based Riemannian metrics (Jaquier
and Asfour 2022; Klein et al. 2023), with further extensions
to the Jacobi metric to account for both kinetic and
potential energy, enabling energy conservation paths (Albu-
Schiffer and Sachtler 2022). Additionally, Riemannian
metrics have been applied to human motion modeling, where
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geodesics represent minimum-effort paths in configuration
space (Neilson et al. 2015). These ideas have inspired
methods to transfer human arm motions to robots, facilitating
more natural and human-like behavior (Klein et al. 2022).
Unlike these approaches that focus on local policies
or optimizing for the shortest geodesics, our method
emphasizes constructing a comprehensive distance field over
the entire configuration space, allowing for more flexible and
efficient motion planning.

4 Riemannian Eikonal Solver

In this section, we present the methodology for solving the
Riemannian eikonal equation to compute geodesic distances
and flows on the configuration space manifold. We first
present the problem formulation, followed by an overview
of the Riemannian Fast Marching method. Lastly, we detail
our neural network parameterization for the solution of this
equation.

4.1

We consider a configuration space manifold M, whose
geometry is defined by a Riemannian metric G(q), where
q is a joint angle pose. The objective is to find the minimal
geodesic distance from a source point g5 to a goal point q.
To achieve this, we solve the Riemannian eikonal equation
with constant velocity ¢(q) = 1, namely

IVU(@)llg@q) =1 st

Problem Formulation

U(gs) =0, (20)

where U (q) is the minimal geodesic length on the manifold,
defined by (3). Here we use the single-point formulation that
omits g, for brevity. It is also referred to as the travel time T’
from g to g. The geodesic (¢) can be solved backward in
time with

Yt =V((#) st 1(T) = gs,

where V'(q) is a vector field (geodesic flow) retrieved by

7(0) = qs, (1)

V(g) = G(q)VU(q). (22)

Therefore, (20) can be written as
IVU(9) &g = VU(9) ' G(q)VU ()

(
= (G(a)"'V(9)) ' G(a)(G(a)"'V(a))
=V(q)"G(q)"'V(q)

= [V(@)llgg— =1
(23)
In this work, we consider the kinetic energy and Jacobi
metric on the configuration space manifold. Minimal-
length geodesics correspond to solutions of Riemannian
eikonal equations defined by G(q) = M(q) ! and G(q) =
M.](q)il.

4.2 Riemannian Fast Marching

Riemannian Fast Marching (RFM) is an extension of
classical Fast Marching Methods (Sethian 1996) that
aims to solve the eikonal equation on anisotropic and
inhomogeneous manifolds to compute geodesic distances
or travel times. It adapts the original algorithm to account
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for the curvature and local geometry of the manifold, as
described by the Riemannian metric. Like FMM, it tackles
single-point solutions of eikonal equations, proceeding
by discretizing the manifold into a grid and using a
finite difference scheme to approximate the solution. The
wavefront starts from a fixed source point g; and marches
outwards. RFM updates the travel times at each wavefront
point g. based on the local metric and the values at its
neighboring points:

Ulgn) = min (U(ge) + llgn — @lla@n) 24

where Q. represents the set of points on the evolving
wavefront, and g, € Q,, = N(q.) is a neighboring point.
The term ||@,, — ge||G(q.) denotes the Riemannian distance
between the two adjacent points, computed through (1) and
(2).

A detailed algorithm for calculating geodesic lengths on
configuration space manifolds is described in Algorithm 1.
After getting U(q), geodesics from arbitrary point g to the
source point g are retrieved efficiently by backtracking with
(21) and (22).

Algorithm 1: Riemannian Fast Marching

Input: A discretized grid map M
G(q): Riemannian metric
q,: Source point
¢(q) = 1: Speed model
Output: U(q): Geodesic length from g, to g € M
Initialization:
setU(gs) =0
set U(q) = oo for all ¢ # gs.
set Q. = {qs} Wavefront
Propagation Step:
while there exists ¢ € M where U(q) = co do
for all q. € Q. do
Find Q,, = N(qe)
for all q, € Q,, do
if U(gy,) = oo then
L Update U(q,,) through (24)
Q.=Q.U {Qn}

L Qe:Qe\{qn}

T;rmination:
For all points g € M, U(q) # oo

Figure 2 illustrates the use of RFM for constructing
distance fields (b) and gradient flows (c) on the configuration
space manifold defined by the kinetic energy metric (a). (d)
shows a 3D visualization of the constructed geodesics, with
a comparison to the Euclidean counterpart. It is worth noting
that the formulation of the eikonal equation can naturally
handle collision avoidance, by assigning zero-speed velocity
to points inside obstacles O, namely

cla) = {‘1)

Figure 3 shows the results of RFM for the distance field
and optimal paths in the presence of obstacles. Although

forq € O

) (25)
otherwise.
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Figure 3. Solution of the Riemannian eikonal equation in case
of obstacles (black contours) calculated using fast marching. (a)
distance field. (b) Geodesic flow.

obstacles exist, the approach still finds global optimal paths
without introducing additional computation complexity.

As a finite difference-based method, RFM operates a
single pass on the grid, allowing efficient computation while
ensuring accurate numerical results. However, the reliance
on a grid or a mesh limits its scalability to high-dimensional
systems such as robot manipulators. Therefore, we present a
neural network parameterization to handle this problem, as
discussed in the next section.

4.3 Neural Riemannian Eikonal Solver

The Neural Riemannian Eikonal Solver (NES) is inspired by
recent developments in solving PDEs through deep neural
networks. Different from classical grid-based approaches,
it operates in a continuous space without the need for
discretization. Gradients are calculated through network
backpropagation by automatic differentiation, allowing
for high-dimensional manifolds with continuously varying
metrics. Instead of seeking single-point solutions, NES
allows for global geodesic distances for arbitrary joint
configuration pairs, where U(qgs, g.) is a function of both
source g, and goal g, points, thanks to the flexible structure
provided by neural networks. Therefore, the Riemannian
eikonal equation to be solved is written as

U(qs> QS) =0. (26)

queU(QSaqe)”G(qe) =1, st

We introduce additional physical constraints that this
equation needs to satisfy:

Symmetry. The geodesic distance from a source point g,
to the destination point g., and in the other direction are
identical, following the symmetry property that U(gs, q.) =
U(qe,qs). It also applies to their partial derivatives:
Va.U(gs,9.) = Vq,U(ge, qs). To impose this constraint,
we define a symmetric function u, " (Ni and Qureshi 2022)

Ue(qa Qe) + u@(Qea qs)
2 b

sym

Ug (qsa qe) =

27

where ug is the output of neural network parameterized by
6. This equation ensures the symmetry of the network output
with respect to permuted source-to-goal pairs.
Non-negativity and non-singularity. The geodesic
distance between distinct points is strictly positive while
it is zero for coincident points. It can be simply achieved
by adding a non-negative activate function 0. However, the
geodesic distance should approach zero for points close to
one another, which might cause singularity issues, leading to
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numerical errors in distances and gradients for points close
to the source point. To overcome this problem, we follow the
approach in (Kelshaw and Magri 2024; Smith et al. 2020)
that factorizes the distance function as

UO(QSaQe) = qu - qSHU (useym(qs’qe)) , (28)
where o(-) is a non-negative activation function and ||q, —
gs|| is the Euclidean term between two joint configurations
for non-singularity. This equation guarantees the non-
negativity of geodesic distance and implicitly constrains the
gradient pointing to the destination.

The parameterization involves a multi-layer perception
(MLP) neural network, with a batch of concatenated
joint configuration pairs g5 and g. as input and outputs
the predicted geodesic distance Upg(gs,q.). Ground truth
geodesic distances are unknown and the neural network
is supervised through the physical law defined by the
Riemannian eikonal equation (26). Therefore, for each
source-to-goal point pair, we minimize the loss function

2
Leik(qs, ge) = (V. Uo(gs, qe)llgq) — 1), (29)

to construct the geodesic distance field. The partial
derivatives V4, Ug(qs, g.) are computed through automatic
differentiation. In addition, to produce a smooth geodesic
distance field, we add a regularization term based on the
Laplace-Beltrami operator (8) which defines the divergence
of the vector field:

17 a2U(qque) k 3U(Qs;‘1e)>
ILliv sy e =GY _Fi' .
¢ (q 4 ) ( aQe,i8QC,j J 8QC,/€
(30)

The Laplacian term promotes minimal curvature and local
flatness, smoothing sharp or irregular regions and reducing
gradient oscillations. Consequently, the resulting path is
more continuous and stable when backtracking along the
gradient to compute a geodesic. Therefore, the total loss
function is defined as

N
1
Luowa = 77 ;(Leik + ML), 31)

where N is the batch size and A is a hyperparameter
controlling the smoothness.

5 Neural Riemannian Eikonal Solver for
Inverse Kinematics (NES-IK)

In previous sections, we demonstrated the solution of
the Riemannian eikonal equation corresponding to the
minimized distance curve on the configuration space
manifold and presented a neural network parameterization
for solving this equation in high dimensions. Our
approach reveals how geodesic flows between arbitrary joint
configuration pairs on the configuration space manifold
under physical constraints defined by the Riemannian metric.
However, in robot manipulation, the primary focus is often
on the pose of the end-effector or points of contact in task
space that will interact with the environment, instead of
the joint angle configurations. With the approach that we
presented so far, it means that we would first have to solve the
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inverse kinematics problem and then backtracking minimal
distance paths. However, the flexibility of our NES provides
a better solution: we can directly study how the gradient
flows across different spaces, particularly from the current
joint angle in configuration space to a target position or
orientation in task space, which satisfies robot manipulation
problem specifications. The target end-effector pose x; and
current joint configuration g. can be viewed as source and
destination points so that the minimal-length geodesic path
can be backtracked from q. to x. Therefore, we reformulate
the neural network parameterization (28) to map two spaces:

Ug(.’]?s, qe) = ”f(qe) - ms“ O'(UQ(.’BS, qe))a (32)

where f(-) is the forward kinematics function. Similar
to (28), the activation function o(-) ensures non-negativity
of ug while ||f(g.) — x| is a Euclidean distance term in
task space. The symmetry property does not hold because x
and q. are variables from different spaces. Consequently, we
use the original network output ug instead of the symmetric
version ug’™. In addition, a specific pose x in task space
might correspond to multiple joint positions solving inverse
kinematics f~! due to the redundancy of the manipulator.
Therefore, the corresponding Riemannian eikonal equation
we aim to solve is

IVq. U(s, qe)llGq.) =1 st.U(xs,q) =0,q € ().

(33)
This equation describes the same physical constraints
as (26) but with a modified boundary condition. Specifically,
the distances between x; and q are set to zero for all inverse
kinematic solutions q € f~*(x5), which are constrained by
the Euclidean term || f(qge) — @s||. Accordingly, the loss
functions become
Le(@s,a.) = (|Va.Uo(®s,@e)llGa) —1)°, (34

and

Lo (25, q0) = G <32U(ms,qe) ok 3U(ms,qe)) |

aqe,iaQe,j o aQE,k (35)

This demonstrates that we can solve the same Riemannian
eikonal equation on the partial derivative Vg, U for
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Trajectories

Difference

©
Figure 4. Solutions of Neural Riemannian Eikonal Solver (NES). (a) and (b) show the distance field and geodesic flow with the
same parameters as Riemannian Fast Marching (RFM). (c) compares the difference with Fig. 2 (b) (c), where geodesic flows
produced by NES and RFM are shown in yellow and green respectively. These three figures show that the neural network
parameterization can solve the Riemannian eikonal equation, with results similar to RFM. (d) shows trajectories from source
(green) to goal (orange) points and vice versa, highlighting the generalizability and symmetry of NES for arbitrary joint angle
configuration pairs.

(d)

inverse kinematics that minimizes geodesic distance on
configuration space manifold. The only distinction lies in
the forward kinematics function f(-), which is introduced
as a map between two spaces and factorizes the neural
network output. In other words, the neural network learns
both the solution to the Riemannian eikonal equation and
the inverse kinematics simultaneously. The eikonal term
is explicitly learned through the loss function, while the
inverse kinematics problem is implicitly learned through the
factorization term || f(g.) — xs||. It is worth highlighting the
two advantages of the proposed NES-IK:

* End-to-end differentiability. The network leverages
gradient backpropagation through the forward kine-
matics function f(-) to solve the inverse kinematics
problem, optimizing the distance between the current
end-effector position and the target point.

¢ Grid-free approach. Due to the nonlinear mapping
between the task space and the configuration space,
explicitly initializing a grid is infeasible without first
solving the inverse kinematics problem. Consequently,
traditional grid-based methods are ill-suited for this
task. In contrast, the neural network addresses
this challenge effectively by utilizing automatic
differentiation to compute gradients.

NES-IK enables the analysis of geodesic flows across task
and configuration spaces. It identifies robot motions that
follow a minimal-geodesic-length curve on the configuration
space manifold for inverse kinematics. In the case of
redundant manipulators, when multiple solutions exist, this
approach can automatically select the one with the shortest
geodesic length as defined by the Riemannian metric.
There are three key properties of this approach that differ
from traditional optimization-based methods for inverse
kinematics:

e Metric awareness. The approach for solving inverse
kinematics typically involves the use of the Gauss-
Newton algorithm, resulting in the computation of
a Jacobian pseudoinverse. This method iteratively
computes a least-squares solution by minimizing the
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Figure 5. Given a kinetic energy metric, (a) and (b) show the distance field and geodesic flow for the target position (2.0, 2.0) in
task space by using NES-IK. Here, we do not specify the target joint angles (red stars). These joint angle targets are instead
learned implicitly by the neural network. (c) shows four robot motions in task and configuration spaces (with different colors). We
can observe that the motion solution for the task in orange color differs from the other three, which is automatically computed in

accordance to the distance field and geodesic flow.

Euclidean error between the desired and actual end-
effector positions. Instead, our solution considers a
metric space for robot motions.

* Holistic solution. Inverse kinematics typically focus
on local solutions for joint movements. In contrast,
our approach considers the optimality of the whole
trajectory that corresponds to the minimum geodesic
path of the configuration space manifold.

* Real-time. Although optimization-based approaches
can also be used to find solutions for entire trajectories,
they typically require iterative computations, which
can be limiting for real-time applications. Instead,
we leverage neural networks to approximate geodesic
flows as policies. It allows us to maintain computa-
tional efficiency while ensuring that the robot’s move-
ments are optimal solutions and can be responsive to
dynamic changes.

6 Experiments

In this section, we demonstrate the capabilities of our
NES for the energy-aware motion generation. We begin
with numerical experiments, presenting quantitative and
qualitative results for a 2D manipulator, and extend the
analysis to high-dimensional systems using a 7-axis Franka
robot. Subsequently, we validate our approach through robot
experiments conducted in both simulation and real-world
settings. Lastly, we explore an extension to task-prioritized,
energy-efficient motion policies, illustrating the integration
of our method into broader motion planning frameworks.

6.1 Numerical Experiments

We first conducted numerical experiments to evaluate
the effectiveness of NES in energy-efficient trajectory
generation. Given source-to-goal pairs, we compute the
gradient of the neural network output with respect to the
current joint configuration, Vg4 Ug, as the joint velocity
of the robot. Consequently, minimum-length geodesics
are iteratively generated by following the gradient flow,
corresponding to energy-optimal paths on the configuration
space manifold.
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6.1.1 2D Planar Robot We consider a planar manipulator
with two links, each having a length of [y =l =2 and
masses m; = mo = 1 concentrated at each articulation. The
joint angle ranges from — to 7 for both links. Consequently,
the corresponding inertial mass matrix M (g) and potential
energy P(q) can be expressed as:

M(a)— (mq +mo)l? + mal3 + 2malyla cos(qe)  mal3 + malils cos(qa)
(@)= mal2 + malyls cos(go) mal? ’
(36)
P(q) = mylysin(q1) + ma(l1 sin(q1) + l2 sin(q1 + ¢2)),
(37)

where ¢; and ¢o are two joint angles. We adopt an MLP
model to train NES, with concatenated source-to-goal pairs
as input: [gs,qe] for C-space planning and [z, q.] for
inverse kinematics.

To demonstrate the solution of the eikonal equation
corresponding to optimal energy paths on the configuration
manifold, we compare trajectories generated by RFM and
NES against Euclidean paths. We define two Riemannian
metrics on the configuration space manifold: kinetic energy
metric and Jacobi metric. In contrast to RFM which needs
to reinitialize the algorithm to solve the eikonal equation
when changing the source point, NES does not require
recalculation and computes a batch of geodesics for random
source-to-goal point pairs through the gradient computed
from the neural network’s backpropagation. We report
geodesic lengths U calculated from (3) for configuration
pairs categorized as NEAR (||g. — gs|| < 7), and FAR
(Il|ge — gs|| > 27) in Table 1. This table demonstrates that
our neural network parameterization effectively solves the
Riemannian Eikonal equation for energy-optimal paths and
corresponding geodesic flows. Notably, as the distance
between configuration pairs increases, the gap between
Euclidean and energy-aware geodesic lengths widens,
highlighting the importance of energy-aware path planning.
NES outperforms RFM due to its continuous representation,
without discretizing the configuration space into the grid.
Qualitative results of NES for optimal kinetic energy paths
are visualized in Figure 4, where (a) and (b) show the
energy field and geodesic flow with the same parameters
as those in the RFM setup of Figure 1, with differences
highlighted in (c). Analogous trajectories are presented in
(d) for arbitrary configuration pairs from source to goal and
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Table 1. Geodesic lengths on Riemannian manifold for 2D and 7D robot motions on configuration space manifold.

kinetic energy metric Jacobi metric
Robot Type Method NEAR AR Average NEAR FAR Average
Euclidean Path | 5.27+2.98 | 1740 £3.48 | 9.12£5.42 | 423 £2.63 | 15.20+4.36 | 7.38£4.75
C-Space RFM 5.056£2.57 | 1540+£3.28 | 796 £4.15 | 3.94+£2.10 | 11.26 £2.36 | 6.10 £ 3.15
2D robot NES 4.89+259 | 156.20£3.23 | 7.82£4.15 | 3.87£2.13 | 11.24+2.38 | 6.03 £ 3.18
K Gauss-Newton | 2.23+1.49 | 819+£1.74 | 5.22+2.78 | 1.71£1.15 | 6.28+1.42 | 3.98+2.16
NES-IK 1.92+£095 | 7.06+1.63 | 453£2.35 | 1.46+0.73 | 521 £1.26 | 3.39+1.80
C-Space Euclidean Path | 2.01 £0.70 | 5.94+1.73 | 4.07£1.66 | 3.03£1.66 | 7.48£1.64 | 5.57+2.08
7D Franka robot NES 1.94+0.70 | 5.60+1.46 | 3.84+1.51 | 2.73+1.41 | 6.49+1.44 | 499+1.79
IK Gauss-Newton | 2.16 +0.41 | 532+£1.79 | 3.33+£1.13 | 3.35£0.84 | 6.18 £1.02 | 441+ 1.55
NES-IK 1.34+£0.39 | 3.55+£0.71 | 2.75£1.29 | 2.12+0.11 | 493£0.75 | 3.54+1.23
back, emphasizing that our approach can generate symmetric We employed another MLP with size

paths and generalize to various configuration pairs.

In Figure 5, we illustrate the application of NES-IK in
computing energy-efficient inverse kinematics solutions. The
target position of the end-effector is set to x; = (2.0, 2.0),
shown in (c). This inverse kinematics problem has two
possible solutions for the joint angles: ¢; = 0,¢2 = 1.57
and q; = 1.57,g2 = —1.57. Rather than explicitly solving
the inverse kinematics problem, our approach generates the
geodesic flow that iteratively guides the solution towards
the minimal geodesic length, as shown in (a) and (b). Our
method learns an energy-aware motion policy for inverse
kinematics, with the joint angles solved iteratively and
implicitly by the neural network. In (c), four robot motions,
which start from various joint configurations but end at
the same end-effector position, are visualized in both task
space and joint space. Due to the system’s redundancy,
multiple joint configurations can correspond to the same task
space position, resulting in different geodesic flows starting
from various joint angles. Consequently, the orange curve
also represents an optimal energy solution but arrives at a
different target joint configuration, distinguishing it from the
other three trajectories. Quantitative comparisons are also
provided in Table 1, where NEAR and FAR indicate the task
space distance ||f(ge) — ;|| < 2.0 and | f(q.) — x| >
4.0, respectively. We chose the well-known Gauss-Newton
approach as the baseline and scale the line search parameter
to meet the manifold constraint. From the result, NES-IK
demonstrates better motion policies for optimal energy paths
on both kinetic energy and energy conservation manifold.

6.1.2 7-axis Franka Robot We use the 7-axis Franka
robot with one degree-of-freedom redundancy to highlight
the effectiveness of our approach for complex mechanical
systems. The inertial mass matrix and potential energy are
derived from the robot’s Unified Robot Description Format
(URDF) file using the Composite Rigid Body Algorithm
(Walker and Orin 1982) and we modified the implementation
by (Johannessen et al. 2019) to enable batch computation in
PyTorch. In addition, we observed that the determinant of
the Jacobi metric M ;(q) calculated using (18), approaches
zero and leads to substantial gradients. To address this,
we scaled the determinant by 100 to stabilize the gradient
field. In addition, to exploit the manifold’s local geometry
structure, we adopt a geometry-aware sampling strategy,
the Riemannian Manifold Metroplic Adjusted Langevin
Algorithm (RM-MALA), to sample input point pairs on the
configuration space manifold. A detailed description of this
sampling strategy is discussed in Appendix A.1.
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[1024, 512,256, 128,128] to evaluate NES’s performance
on the 7-axis Franka robot. During training, we randomly
sampled 50’000 joint configurations q. as the edge of
the wavefront points, from points generated through the
RM-MALA algorithm. The model was trained for 10’000
epochs with the Adam optimizer at a learning rate of 0.001,
requiring approximately four hours on a single NVIDIA
RTX 3090 GPU.

In the context of inverse kinematics, NES is parameterized
separately for position and orientation as

Up™(®s,qe) = 117 (qe) — 28| o (ug” (s, qc)),
U (2, q.) = arceos (/" (q.) 22") o (ug (. 4.)),
(38)

where || fP*(q.) — 5™ || represents the Euclidean distance
in R3, and arccos (f*i(g.) ®") corresponds to the
geodesic distance on the S manifold. Here, f°(q.) and 2"
are unit quaternions representing the orientation. The overall
loss is defined as the sum of the losses induced by UJ* and
the gradient flow is computed as a linear combination of
gradients from U}™ and Ug", ensuring that both position and
orientation contribute to the result.

To evaluate the performance of our approach, we
follow the pipeline described in Section 6.1.1, randomly
sampling 100 source-to-goal pairs and comparing NES-
generated geodesic lengths with baselines, on configuration
manifolds endowed with both kinetic energy and Jacobi
metric. Due to the high dimensionality of the robot’s
configuration, the RFM baseline was unable to solve
this problem. Results are presented in Table 1. For
the standard Riemannian eikonal equation, NEAR and
FAR denote configuration space distances, with |lg. —
gs|| <7 for NEAR and ||g. — gs|| > 27 for FAR. In the
context of the inverse kinematics task, NEAR refers to
task space distances where |[|fP*(q.) — 57| < 0.5 for
position and arccos (f*(ge) @) < 7/2 for orientation,
while FAR denotes distances where || f?%(g.) — x5 || >
1.0 for position and arccos (f*(ge) @) > 7/2 for
orientation. Results demonstrate that NES consistently
generates energy-efficient paths for the 7-axis Franka
robot given source-to-goal pairs in C-space, surpassing the
Euclidean paths baseline. NES-IK also shows a remarkable
performance in inverse kinematics compared to the Gauss-
Newton method. Notably, for both Riemannian metrics, the
difference between baselines and NES grows as source-to-
destination distances increase, highlighting the effectiveness
of NES in generating energy-efficient paths for larger robot
movements, where energy efficiency is more critical.
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To evaluate the computation time efficiency, we measured
NES’s inference time on an NVIDIA RTX 3090 GPU and an
AMD Ryzen 7 6800H CPU, with results shown in Table 2.
The reported times include neural network inference, inertial
mass matrix computation, and automatic differentiation for
geodesic flows. For simplicity, we present one iteration
computation time only for the standard Riemannian eikonal
problem with source-to-goal joint configurations, which
is identical to NES-IK due to their shared pipeline. The
computation times are relatively low and stable across both
CPU and GPU platforms, with batch sizes from 1 to 103,
supporting real-time applications. Thanks to the parallel
processing capability of the GPU, efficiency is maintained
even with large batch sizes. Most of the computational
time is spent on inverting the Riemannian metric matrices
to retrieve geodesic flows. Notably, with a batch size of
1, CPU inference time is under 0.01 seconds, enabling
high-frequency updates of source-to-goal pairs, essential for
reactive, real-time planning and control.

Table 2. Time consumption (ms) of NES.

Batch Size Kinetic energy metric | Jacobi metric
CPU GPU CPU | GPU
1 0.007 0.019 0.010 | 0.027
10 0.008 0.020 0.012 | 0.028
102 0.010 0.020 0.014 | 0.028
103 0.031 0.019 0.035 | 0.028
10% 0.242 0.022 0.249 | 0.031
10° 3.001 0.111 3.131 | 0.121
6.2 Robot Experiments

We conducted robotic experiments to demonstrate the
efficacy of our approach in generating energy-aware motion
policies for C-space motion planning and inverse kinematics
problems, see accompanying video. As discussed in the
previous section, the gradient produced by neural networks
indicates the direction in which the energy flows. Therefore,
we employ a joint velocity controller to track the gradient
flow. To ensure stability and safety during the robot’s motion,
the velocity is smoothed using the velocity at the previous
time step, and the norm is scaled accordingly.

Figure 6 presents key frames of the robot trajectories
generated by our NES on two configuration space manifolds,
compared with the Euclidean path. For clarity, we show
the joint positions for these three trajectories in Figure 7.
While each trajectory shares the same start and goal points,
the NES-generated paths display more natural behavior with
curved trajectories in C-space, illustrating energy-efficient
solutions on the configuration space manifold. The Euclidean
path, represented by a straight line, is the shortest path in
Euclidean space but not in Riemannian space. In addition, it
requires the most time steps to reach the goal, indicating the
longest geodesic length on the configuration space manifold.

Similarly, robot motions and joint positions for energy-
efficient inverse kinematics are visualized in Figures 8 and
9. Although the target joint configuration is unknown, the
gradient flow produced by our NES allows the robot to reach
the solution iteratively, while accounting for the minimal
geodesic distance path. Therefore, these three trajectories are
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(c) Euclidean path.
Figure 6. Snapshots of robot motions for C-space path
planning. Initial and final frames are displayed in solid color.
Intermediary frames are transparent.
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Figure 7. Joint positions for Euclidean and NES-generated
paths.

distinct from one another and lead to different final solutions
due to the robot’s redundancy. Notably, for the NES-IK path
with Jacobi metric (Figure 8 (b)), we observed that the robot
tends to lower its body to reduce potential energy, thereby
transferring it into kinetic energy. This behavior also occurs
in the C-space trajectory generated by NES (Figure 6 (b)),



12

Journal Title XX(X)

s
(¢) The solution of the Gauss-Newton method.

Figure 8. Snapshots of robot motions for inverse kinematics.
Initial and final frames are displayed in solid color. Intermediary
frames are transparent.

showing similar motion characteristics to that of humans and
providing evidence of energy-efficient motion.

To further validate that geodesic paths on manifolds
correspond to energy-efficient robot motions, we simulate
the robot’s movements to calculate energy and torque
consumption. Following previous setups, we randomly
initialize 100 start-to-goal pairs. For each pair, we control
the robot to reach the goal with a joint velocity controller.
NES and the baselines produce the input joint velocity, and
we scale it to given Riemannian manifolds. At each time
step, we record the current joint position and velocity to
compute energy consumption. Additionally, the total torque
is calculated by summing the motor torques applied to each
actuator during the simulation. To ensure fair comparisons,
we filter out trajectories that exceed joint limits or fail to
reach the goal. Table 3 presents the results for our approach
and the baselines on two manifolds. NES demonstrates
superior performance in energy efficiency, showing lower

Prepared using sagej.cls

—— Gauss-Newton Path

——- NES-IK Path (Jacobi Metric)

ENED ENED W @
Time step Time step Time step

s
10 o
20 P
05 K N
215y /| N
001 S
g 250 /
05 == - 78

10

gs
s

15

o w W w@e W
Time step Time step Time step

Figure 9. Joint positions for inverse kinematics solved by
Gauss-Newton and NES-IK with kinetic energy metric and
Jacobi metric.

energy consumption and torque compared to the baselines
on two Riemannian manifolds in both C-space motion
planning and inverse kinematics tasks. The variations in
energy and torque consumption during the robot’s motion
are illustrated in Figure 10, using the same trajectories
visualized in Figure 6 and Figure 8. In Figure 10 (a), the
robot moves on a manifold defined by the Jacobi metric,
where the summation of kinetic and potential energy is
expected to remain constant. Instead of directly moving
toward the goal, the NES-generated path initially reduces
the robot’s potential energy, converting it into kinetic energy
and resulting in a curved trajectory. This strategy requires
fewer time steps to reach the goal, leading to reduced energy
and torque consumption. Similarly, Figure 10 (b) illustrates
kinetic energy-efficient trajectories for the inverse kinematics
problem, where the kinetic energy remains constant at
each time step. The solution provided by NES-IK exhibits
efficient utilization of kinetic energy: although it requires
higher torque at the beginning to maintain the kinetic energy,
it reduces energy and torque consumption later, generating a
more efficient path to reach the goal.

6.3 Task-prioritized Energy-efficient Motion
Policy

Previous experiments have demonstrated NES’s ability to
generate energy-efficient motions, which is particularly
beneficial for applications where energy consumption
efficiency is critical. However, many real-world applications
require some form of task prioritization, such as collision
avoidance or adherence to environmental constraints.
Although the eikonal equation offers the flexibility to
modify the speed field to satisfy various constraints, re-
parameterizing the neural network for each new energy
field and corresponding geodesic flow is computationally
demanding and impractical in dynamic environments where
constraints frequently change. An alternative approach is to
combine NES with other motion policies to handle multiple
objectives, balancing optimality with increased flexibility
and adaptability for online control. These motion policies
can be integrated within the Riemannian Motion Policy
(RMP) framework (Ratliff et al. 2018), leveraging the
principles of operational space control (Khatib 1987). In this
setup, the energy-efficiency criterion becomes a secondary
task, operated in the null space of the primary task, enabling
the robot to perform complex tasks while conserving energy
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to optimize energy usage without disrupting the primary task
requirements.

6.3.2 Obstacle avoidance The objective of this task is to
maintain energy-efficient motion while preventing collisions
with surrounding obstacles. Building on prior work (Li et al.
2024b), we utilize a distance function and its gradient to
monitor proximity to obstacles. When an obstacle remains at
a safe distance, the robot follows the NES-generated energy-
efficient policy. However, if an obstacle enters a predefined
safety zone near the obstacle, the collision avoidance strategy
constrains NES within the nullspace, ensuring obstacle
avoidance without impacting the primary task.

(b) NES-IK and Gauss-Newton paths with kinetic energy metric

Figure 10. Variation of energy and torque consumption among
different paths and Riemannian metrics.

Table 3. Energy and torque consumption during robot’s motion.

Kinetic Energy Metric Jacobi Metric
Energy Torque Energy Torque
C.Space | Euclidean Path | 1.5340.62 | 13.4£6.89 | 2.82£0.85 | 1284517
pace | NES 0.62+0.18 | 5.14+1.92 | 1.42+0.46 | 6.68 +2.54
k| Gauss-Newton | 0.2040.09 [ 1.56£0.62 | 051 £0.23 | 2.124+ 1.08 |

NES-IK [ 0.15£0.07 | 1.26 £ 0.56 | 0.37 £0.11 | 1.75 £ 0.83 |

costs. Given a function f(q) that constrains the joint position
g, the joint velocity must satisfy the constraint J;(g)g = 0
to maintain the robot’s movement within this manifold. Here,
Ji(g) = %«J; is the Jacobian of the constraint function. By
projecting the energy-aware policy @energy generated by NES
into the null space of Jy, we ensure that energy-efficient
motions occur only within the degrees of freedom available
after fulfilling the primary task requirements, namely
q= (I - J}Jf)q-energy; (39)
where J} is the pseudoinverse of the Jacobian matrix.

We integrate two typical motion strategies with our
energy-efficient motion policy: constrained motion and
obstacle avoidance. The former task usually involves task-
space constraints, such as maintaining a specific end-effector
position and orientation, while obstacle avoidance requires
planning a collision-free trajectory to ensure safety. The
experimental setups are detailed below:

6.3.1 Constrained motion In this setup, the robot’s end-
effector is restricted to moving within a specified plane,
maintaining an orthogonal orientation. The plane is parallel
to the horizontal plane at z = 0.3, with the vertical axis of
the end-effector aligned consistently throughout the motion.
To achieve energy-efficient movement, our NES policy is
designed to operate within the nullspace of the primary task.
The Jacobian of the constraint function occupies a subspace
within the full Jacobian matrix of the robot, allowing NES
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Figure 11. Trajectories generated by task-prioritized
energy-efficient motion policy and baseline. Top: Constrained
motion in which the end-effector is perpendicular to a plane.
Bottom: Obstacle avoidance. Red and blue curves depict the
Euclidean and energy-efficient paths operating in the nullspace
of each principal task.

To evaluate the performance of task-prioritized energy-
efficient motion policy, we first sample 100 joint config-
uration pairs far from each other (with angular distance
llge — gs|| > 2m) that satisfy these two constraints then
run the NES algorithm to compute energy-aware policies
and project them into the nullspace of the principal tasks.
Table 4 presents the experimental results on average geodesic
lengths. It is clear that the introduction of constraints will
increase geodesic lengths on the configuration space man-
ifold as the space of feasible solutions is restricted. Nev-
ertheless, the energy-optimal motion policy generated by
NES remains effective in minimizing energy consumption
compared to Euclidean paths. Figure 11 compares trajec-
tories of task-prioritized motions with/without our energy-
aware motion policy, demonstrating the effectiveness and
flexibility of NES in combination with other motion policies
for real-time, adaptive, and energy-efficient robot control.
Additionally, except for the formulation of nullspace control,
the geodesic flow of NES can also be viewed as non-linear
dynamical systems (Khansari-Zadeh and Billard 2011) and
can be easily integrated with either control frameworks such
as model predictive control (MPC) (Koptev et al. 2024)
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Table 4. Geodesic lengths for task-prioritized energy-aware
motion policies on Riemannian manifolds.

Type Jacobi Metric Energy Conservation Metric
Euclidean NES Euclidean NES
No Constraint 4.95+1.00 | 4.62+0.95 | 6.79+1.43 6.50+1.44
Obstacle 5.43+1.41 | 495+1.32 | 7.28%1.56 6.66+1.57
Constrained Motion | 5.30£1.51 | 5.05+1.61 | 7.47+1.56 6.95+1.58

or learning paradigms (Florence et al. 2022) for energy
conservation purpose.

7 Discussion and Conclusion

In this article, we generalized the use of the geodesic distance
field in the configuration space manifold by employing
intrinsic Riemannian metrics. This is accomplished by
solving the eikonal equation on these manifolds, which
enables the computation of geodesic distance fields
and gradient flows. To address the challenges of high-
dimensional configuration spaces for robot manipulators,
we propose a neural network-based parameterization. This
representation facilitates efficient computation of distances
and geodesics, enabling globally length-minimizing paths.
We extend the Neural Riemannian Eikonal Solver (NES) to
compute geodesic flows across both task and configuration
spaces, resulting in length-minimizing inverse kinematics
solutions on the configuration space manifold. Our approach
is validated in an energy-aware motion planning task, where
the robot’s dynamic properties are expressed as Riemannian
metrics. The proposed method demonstrates its efficiency
and ability to generate energy-efficient paths for a 7-axis
Franka robot. Furthermore, we discuss the integration of our
geodesic flow computations with other motion policies in a
task-prioritized framework.

Our approach computes distance fields directly using
intrinsic geometry, with a Riemannian metric, eliminating
the need for extrinsic geometry construction. The gradient
flow, derived from the distance field, enables efficient
propagation along minimal-distance paths by iteratively
backtracking geodesics. Unlike traditional optimization-
based methods, our approach directly computes optimal
geodesic solutions between arbitrary source and goal point
pairs. Moreover, the resulting gradient flow can function as a
real-time policy, offering greater flexibility and scalability.
This structure allows seamless integration with other
planning, control, and optimization techniques by leveraging
the distance and gradient information. Additionally, the
neural network encoding allows the implicit geodesic
distance to serve as a latent feature that can be integrated
into various learning frameworks.

The geodesic distance field is derived from the
Riemannian eikonal equation, which encapsulates physical
laws governing the system. Therefore, our network is trained
to satisfy these physical constraints in a self-supervised
manner, without the need for generating training data. In our
energy-aware motion generation application, this equation
models the robot’s dynamic properties. However, it can also
be adapted to represent other attributes such as stiffness
or manipulability ellipsoids. By defining these properties
geometrically within the configuration space manifold, the
approach provides a deeper understanding of the robot’s
behavior and performance. Furthermore, this geometric

Prepared using sagej.cls

representation can support robot co-design by informing
adjustments to improve functionality and optimize system
performance.

A key limitation of our approach lies in training the
neural Riemannian eikonal solver. Once a model is trained,
it can be reused multiple times, enabling efficient, real-time
applications. However, the absence of prior data, coupled
with the strongly anisotropic nature of the Riemannian
metric, presents significant challenges. Indeed, although our
formulation theoretically allows for global optimal solutions,
its practical performance can sometimes unexpectedly fall
short. In future work, we aim to optimize the training
process for improved robustness and accuracy. In addition,
we plan to apply our approach to broader metric spaces
beyond Riemannian manifolds. The eikonal equation can
also be extended to other differential equations for wider
robot applications, such as the general equation of motion
for robot dynamics (Lutter et al. 2018), value functions for
dynamical programming, and reinforcement learning.
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A Appendix

A.1  Geometry-Aware Sampling

We present the Riemannian Manifold Metropolis-Adjusted
Langevin Algorithm (RM-MALA) for geometry-aware
sampling on the Riemannian manifold. A detailed algorithm
is shown in Algorithm 2.

A.1.1 Target Probability Density Function (PDF) In each
tangent space, an inﬁnitesimal space is induced by the
Riemannian metric dM(q) = 1/|G(q)|dg, bridging the
target probability density functlon (PDF) p(q) with respect
the Lesbergue measurement dq, to the PDF p(q) with respect
to dM(q) by

r(q) = p(q)
A.1.2 Sampling on the Riemannian manifold The objec-

tive is to sample variables on the Riemannian manifold from
the PDF p(q), while taking into account the local geometric

|G(q)l. (40)
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structure. Given the Riemannian metric tensor, we adopt the
Metropolis-adjusted Langevin Monte Carlo algorithm on the
Riemannian Manifold (Girolami and Calderhead 2011). The
algorithm describes the Langevin diffusion process on the
Riemannian manifold in a stochastic differential equation
(SDE)

dq(t) =
with  V,L(q(t)) the gradient

equipped by the Riemannian metric tensor V,L(q) =
G~ '(q) V4L(q), where

SVeLla®) +db0), @D

representing natural

L(q) = log p(q). (42)

The equation of the Brownian motion db(t) is given by

Z « 0q; (
+ (\/Gﬂ(q(t))db(t))i :
43)

where b(t) is the normal Brownnian motion. Assuming p(q)
is a constant, the natural gradient is expressed using (40):

dbi (1) = (a(t))/1G(a(®))]) at

VaL(g) = G H(@)VqVIG(q)] (44)
In (41), db(t) defines the Brownian motion on the
Riemannian manifold. After applying the first-order Euler
integration with the fixed step size e to the SDE (41), we
have

q(t+1) = u(g(t). ) + (VG Ha)=(1), (49
where p(q(t),€) is the mean of the Gaussian distribution
associated with the sampled variable

ulalt).) = = ait) + S (G (a) VoL (a(h))
D
-3 (@) e 6y )
oS (e tam), o (o) L)
(46)

and z is a random variable sampled from the standard normal
distribution z ~ A (2|0, I). Finally, the probability of the
sampled variable follows the Gaussian distribution

p(a(t+1)lq(t)=N (q(t +1)|n(q(t), ), ' (a(1)) -

(47)
The acceptance of the sampled variable is finally calculated
with

a=L(q(t+ 1)) +logp(q(t)|q(t + 1)) —
—logp(q(t +1)[q(t)).

G~

L)
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Algorithm 2: RM-MALA

Input: G(q): Riemannian metric function
L(q): Proposed likelihood function

TNpurn: BUrn-in steps

TNsample: Sample steps

e: Step size

Output: Q: A set of sampled points q
Initialization:

set Random points g € [—m,T)
Sampling Step:

for i from 1 to npym + Nsample do
Sample new point @yew through (45)

if gye & [—7, ) then
Gnew = arctan? (sin (gnew) 5 0S (Qnew))
Calculate the proposed log-likelihood log £(q)
and log L(gyey ) through (42)
Calculate the transition likelihood p (gnew|q) and
P (| Gnew) through (47)
Calculate the acceptance ratio « through (48)
Draw a random number ¢ € [0, 1)
if e® > t then

q = Qnew
if 1 > ny,,, then
| Add gpew into set @

else
| @new is not accepted
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