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Abstract— Developing autonomous robots capable of learn-
ing and reproducing complex motions from demonstrations
remains a fundamental challenge in robotics. On the one hand,
movement primitives (MPs) provide a compact and modular
representation of continuous trajectories. On the other hand,
autonomous systems provide control policies that are time
independent. We propose in this paper a simple and flexible
approach that gathers the advantages of both representations
by transforming MPs into autonomous systems. The key idea
is to transform the explicit representation of a trajectory as an
implicit shape encoded as a distance field. This conversion from
a time-dependent motion to a spatial representation enables the
definition of an autonomous dynamical system with modular
reactions to perturbation. Asymptotic stability guarantees are
provided by using Bernstein basis functions in the MPs, rep-
resenting trajectories as concatenated quadratic Bézier curves,
which provide an analytical method for computing distance
fields. This approach bridges conventional MPs with distance
fields, ensuring smooth and precise motion encoding, while
maintaining a continuous spatial representation. By simply
leveraging the analytic gradients of the curve and its distance
field, a stable dynamical system can be computed to reproduce
the demonstrated trajectories while handling perturbations,
without requiring a model of the dynamical system to be
estimated. Numerical simulations and real-world robotic exper-
iments validate our method’s ability to encode complex motion
patterns while ensuring trajectory stability, together with the
flexibility of designing the desired reaction to perturbations.
An interactive project page demonstrating our approach is
available at https://mp-df-ds.github.io/.

Index Terms— Movement Primitives, Splines, Distance Fields,
Autonomous Systems, Dynamical Systems

I. INTRODUCTION AND RELATED WORK

Learning complex motion skills by optimization or
through demonstrations remains a fundamental challenge
in robotics, which can computationally be addressed from
different perspectives. Movement primitives (MPs) offer a
compact and modular framework for encoding, generalizing,
and reproducing demonstrated trajectories by superposition
of basis functions, see [1] for a review. Various MP formu-
lations have been proposed, including dynamical movement
primitives (DMPs) [2], [3], Gaussian mixture regression
(GMR) [4], probabilistic movement primitives (ProMPs)
[5], kernelized movement primitives (KMPs) [6], or Fourier
movement primitives (FMPs) [7].

Conventional MPs are often limited in their ability to
robustly handle perturbations and dynamically adapt to en-
vironmental changes, due to their explicit representation of
the signals based on a time or phase variable. This downside
has motivated the development of alternative autonomous
systems formulations to provide time-independent dynamical
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Fig. 1: From movement primitive (left) to distance field (mid-
dle) to dynamical system (right). Left: A S-shape trajectory is
parameterized using the concatenation of 2 quadratic curves.
Control points are shown in blue. Middle: Distance field of
the quadratic spline. The gradient of the distance field at
a given point (in red) is perpendicular to the curve at its
closest point (in orange). This property is used to compute
the distance field analytically and build the stable dynamical
system (Right). Red and black bullets are a random start
point and the equilibrium point at the end of the trajectory.

system representations, inherently robust to perturbations,
at the expense of complexifying the problem of modeling
long and/or high-dimensional movements. Examples include
SEDS [8], CLF-DM [9], Imitation Flow [10], and Neural
Contractive Dynamical Systems (NCDS) [11], which all
ensure stability and adaptability by learning or imposing
constraints on the system dynamics.

We propose in this paper a simple and flexible approach
that gathers the advantages of both representations by trans-
forming MPs into autonomous systems. Our work follows the
same foundational principle of using autonomous systems for
robust motion generation, but differs by avoiding learning-
based modeling altogether. Instead, we directly leverage
the geometric properties of a reference trajectory encoded
as a distance field, allowing us to define an autonomous
system with asymptotic stability guarantees through analytic
computation. A related concept has been explored in contact-
aware tasks such as robotic polishing, where surfaces and
normal vectors guide the design of dynamical systems [12].
We apply the idea to full trajectory encoding beyond surface
interaction.

The core idea is to reinterpret the demonstrated trajectories
as implicit spatial representations encoded as distance fields.
Rather than representing motion as a sequence of time-
parameterized states, we encode the shape of the trajectory in
space. The resulting field defines the shortest distance to the
reference trajectory at each spatial location, enabling motion
generation as gradient descent over this field.

Asymptotic stability is ensured by incorporating Bernstein
basis functions into movement primitives (MPs), representing
trajectories as concatenated quadratic Bézier curves. This
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formulation enables the analytical computation of distance
fields, eliminating the need for point sampling or heuristic
weighting [13]. By bridging conventional MPs with distance
fields, this approach provides smooth and precise motion
encoding within a continuous spatial representation. Lever-
aging the analytical gradients of both the curve and its
distance field, a stable dynamical system can be directly
derived to reproduce demonstrated trajectories and handle
perturbations, without requiring explicit system modeling or
learning techniques.

The motivation of representing structure implicitly in
continuous space is inspired by recent advances in Signed
Distance Fields (SDFs) and Neural Radiance Fields (NeRFs)
[14], [15], offering compact and continuous representations
for shapes and scenes. These techniques have influenced
robotics, particularly in motion planning and scene under-
standing [16], [17]. Our work in this paper instead fo-
cuses on representing 1D trajectories embedded in high-
dimensional spaces. By exploiting this lower-dimensional
structure, we derive closed-form distance fields from con-
catenated quadratic Bézier curves, enabling smooth, precise,
and efficient computation of spatial gradients for motion
generation.

This spatial formulation offers several advantages. It elim-
inates the need for time synchronization, naturally supports
modular responses to perturbations, and provides a con-
tinuous and robust encoding of motion by avoiding the
discretization artifacts common in numerical methods.

The main contributions of this paper are:

• We propose a novel use of distance fields as an im-
plicit trajectory representation for autonomous systems,
shifting from conventional time-dependent trajectory
encoding to a spatial formulation guided by distance
gradients.

• We derive an analytical method for computing distance
fields to reference trajectories represented by concate-
nated quadratic Bézier curves. This approach enables
efficient and accurate computation of distance and gra-
dient fields while preserving the ability to represent
complex motion patterns.

• We show that combining movement primitives with
their corresponding gradient fields naturally yields au-
tonomous dynamical systems with provable asymp-
totic stability—without requiring system modeling or
learning-based estimation.

We validate our approach through numerical simulations
and real-world robot experiments, demonstrating its effec-
tiveness in encoding complex motions, generating stable and
smooth trajectories, and adapting to external perturbations.
Additionally, we highlight the simplicity and flexibility of
our framework in:

• integrating multiple demonstrations through simple field
operations;

• scaling to high-dimensional settings such as robot joint
spaces;

• enabling adaptive motions that achieve a balance be-
tween robustness to perturbations and generalization to

new trajectories.

II. REPRESENTING TRAJECTORIES AS DISTANCE FIELDS

Given a reference trajectory F whose points are given by
f(t) : [0, T ] → RD parameterized by t ∈ [0, T ], where T
is the trajectory length and D is the spatial dimension, the
distance field d(x) at any point x ∈ Rd is defined as:

d(x) = min
t∈[0,T ]

∥f(t)− x∥, (1)

where ∥ · ∥ denotes the Euclidean norm. This function
assigns each point in space a scalar value corresponding
to its shortest distance to the trajectory. The gradient of
the distance field, ∇d(x), provides the direction of steepest
ascent. Given a point x, the closest point on the trajectory
is given by

xproj = x− d(x)∇d(x). (2)

In other words, one obtains the projection by subtracting
from x the displacement d(x)∇d(x), which points from the
trajectory toward x. The gradient ∇d(x) has the unit norm
∥∇d(x)∥ = 1.

While distance fields can be evaluated numerically by
discretizing the trajectory and evaluating the minimum dis-
tance from sampled points, this approach can introduce
discretization errors and result in non-smooth transitions
between points. Instead, we present an analytical distance
computation by representing the trajectory as Bernstein basis
functions.

A. Quadratic spline as Movement Primitives

Splines are widely used as movement primitives due to
their ability to provide smooth and flexible trajectory repre-
sentations. We use here the term quadratic spline to define
the concatenation of quadratic Bézier curves, corresponding
to piecewise Bernstein polynomial functions that ensures
continuity in both position and velocity. Each segment of
a quadratic spline is defined over an interval [0, 1] and is
parameterized as a weighted sum of basis functions

fi(t) = (1− t)2 w1
i +2(1− t)tw2

i + t2 w3
i , t ∈ [0, 1], (3)

where w1
i , w2

i , and w3
i are the control points of the i-

th segment. Quadratic splines can approximate complex
trajectories by decomposing the motion into localized poly-
nomial segments. To ensure smooth concatenation between
consecutive segments, continuity constraints are imposed
with

w3
i = w1

i+1, w2
i−w3

i = w1
i+1−w2

i+1, w2
N = w3

N . (4)

The first constraint ensures positional continuity at the seg-
ment boundaries. The second guarantees consistent gradients,
maintaining C1 continuity across the trajectory. The last
enforces zero velocity at the end of the trajectory by setting
the last two control points of the final Bézier segment to
be equal so that the derivative of the curve—and hence the
velocity—vanishes at the endpoint.



This formulation can be compactly expressed in matrix
form as

f(t) = ϕ(t)w, ϕ(t) = T(t)BC, (5)

where f(t) represents the concatenated quadratic splines,
T(t) = [1, t, t2] encodes the quadratic polynomial basis, B
is the corresponding coefficient matrix, and C enforces the
continuity constraints. A detailed derivation of this formula-
tion can be found in [18].

The parameters w determine the shape of the quadratic
spline and are estimated to best fit a given reference trajec-
tory. Given a set of trajectory points {pj}Mj=1 sampled at time
instances {tj}Mj=1, we formulate the parameter estimation
as an optimization problem that minimizes the discrepancy
between the spline representation and the reference trajectory
f(t). Specifically, we solve

min
w

N∑
j=M

∥f(tj)− pj∥2 , (6)

where f(t) is the spline-based reconstruction of the trajectory
at t, and ∥ · ∥ denotes the Euclidean norm. The optimization
problem can be solved efficiently using least squares. By
expressing the trajectory in the matrix form

P = Φw, (7)

where P = [p1, . . . ,pM ]⊤ is the matrix of trajectory points
and Φ is the corresponding basis function matrix evaluated
at {tj}, the optimal parameters are obtained by solving

w = (Φ⊤Φ)−1Φ⊤ P, (8)

where (Φ⊤Φ)−1Φ⊤ is the Moore-Penrose pseudoinverse of
Φ. The quadratic spline is then reconstructed using (5) for a
smooth, continuous-time trajectory representation.

B. Distance Fields of Quadratic Splines

By minimizing c(t) = 1
2 (fi(t)−x)⊤(fi(t)−x) w.r.t. t, we

get the closest point fi(t) to x on the curve. By differentiating
c(t) and equating to zero, we get

(fi(t)− x)⊤ ḟi(t) = 0, (9)

where ḟi(t) denotes the derivative of the spline with respect
to t. We can observe in the above equation that the closest
point on the curve satisfies the orthogonality condition be-
tween the residual vector fi(t)−x and the tangent vector of
the spline ḟi(t).

Substituting the quadratic spline formulation

fi(t) = (1− t)2 w1
i + 2(1− t)tw2

i + t2 w3
i

ḟi(t) = −2(1− t)w1
i + (2− 4t)w2

i + 2tw3
i ,

(10)

in (9) results in a cubic equation

α3
i t

3 +α2
i t

2 +α1
i t+α0

i = 0, (11)

where the coefficients α3
i ,α

2
i ,α

1
i ,α

0
i are determined by w1

i ,
w2

i , w3
i , and x. Therefore, the roots of this cubic equation

within the interval [0, 1] correspond to the candidate closest

points on the spline. The minimal distance is then computed
as

di(x) = min
{
∥fi(t∗)− x∥ : t∗ ∈ [0, 1]

}
. (12)

If no roots satisfy t∗ ∈ [0, 1], the closest point occurs at
one of the segment boundaries, t = 0 or t = 1. The
overall minimal distance to a trajectory composed of multiple
segments is given by

d(x) = min
{
di(x) : i = 1, . . . , T

}
, (13)

where di is the minimal distance for the i-th segment, and
T is the total number of segments.

C. Fusing Multiple Trajectories

An advantage of representing motion using distance fields
is the simple formulation to handle multiple demonstra-
tions, achieved through the union operation of distance
fields. Specifically, given a set of reference trajectories
{fm(t)}Mm=1, each represented as an individual distance field
dm(x), the combined distance field is computed using the
union operation

d(x) = min
m∈{1,...,M}

dm(x), (14)

ensuring that at each point x, the distance field retains the
minimal distance to any of the given trajectories.

D. From Distance Fields to Dynamical Systems

In this section, we demonstrate how the distance field
representation can be utilized to design stable dynamical
systems in a structured and efficient manner. Given a distance
field d(x), which represents the shortest distance from a point
x to a reference trajectory encoded by quadratic splines, we
define the dynamical system

ẋ = −α ∇d(x) + β ẋproj, (15)

where ∇d(x) is the gradient of the distance field, point-
ing away from the trajectory. xproj is the closest point on
the trajectory, computed using gradient projection (2). ẋproj
represents the velocity along the trajectory, obtained by the
analytic derivatives of the quadratic spline. α ⩾ 0, β ⩾ 0 are
gain parameters that regulate attraction to the trajectory and
movement along it, respectively. The first term in the system
ensures attraction toward the trajectory, while the second
term facilitates smooth movement along it. To analyze the
stability of this system, we introduce the following Lyapunov
function

V (x) =
1

2
d2(x). (16)

Taking the time derivative and using the property ḋ(x) =
∇d(x)⊤ẋ, we obtain:

V̇ (x) = d(x)ḋ(x)

= d(x)∇d(x)⊤(−α ∇d(x) + β ẋproj)

= −α d(x)∥∇d(x)∥2 + β d(x)∇d(x)⊤ẋproj

= −α d(x) + β d(x)∇d(x)⊤ẋproj.

(17)



Fig. 2: The accuracy of quadratic splines in modeling trajectories improves as the number of segments increases. The red
curve represents raw data from the LASA dataset, while the white curve shows trajectories encoded using quadratic splines.
The blue components illustrate the superposition weights, and the colormap in the background represents the retrieved
distance field.

Since d(x) ≥ 0, the first term in V̇ (x) is always non-
positive. To ensure V̇ (x) ≤ 0, we analyze the second term
d(x)∇d(x)⊤ẋproj in two cases:

Case 1: Interior Point on the Trajectory. According to
(9), if xproj lies in the interior of the trajectory, the gradient
∇d(x) is orthogonal to the velocity:

∇d(x)⊤ẋproj = 0. (18)

Case 2: Boundary Point on the Trajectory. If xproj is at
the trajectory endpoint, we have ẋproj,T = 0. If it is at the
start of the trajectory, the velocity satisfies:

∇d(x)⊤ẋproj,1 ≤ 0. (19)

Otherwise, the movement along the trajectory would de-
crease d(x), contradicting the distance field definition. There-
fore, in all cases, V̇ (x) ≤ 0, ensuring global stability.
Furthermore, V̇ (x) = 0 only when d(x) = 0, meaning the
system converges asymptotically to the trajectory.

To achieve a balance between guiding the system toward
the desired trajectory and ensuring smooth motion along it,
we introduce an inverse barrier function to modulate the
influence of the gradient term with

β =
1

1 + λ d(x)
, α = 1− β, (20)

where λ > 0 is a parameter to balance the two terms. In
essence, larger values of the distance field d(x) correspond to
regions farther from the trajectory, prompting the dynamical
system to exert a stronger influence to steer the state back
toward the trajectory. Conversely, smaller distance values
indicate proximity to the trajectory, causing the system to
reduce its corrective force and allow for smoother motion
along the path.

Fig. 3: Comparison between quadratic and cubic splines in
terms of trajectory encoding accuracy.

Fig. 4: Computation time in terms of various numbers of
segments and dimensions.

III. EXPERIMENTS

We evaluated the proposed approach through numerical
simulations and real-world robotic experiments. Our evalua-
tion is guided by the following key questions: Q1: How effi-
ciently can quadratic splines capture and reproduce complex
motion patterns? Q2: How do the analytical distance and gra-
dient fields contribute to motion generation in autonomous
systems? Q3: How robust and generalizable is the approach
in handling perturbations and enabling adaptive motion re-
sponses? We address each of these questions through detailed



TABLE I: Average reconstruction error for different basis
functions.

Method 3 7 12 17 22

Piecewise 7.97± 2.76 3.40± 1.10 1.97± 0.63 1.39± 0.44 1.08± 0.35

B.P. 6.18± 3.65 0.96± 0.60 0.28± 0.13 0.14± 0.06 0.10± 0.04

RBF 16.51± 4.35 1.79± 0.61 0.26± 0.08 0.12± 0.04 0.05± 0.02

Fourier 5.18± 3.52 0.56± 0.33 0.19± 0.08 0.09± 0.04 0.05± 0.02

Q.S. (ours) 6.18± 3.65 0.88± 0.53 0.23± 0.10 0.11± 0.04 0.06± 0.02

analysis and discussion of our experimental results.

A. Numerical Experiments

We first assess how well quadratic splines encode trajec-
tories through numerical experiments on the LASA hand-
written dataset.

Metrics. The quality of reconstruction is measured using
the average ℓ2 norm error

e =
1

N
∥Φw − P ∥, (21)

where Φw represents reconstructed points on the spline, p is
a vector containing the original points of the trajectory and
N is the number of points of P .

Accuracy. To answer Q1, we compare the quadratic
splines (Q.S.) with other basis functions, including piecewise
constant basis functions, a single high-order Bernstein poly-
nomial (B.P.), radial basis functions (RBF), and Fourier basis
functions. For a fair comparison, we encode the trajectory
using the same number of parameters. A piecewise quadratic
spline with N segments has N + 2 parameters in total, so
we use N + 2 basis functions for each comparison method.
Experimental results are reported in Table I.

Although the quadratic spline only uses piecewise
quadratic polynomials for trajectory encoding, it achieves
comparable performance with other commonly used move-
ment primitives. This is a benefit from the flexibility pro-
vided by the spline, which allows local adjustments to be
made without affecting the entire trajectory (see Figure
2). The piecewise line segments also enable distance field
computation, however, it is limited by the low degree of
the polynomials and the discontinuity of the derivatives.
Therefore, the quadratic spline is preferable as it can encode
trajectories expressively while providing an analytical form
for distance computation. We also compare the results with
cubic splines in Figure 3, a concatenation of higher-order
Bernstein polynomials which is also widely used in trajectory
encoding. The cubic spline with N segments has 2N + 2
parameters in total in the case of C1 continuity. While cubic
splines perform better with the same number of segments,
they offer no significant advantage over quadratic splines for
an equivalent number of parameters.

Computation Time. We evaluate the computational cost
of our approach across varying numbers of segments (N )
and dimensions (D). Specifically, we measure the time
required to compute distances, gradients, and time phases for
2,500 points relative to a quadratic curve in parallel using

Fig. 6: Dynamical systems using either numerical or an-
alytical distance fields. The left plots show the produced
trajectory. The right plots show the instability caused by
discontinuities in the numerical gradient, learning to an
unstable dynamical system.

PyTorch. Results are shown in Figure 4. Notably, for typical
robotic settings (e.g., N ≤ 20, D ≤ 10), our method is
highly efficient—requiring only ∼2 ms on a single NVIDIA
GeForce RTX 3060 laptop GPU and less than 10 ms on an
AMD Ryzen 7 6800H CPU. Even with significantly larger
N and D, the method remains efficient, particularly on the
GPU. Further performance gains are possible due to the
method’s simplicity and ease of implementation.

Flexibility and Stability. To answer Q2, we evaluate
the dynamical system derived from the distance field by
analyzing its behavior with varying λ values (Figure 5).
A larger λ increases the influence of the distance field,
enhancing resistance to disturbances. In contrast, smaller
λ values allow for smoother curvature following, resulting
in less rigid trajectory adherence. Adjusting λ directly im-
pacts the system’s responsiveness, stability, and convergence.
The results demonstrate the flexibility of the distance field
representation in dynamically shaping autonomous system
behaviors. Figure 5 shows results on various shapes from
the LASA dataset with λ = 3.0.

To demonstrate the importance of using an analytical
distance gradient in the design of globally stable dynamical
systems, we compare our method with an alternative that uses
a numerically computed distance field. The numerical field is
obtained by uniformly sampling points along the trajectory
and finding the closest point for each query. The results are
shown in Figure 6. The comparison reveals that numerical
distance fields can introduce instability, as their gradients
may not remain perpendicular to the trajectory, causing the
dynamical system to exhibit jerky motion or become stuck.
In contrast, our analytically derived gradients ensure smooth,
stable behavior throughout the trajectory.



λ = 0.5 λ = 1.0 λ = 3.0

Angle C-shape Sine

Line J-shape Trapezoid

Fig. 5: Dynamical systems derived from the distance field.
Blue curves represent demonstrations. Purple curves depict
generated paths starting from the 4 corners of the image. Top
row: Effect of varying λ. Other rows: Results for different
trajectories from the LASA dataset.

B. Robot Experiments

To answer Q3, we carry out two experiments with a 7-axis
Franka robot:

1) Disturbance Handling: In this experiment, the robot
was tasked to maintain two demonstrated S-shaped and L-
shaped trajectories in task space with the dimension D = 3,
as shown in Figure 7a-top. Disturbances are introduced by
a person physically moving the robot. In the left panel,
disturbances were introduced along the trajectory, and the
robot remains stationary after the disturbance. In the right
panel, disturbances caused displacement along the normal
direction of the reference trajectory; in response, the manip-
ulator returned to the closest point on the reference trajec-
tory, demonstrating its adaptability to unexpected deviations.
We also demonstrate the capability of disturbance handling
through a pick and place task where the demonstrated
trajectory is defined in joint space with the dimension D = 7
in Figure 7a-bottom.

2) Human-Robot Collaboration: We demonstrate our ap-
proach in a human-robot collaboration task where a person
hands an object to a robot. Demonstrations from both the
human (in task space) and the robot (in joint space) are
collected and encoded using quadratic splines. The total
dimension for this problem is D = 3+7 = 10. A RealSense
D415 camera tracks the human hand and estimates the task
phase using the proposed approach, allowing the robot to
move accordingly. Despite disturbances from the human
and vision system, the robot maintains consistent motion,
anticipating the task and adjusting its position. This adaptive

(a) Disturbance handling.

(b) Human-robot collaboration.

Fig. 7: Real-world experiments.

response improves efficiency by enabling the robot to predict
and react to human movements. Figure 7b illustrates this
interaction, showing the robot’s continuous adaptation to the
user’s hand position, see accompanying video.

IV. DISCUSSION AND CONCLUSION

We have demonstrated that trajectories encoded using
quadratic splines can be systematically converted to implicit
distance fields, which can further be converted to stable
autonomous systems. The key approaches described in this
paper involve the least-squares method to represent a tra-
jectory as a quadratic spline, and solving a cubic equation
for the corresponding distance field, which are very simple,
straightforward and intuitive. The approach is adaptable to
disturbances, dynamic environments and high-dimensional
problems. While our primary focus has been on the adaptive
and robust reproduction of demonstrations, the integration of
movement primitives with distance fields opens new avenues
for broader applications.

Limitations. In the approach presented in this paper, we
re-estimate a phase/time variable t at each step without
taking into account the previous estimates of t, in order to
obtain a time-independent autonomous system. This design
introduces sensitivity to initial conditions: small variations
in the starting point may cause the system to converge to



different segments of the trajectory. While acceptable in
some scenarios, this behavior may be undesirable in appli-
cations requiring more deterministic behavior. Future work
could investigate how the trace of intermediary phase/time
variable estimates could be exploited to provide control
commands as a trade-off between a fully myopic and a
time-dependent system, similarly to model predictive con-
trol. Another possible limitation is that the encoded and
retrieved path only has C1 continuity. While this is good
enough in many applications, further extensions could be
considered by doubling the dimensionality of the trajectories
by representing both the position and velocity profiles with
the quadratic spline, which would allow the problem to be
extended to acceleration commands, resulting in paths with
C2 continuity. This extension would also enable the handling
of trajectories that cross in position space but that do not
cross in the full state space.

Future work. One promising extension for future work
is the formulation of optimal control problems to learn the
spline keypoints, whose results are then re-interpreted as
distance fields. Beyond deterministic representations, dis-
tance fields could also be extended into a probabilistic
framework capturing uncertainty in trajectory execution. By
modeling the distribution of distance values, this approach
could be used to enhance motion planning under uncer-
tainty, enabling safe and adaptive behaviors in unstructured
environments. Furthermore, distance fields could be learned
directly from multimodal inputs, such as images, videos,
or vision language models, allowing robots to infer motion
trajectories from high-level visual or textual descriptions.
These extensions illustrate the versatility of distance fields as
a motion representation module that can be integrated into
many learning, planning, control, and optimization problems.
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