
gafro: Geometric Algebra for Robotics

Tobias Löw∗†, Philip Abbet∗ and Sylvain Calinon∗†

∗Idiap Research Institute, Martigny, Switzerland
†EPFL, Lausanne, Switzerland

Abstract—Geometry is a fundamental part of robotics and
there have been various frameworks of representation over the
years. Recently, geometric algebra has gained attention for its
property of unifying many of those previous ideas into one
algebra. While there are already efficient open-source implemen-
tations of geometric algebra available, none of them is targeted at
robotics applications. We want to address this shortcoming with
our library gafro. This article presents an overview of the imple-
mentation details as well as a tutorial of gafro, an efficient C++
library targeting robotics applications using geometric algebra.
The library focuses on using conformal geometric algebra. Hence,
various geometric primitives are available for computation as well
as rigid body transformations. The modeling of robotic systems
is also an important aspect of the library. It implements various
algorithms for calculating the kinematics and dynamics of such
systems as well as objectives for optimization problems. The
software stack is completed by Python bindings in pygafro and
a ROS interface in gafro_ros.

I. INTRODUCTION

Robotics contains very complex problems due to the large

variety of different platforms, environments, tasks and inter-

actions. Traditionally, to tackle these complexities in a formal

manner, research in robotics introduces different abstraction

layers that aim to enable precise reasoning on a semantic level.

Different mathematical representations of these abstractions

may lead to expensive conversions or even to violations of

assumptions in the form of singularities or discontinuities. In

robotics, often the problems are fundamentally problems of

geometry, hence it is very beneficial to choose representations

that intuitively allow to incorporate the geometry of the

problem, since the problem and its geometric structure are

deeply interconnected.

Geometric algebra (GA) can be considered a high-level

mathematical language for geometric reasoning. As such it is

very well suited for general problems in robotics. GA unifies

the geometric understanding of screw theory, the thoroughness

of Lie Algebra and the simplicity of spatial algebra. The repre-

sentational advantage of geometric algebra is that its elements

directly represent geometric objects that can be manipulated

by algebraic operations. Complex relations and algorithms can

be formulated in a simplified and coordinate-independent way.

Furthermore, the existence of different geometric primitives in

This work was supported by the State Secretariat for Education,
Research and Innovation in Switzerland for participation in the European
Commission’s Horizon Europe Program through the INTELLIMAN
project (https://intelliman-project.eu/, HORIZON-CL4-Digital-Emerging
Grant 101070136) and the SESTOSENSO project (http://sestosenso.eu/,
HORIZON-CL4-Digital-Emerging Grant 101070310).

Point

tracking

Plane

tracking

Option

Point 1

Pointing

Line

tracking

Circle

tracking

Option

Point 2

Constraints

Fig. 1: RViz visualizations of the Franka robot reaching var-

ious geometric primitives. These visualizations were created

using the tools from gafro_ros.

the same algebra allows for the uniform definition of distance

functions, which we will later show in the examples for

solving inverse kinematics problems. Dual quaternion algebra

is closely related to GA due to their common roots in Clifford

algebra. GA is, however, more general and can be defined over

any dimension.

The story of geometric algebra in engineering is the story

of an algebraic framework that greatly simplifies well-known

equations, the most popular example being the Maxwell

equations, which reduce to a single equation in geometric

algebra. In [1], a survey is presented detailing this story of the

development of GA in engineering applications and how it is a

powerful geometric language that connects and unifies many

mathematical concepts. Another recent survey showing how

the applications of GA include physics, electrical engineering,

computer graphics to quantum computing, neural networks,

signal processing and robotics can be found in [2].

Although geometric algebra has great potential for model-

ing, learning and control in robotics, it has not been widely

adopted in robotics research. One reason for this is the lack

of easy-to-use libraries for robotics applications, while at the

same time tools based on matrix algebra are very mature

and readily available. We aim to change that by providing a

ready-to-use geometric algebra library for robotics that can

be used with the most popular programming frameworks,

namely C++, Python and ROS. In our gafro library we

provide an implementation of the GA variant of algorithms

to compute the kinematics and dynamics of robots. These

algorithms are well studied and have been implemented in



various software frameworks. It is important to point out that

geometric algebra can be used to compute these important

quantities that are classically computed using matrix algebra,

while also offering a richer toolset, i.e. it also includes tools for

geometric reasoning that matrix algebra does not have. These

tools include the construction of geometric primitives that are

covariant under motion. The primitives can directly be used for

projections, reflections and intersections. All operations do not

depend on the choice of an origin, i.e. they are coordinate-free

definitions. We demonstrate in this article how these geometric

primitives can be used in robotics to facilitate and unify the

formulation of control laws and optimization problems.

In this article we want to explain the implementation details

of our geometric algebra library gafro and show how to use it

for common robotics problems such as inverse kinematics and

optimal control. We compare gafro with existing libraries for

geometric algebra and robot modeling. These libraries can be

seen in Table I. Our aim is to make geometric algebra more

accessible for robotics research by providing this ready-to-use

library.

TABLE I: Comparison of different libraries.

(a) Overview of other geometric algebra libraries.

Garamon [3] a generator of C++ libraries dedicated to geometric
algebra

GATL [4] C++ library for Euclidean, homogeneous/projective,
Minkowski/spacetime, conformal, and arbitrary geo-
metric algebras using template meta-programming

Versor [5] (fast) generic C++ library for geometric algebras

GAL [6] C++17 expression compiler and engine for comput-
ing with geometric algebra

Gaigen [7] code generator for geometric algebra

Gaalet [8] C++ library for evaluation of geometric algebra ex-
pressions offering comfortable implementation and
reasonable speed by using expression templates and
meta-programming techniques

Gaalop [9] software to optimize geometric algebra files

TbGAL [10] C++/Python library for Euclidean, homogeneous/pro-
jective, Minkowski/spacetime, conformal, and arbi-
trary geometric algebras representing blades (and
versors) in their decomposed state to scale to scale
high dimensions

(b) Overview of other libraries for robot modeling.

DQ Robotics [11] library for robot modeling and control based on
dual quaternion algebra

Pinocchio [12] state-of-the-art rigid body algorithms for poly-
articulated systems

Raisim [13] multi-body physics engine for robotics and AI

KDL [14] application independent framework for modeling
and computation of kinematic chains

Mujoco [15] physics engine for model-based optimization

RBDL [16] highly efficient code for both forward and inverse
dynamics for kinematic chains and branched
models

This article is organized as follows: in Section II we

give a brief introduction to geometric algebra, in Section

III we explain the implementation details of the algebra, in

Section IV we compare gafro to other GA and robot modeling

libraries and finally in Section V we demonstrate various

applications and give a tutorial on how to use the library.

The documentation and the links to all repositories can be

found on our website https://geometric-algebra.

tobiloew.ch/gafro.

II. GEOMETRIC ALGEBRA

In this section, we give a brief introduction to the mathemat-

ical background of geometric algebra. A more comprehensive

introduction can be found in [17] including applications in

engineering and [18] presents applications in robotics. We also

recommend the website https://bivector.net, which

contains many useful introductory videos.

Formally, geometric algebra Gp,q,r is defined as an associa-

tive algebra over the quadratic space R
p,q,r, where p, q, and

r are the number of basis vectors that square to 1, -1, and 0,

respectively and therefore the dimension is n = p+ q+ r. Its

algebraic product is called the geometric product

ab = a · b+ a ∧ b, (1)

and is the combination of an · inner and an ∧ outer product.

The inner product is related to the metric of algebra, whereas

the outer product spans vectors to k-vectors, where k refers

to the number of linearly independent basis vectors. These

elements form the algebraic basis of a geometric algebra and

are called basis blades. There are 2n = 2p+q+r basis blades

for a given geometric algebra Gp,q,r. A general element in

GA is called a multivector and is the linear combination of

basis blades. The specific variant that we are using is called

conformal geometric algebra (CGA) and is denoted as G4,1.

For the introduction of the conformal model in the algebra,

CGA uses a change of basis which introduces the two null

vectors e0 and e∞, which can be understood as a point at

the origin and one at infinity, respectively. In total there are

32 basis blades of grades 0 to 5 in CGA with the structure

that can be seen in Figure 2. This high dimension appears to

lead to an increased complexity, in practice; however, these

multivectors usually are very sparse, a fact that we exploit in

our implementation.

The blades of geometric algebra effectively lead to com-

putations with subspaces of the underlying vector space that

can be used to represent geometric primitives directly within

the algebra. These primitives in CGA include points, lines,

planes, circles and spheres. Their construction utilizes the

outer product of points

X = P1 ∧ . . . ∧ Pn, (2)

where two points and the point at infinity form a line, three

points a circle and four points a sphere. This outer product

construction leads to a nullspace representation, i.e. the set

of all points that results in zero under the outer product.

It is therefore called the outer product nullspace and is

https://geometric-algebra.tobiloew.ch/gafro
https://geometric-algebra.tobiloew.ch/gafro
https://bivector.net


grade 0 1

grade 1 e1 e2 e3 e∞
e0

grade 2 e23 e13 e12 e1∞ e2∞ e3∞ e01 e02 e03 e0∞

grade 3 e123 e12∞ e13∞ e23∞ e012 e013 e023 e01∞ e02∞ e03∞

grade 4 e123∞ e0123 e012∞ e023∞ e013∞

grade 5 e0123∞

Fig. 2: Structure of conformal geometric algebra with the 32

basis blades, divided into the different grades. Grade 0 and 5

are the scalar and pseudo-scalar, respectively. Grades 1 to 4

are called bi-, tri- and quadvectors.

defined as the primal representation of the primitives. The dual

representation, i.e. the inner product nullspace, can be found

via the duality operation, which corresponds to a product with

the pseudo-scalar, i.e. the highest grade element of the algebra

e0123∞. This construction can be expanded to form more

complex geometric primitives such as ellipsoids, hyperboloids

or general quadric surfaces. We show the specific subspaces

that certain primitives of CGA occupy in Figure 3. They can

be used for incidence computations, e.g. we can find their

intersections by applying product operations, that are known

as the meet operator ∨

Y = X1 ∨X2 = (X∗

1 ∧X∗

2 )
∗, (3)

where ∗ denotes the dual operation. This meet operator is

singularity-free and geometrically consistent, e.g. the meet of

two spheres will result in a circle if the spheres intersect, a

point if they only touch each other, or an imaginary circle with

a radius related to the distance between the spheres if they are

far from each other.

Motor

Twist

Point

Line

Circle

Plane

Fig. 3: Non-zero elements of various geometric primitives in

their primal representations in conformal geometric algebra.

Boxes represent basis blades and colored boxes represent the

non-zero blades of the geometric primitive with the matching

color. It can be seen that of the 32 basis blades composing

multivectors only a sparse number is used for the representa-

tions. Note that geometric primitives are single-grade objects,

while transformations are mixed-grade.

The geometric primitives can also directly be used for

geometric operations such as reflections and projections, which

result in rigid body motions. Here, two consecutive reflections

on intersecting planes result in a rotation and on parallel planes

in a translation. More generally these rigid body transforma-

tion are called motors M in geometric algebra. They form

a Lie group as the exponential mapping of bivectors, which

is the corresponding Lie algebra. In the case of CGA this

Lie group corresponds to the conformal group, i.e. the group

of angle-preserving transformations, which includes the rigid

Euclidean transformations of SE(3) that are most-commonly

used in robotics, i.e. rotations and translations. Motors can

be applied to any geometric primitive in the algebra via the

sandwich product

Y = MXM̃, (4)

where M̃ denotes the reverse of a multivector, which can be

thought of as being similar to a conjugation of quaternion.

The sandwich product is a structure-preserving product, i.e.

the resulting geometric primitive Y will be of the same type

as X . This is a property that linear algebra generally does not

have automatically and it would need to be explicitly designed

and enforced. Furthermore, motors represent a very general

concept of rigid body transformations, i.e. as reflections in

hyper-planes, which is valid in any dimension.

III. IMPLEMENTATION OF CONFORMAL

GEOMETRIC ALGEBRA

In this section we will explain in detail our implementation

of Conformal Geometric Algebra (CGA). The aspects that are

highlighted are the implementation of a general multivector

and the expressions that are acting on it. In this section we

explain the programming interfaces that gafro offers. The main

library is written in C++ for which we provide Python bindings

called pygafro as well as the ROS package gafro_ros. All

mentioned repositories can be found at https://gitlab.

com/gafro. An overview of the software stack can be found

in Table II.

TABLE II: Overview of the gafro software stack.

gafro core C++20 library

pygafro Python bindings

gafro_ros interface to ROS and URDF

gafro_benchmarks robot kinematics/dynamics benchmarks

gafro_examples various code examples

gafro_robot_descriptions classes defining different robot models

A. Design Goals and Implementation Details

We had several design goals in mind when designing the

library and additionally wanted to cover several points that

were proposed in [19] as a wishlist for geometric algebra

implementations. Since it is targeted at robotics applications

including robot learning, control and optimization, we wanted

to ensure fast and efficient computation. To this end, the core

implementation of gafro is done in C++20 and relies heavily

on templates, which also serve the additional purpose of

alleviating the effect of numerical imprecision that is known to

occur in geometric algebra implementations by only evaluating

https://gitlab.com/gafro
https://gitlab.com/gafro


elements of the resulting multivectors of expressions that are

known to be non-zero. We have designed the library in an

object-oriented way, so the classes also reflect the mathemati-

cal inheritance relationships. Furthermore all classes, i.e. all

specialized multivectors, are instantiated as different types,

which allows them to be distinguished at compile time for

type-safety and to have persistent storage. These specialized

classes also enable the computation with partial multivectors,

i.e. the library exploits the fact that the most commonly-

used multivectors are sparse and only use certain subspaces

of the algebra. Mathematical operations are implemented as

expression templates, which lets us determine the type of

resulting multivectors at compile time. The implementation

via expression templates allows the allocation of memory

only if the expression is evaluated and also enables partial

evaluations. We handle the type explosion of binary operators

by automatically evaluating partial expressions when the full

expressions get too complex.

In terms of using the library, we wanted to provide an acces-

sible interface and ensure seamless integration with existing

software. Geometric algebra is currently not well known in

robotics, hence it can be daunting having to simultaneously

learn about the algebra and the software implementation.

Therefore, gafro provides the computation of the most im-

portant quantities for robot kinematics and dynamics with an

interface that is close to similar robotics libraries. By basing

our implementation on the Eigen1 library, these quantities can

be returned in the familiar vector/matrix format. This essen-

tially makes gafro a drop-in replacement for other kinematics

and dynamics libraries, without the need to know about all

the details of geometric algebra at first. Afterwards, however,

the geometric modeling of primitives, the singularity-free

incidence computations, the uniform distance computation, the

connections to differential geometry and the conformal group

as well as the general structure of the algebra offer distinct

advantages compared to other libraries.

B. General Multivector

The core element of computation in geometric algebra is

the multivector. Hence, it is very important to think about the

design choices when implementing its structure, as this will

determine the memory usage and computational performance.

The general structure of a multivector in CGA can be seen in

Figure 2. It is composed of 32 basis blades, divided into grades

zero to five. A general multivector would therefore be quite

heavy in terms of memory and computation. The important

structural aspect of CGA that facilitates the design process

here is the sparsity of its representations and the fact that the

structure of multivector expressions is known at compile time.

Both of these properties mean that we can implement the data

vector of a multivector by only storing its known non-zero

elements. This is achieved by using a template that takes list

of blade indices as input:

template <class T, int... blades>

1https://eigen.tuxfamily.org

class Multivector

{

public:

constexpr static int size = sizeof...(blades);

{...}

private:

Eigen::Matrix<T, size, 1> data_;

};

The list of indices is then stored internally as a bitset that

facilitates the comparison of the subspaces of two multivectors.

A bitset is simply a list of 32 bits that are either 0 or 1,

depending on whether the corresponding blade is present in the

multivector or not. The memory that is allocated corresponds

to the number of blade indices that is given to the template.

It uses an Eigen::Matrix to store the data, which is

exposed via an accessor function called vector(). This

makes it possible to directly use the parameter vector of any

multivector, which is useful for e.g. optimization solvers. The

Multivector class and all its derived classes (including the

expressions) have a method called get that is templated on the

blade index. This method is fundamental to the design of the

library, since all expressions use it for evaluation. Therefore,

we add a template constraint using the requires keyword

of C++20 to ensure that multivector expressions only compile

if they contain the requested blade index.

The underlying data type T is a template argument, which

makes it possible to either use e.g. float or double,

depending on the system architecture. Furthermore, it al-

lows the usage of general purpose automatic differentiation

libraries such as autodiff 2. This helps when formulating op-

timization problems in geometric algebra using gafro since

it facilitates the coding of complex objective functions and

thus accelerates prototyping. Another relevant data type is

the torch::Tensor class of the libtorch library3, i.e. the

C++ distribution of PyTorch. This effectively allows parallel

computations with geometric algebra, which is important for

various methods related to robot learning. While this combina-

tion can already be used, we are currently developing a library

gafro_torch that facilitates the usage.

C. Algebraic Computations using Expression Templates

In order to do algebraic computations, there are several

required operations on multivectors, which are implemented

as expression templates. There are two types of expressions,

unary and binary expressions, which are listed in Tables III and

IV, respectively. We explained their mathematical meaning in

Section II and thus focus here on their implementations.

TABLE III: Unary expressions that are implemented as mem-

ber functions of the Multivector class.

member function mathematical symbol

reverse X̃

inverse X
−1

dual X
∗

2https://autodiff.github.io/
3https://pytorch.org/cppdocs/

https://eigen.tuxfamily.org
https://autodiff.github.io/
https://pytorch.org/cppdocs/


TABLE IV: Binary expressions. The term operator here refers

to the programming operators that are implemented for multi-

vectors. Symbol means the mathematical symbol that is used

in the equations. Note that usually the geometric product is

written in equations without a symbol, e.g. AB.

operator symbol

addition + +

subtraction - −
outer product ˆ ∧
inner product | ·
geometric product ∗

The challenge in the implementation is the fact that the

resulting multivectors only rarely have the same blades as the

input operands. Given the structure of the algebra, however,

the expression templates can determine the result type of the

expression at compile time. Note that the expressions are

evaluated in a lazy fashion, which means that the blades are

evaluated on demand. This makes it possible to for example

only evaluate a single blade of the resulting multivector.

template <class Derived, class Result>

class Expression

{

public:

template <int blade>

requires(Result::has(blade))

typename Result::Vtype get() const

{

return static_cast<const Derived &>(*this).

template get<blade>();

}

};

A first example of this can be seen in the Sum expression in

Figure 4. The corresponding type evaluation class constructs

the type of the resulting multivector at compile time. In the

case of addition, this amounts to a simple bitwise OR operation

comparing the bitsets of the input multivectors.

P1 + P2 = P3

+ =

(a) The addition of two multivectors with the same blades results in
another multivector with the same blades.

P1 + P2 = P3

+ =

(b) The addition of two multivectors with the different blades results
in a multivector with the blades of both input multivectors.

Fig. 4: Addition operation.

The inner and outer products work essentially in the

same way and thus the corresponding expression both in-

herit from a base Product class, i.e. InnerProduct and

OuterProduct. The Product class takes a class structure

implementing the corresponding Cayley table as template

argument. This Cayley table defines the resulting blades of

a blade by blade product under the inner and outer product,

respectively. Thus, in the case of CGA, it defines 1024

operations. In order to determine the type of the resulting

multivector, we employ fold expressions that allow us to iterate

over the blades of both input multivectors at compile time. In

this loop, we obtain the resulting blade per pair of blades

using the respective Cayley table and then assemble them into

the resulting multivector again using OR operations. Figure 5

shows an example for each the inner and the outer product.

C · S = X

· =

(a) The inner product is a grade-lowering operation, i.e. the resulting
multivector will be of lower grade than the inputs. The example shows
that the inner product of a circle C with a sphere S results in a point
P .

PP ∧ e∞ = L

∧ =

(b) The outer product is a grade-raising operation, i.e. the resulting
multivector will be of higher grade than the inputs. The example
shows that the outer product of a point pair PP and e∞ results in a
line L

Fig. 5: The resulting multivector of the inner and outer product

operations has a different grade than the inputs.

The geometric product class GeometricProduct also

inherits from the base Product class and comes with its

own Cayley table. So implementation-wise it is the same as

the inner and outer products. The main difference is that two

blades can result from a blade product, which causes the

resulting multivector to potentially have both a lower and a

higher grade than the inputs, as can be seen in Figure 6a.

Furthermore, we have products that are based on the geometric

product such as the sandwich product, which is also treated

as a binary expression and shown in Figure 6b.

D. Geometric Primitives

Since we know the subspaces of all the geometric primi-

tives, we chose to implement them in an object-oriented way

by inheriting from the base Multivector class. Hence,

the available classes are Vector, DirectionVector,

TangentVector, Point, PointPair, Line, Circle,

Plane and Sphere. Their corresponding subspaces within

the geometric algebra can be seen in Figure 3. Having the



M P = X

=

(a) Using the geometric product results in both blades of lower and
higher grade.

M C M̃ = C ′

=

(b) The sandwich product is a grade-preserving operation. Numerical
issues might lead to residuals in other blades, which we avoid by
simply not evaluating them in the expressions. This is a schematic
representation of Equation (4), where a motor transforms a circle.

Fig. 6: The geometric product is a combination of the inner

and outer product.

geometric primitives as explicit classes allows the implementa-

tion of commonly-used equations as members functions, which

facilitates the usage. For example, the constructors of the

geometric primitive classes implement the various ways they

can be defined. The explicit classes are meant to facilitate the

use and construction, but of course, using computation with

base multivectors is also possible. This preserves the property

of covariant computation within the algebra.

E. Rigid Body Transformations

The rigid body transformations that are currently avail-

able are implemented in the classes Rotor, Translator,

Motor and Dilator. They all inherit from the base

class Versor. Since all three classes are exponential map-

pings of bivectors they are accompanied by the expressions

Logarithm and Exponential, respectively. The main

method of the rigid body transformations is apply, which

implements the sandwich product X ′ = MXM̃ and ensures

type safety. While X can technically be any multivector, the

intended usage is with the geometric primitives that were

presented in Section III-D. Hence, in this context, type safety

means that X ′ stays the same geometric primitive as X , e.g. a

Point stays a Point. This ensures that the expression only

evaluates blades that are part of the geometric primitive, which

not only reduces the number of floating-point operations, but

also deals with numerical imprecision in the computation that

is known to occur in geometric algebra implementations.

F. Robot Modeling

The previous sections introduced the features related to

the underlying geometric algebra implementation of gafro.

This section will now introduce the higher level features of

the library related to robot modeling, which distinguish it

from other geometric algebra libraries. The main aspects of

robot modeling are the computation of the kinematics and

dynamics of robotic systems, which is implemented in the

base class called System. It contains member functions that

compute the forward kinematics and forward/inverse dynamics

using recursive algorithms. We also provide classes to model

optimization problems for robotic systems, such as inverse

kinematics. We will present more on this in Section V with

concrete examples.

IV. COMPARISON TO OTHER LIBRARIES

In this section, we compare gafro to other geometric algebra

and robot kinematics/dynamics libraries. We first provide

quantitative benchmark results and then give qualitative com-

parisons of what we believe to be advantages of gafro over

other libraries.

A. Algebraic Operations Benchmarks

In order to compare the performance of our gafro li-

brary to other geometric algebra libraries we forked the

ga_benchmark4 repository in order to integrate gafro. Our

fork can be found at https://github.com/loewt/

ga-benchmark.

(a) Benchmarks of unary algebraic operations.

(b) Benchmarks of binary algebraic operations.

Fig. 7: Benchmarks of different geometric algebra libraries. All

operations are computed using conformal geometric algebra.

Some entries for Gaalet are missing due to segmentation faults

during the execution.

We omitted TbGAL and Garamon from the plots of the

benchmark results, since they are by far the slowest libraries.

The benchmarks show that gafro can compete in terms of

performance with GATL and Versor, which were previously

reported to be the fastest GA libraries.

B. Robotics Algorithms Benchmarks

Since this library implements robot kinematics and dynam-

ics algorithms, we are comparing and benchmarking gafro

against several libraries that are commonly used in robotics

applications. The current benchmarking results on our system

can be found in Figure 8. As can be seen, gafro is very

competitive when it comes to the computation of the kine-

matics of a robotic system. These advantages come from the

fact that motors in geometric algebra are a more compact

4https://github.com/ga-developers/ga-benchmark

https://github.com/loewt/ga-benchmark
https://github.com/loewt/ga-benchmark
https://github.com/ga-developers/ga-benchmark


representation and require fewer arithmetic operations than

transformation matrices. The computation of the dynamics,

however, especially the forward dynamics, is still slower at

this point. This is because at this stage we were prioritizing the

research aspect of the algorithms, since they needed to first be

derived in CGA. This means that the forward dynamics present

a novelty not only in the implementation, but also in the

mathematical derivation. This lead to a naive implementation,

which includes unnecessary copy operations that affect the

performance negatively. The issue will be addressed and

fixed in a future release of gafro, which should make the

computation of the dynamics also competitive compared to

the established libraries.

(a) Forward Kinematics. (b) Jacobian.

(c) Inverse Dynamics. (d) Forward Dynamics.

Fig. 8: Benchmarks of robotics algorithms. The benchmark

was run on an AMD Ryzen 7 4800U CPU. All libraries

were compiled using gcc 13.1.1 with the compiler flags -O3

-march=native. The reference system is the Franka Robot.

C. Advantages of gafro

There have been various works that published implementa-

tions of geometric algebra jeremy, [3]–[5], [7]–[10]. These

libraries all have in common that they are meant to be

generic geometric algebra implementations focusing on the

computational and mathematical aspects of the algebra itself.

In contrast to that, our implementation is targeted specifically

at robotics applications and thus not only implements the low-

level algebraic computations but also features the computation

of the kinematics and dynamics of serial manipulators as well

as generic cost functions for modeling optimization problems.

We will explain these cost functions in detail in Section V-C.

Here, we want to point out that these cost functions simul-

taneously present an advantage over other geometric algebra

libraries and over other robot modeling libraries, since neither

of them target the geometric modeling robotics problems.

gafro can therefore be seen as bridging the gap between these

libraries.

We further believe that the programming interface of gafro

is a lot more approachable and easy to use than other geometric

algebra libraries. One reason for this is that we provide

explicit classes for the geometric primitives and by making

use of the C++ constructors, they can be created and used

without having to explicitly use the algebraic operations. These

classes also allow us to implement commonly used operations

of multivectors directly as member functions, such as the

sandwich product of motors to transform geometric primitives.

V. APPLICATIONS AND TUTORIAL

In this section we provide some example applications of

how the library can be used. For that purpose, we provide an

accompanying repository gafro_examples that contains coding

examples. Note that in the text we are always referencing

the C++ files, but the same examples can also be found in

Python in the corresponding folder. These examples use the

same naming scheme.

A. Geometric Algebra

Since many potential users of gafro are likely to be unfa-

miliar with the concept of geometric algebra we are providing

some examples on how to do computations using this algebra.

In a first example, we are showing how to create different

general multivectors and use them for algebraic computations.

For this purpose we demonstrate how to compute the inter-

section of a sphere S and a plane E, which in this case

results in a circle C. The construction of a plane requires

three points and the one at infinity e∞. The construction of

a sphere requires four points. Hence, we first define seven Pi

using their Euclidean coordinates.

gafro::Point<double> p1(x, y, z);

From these points we then calculate the plane and the sphere,

where Ei corresponds to e∞.

gafro::Plane<double> plane = p1 ^ p2 ^ p3 ^ gafro::Ei<

double>(1.0);

gafro::Sphere<double> sphere = p4 ^ p5 ^ p6 ^ p7;

Note that here, we choose to construct the plane and the

sphere by the outer product of points, according to their

mathematical definition, which derives from Equation (2).

They could, however, be equivalently created by passing the

same points to the respective constructors, which we show in

the coding examples in the online repository.

The circle primitive that is found from the intersection of a

plane and a sphere, which is expressed mathematically as the

meet operator in Equation (3). This Equation can directly be

translated to code to find the circle.

gafro::Circle<double> circle = (plane.dual() ^ sphere.dual

()).dual();

Note that, this code will compile and can be executed suc-

cessfully without runtime errors whether the plane and the

sphere intersect or not. This geometric relationship can be

determined from the resulting circle by inspecting the squared

norm, which will be positive or negative, depending on the

incidence relationship.

B. Robot Differential Kinematics

One of the targeted use cases of the gafro library is the

modeling of robotic systems. In this section, we will show

how to do that in practice by explaining the example of a

differential kinematics controller that tracks a line in task

space using an arbitrary reference line at the robot end-effector.



We use in this example the class FrankaEmikaRobot and

assume we have instantiated it as panda.

First, the forward kinematics, i.e. the pose of the end-

effector of a kinematic chain given a certain joint configura-

tion, are represented by the motors in geometric algebra. For

a given joint configuration q the end-effector motor is found

gafro::Motor<double> ee_motor = panda.getEEMotor(q);

We implement the differential kinematics controller w.r.t to

the robot end-effector frame. Hence we use the end-effector

motor for transforming an object of type gafro::Line

called target_line to this frame. We skip the creation of

this line here, but note that it is similar to the creation of ge-

ometric primitives in the previous section. The transformation

of the line using ee_motor is implemented as

gafro::Line<double> transformed_line = ee_motor.reverse() *
target_line * ee_motor;

This effectively corresponds to the equation L′ = M̃LM ,

as opposed to L′ = MLM̃ , which was shown previously in

Equation (4). The difference is that here we use the inverse

transform from the base frame to the end-effector frame.

Next, we find the twist, which moves the reference line

to the transformed target line. This twist is found as the

logarithmic mapping of the motor that transforms one line

to the other. Mathematically this can be expressed as

V = log

(
1

c
(1 + LrLt)

)
, (5)

where V is the resulting twist and c is a normalization constant.

Lr and Lt are the reference and target line, respectively. We

have implemented this as member function of the Line class,

such that it can be called directly as

gafro::Twist<double> twist = transformed_line.getMotor(

reference_line).log();

The last step is the computation of the joint velocities q̇

from the twist V . This is achieved using the inverse of the

end-effector frame Jacobian, which can be obtained by the

member function getEEFrameJacobian of the panda

robot. This function returns a gafro specific object, which

can be transformed to an Eigen::Matrix using the embed

method. The control law according to the equation q̇ = J−1V

can therefore be implemented as

Eigen::Vector<double,7> qdot = inverse(panda.

getEEFrameJacobian(q).embed()) * twist.vector();

Here we use the inverse function as shorthand for the

pseudoinverse of a 6× 7 matrix.

The lines in this example can be chosen arbitrarily, which

is a very appealing property, since it has two important conse-

quences. First, the reference line at the end-effector constrains

two axes of rotation, while allowing a rotation around the

line. This line does not need to coincide with the axes of

the end-effector frame. The axes are not even required to be

known explicitly, the line is sufficient. This essentially avoids

having to deal with coordinate frames when encoding the

target. Moreover, the two lines are invariant under translations

along them, i.e. moving a line in the direction it is pointing

to does not change the line. In practice, this effectively means

that the control law is completely compliant to disturbances

along the superposed lines. These two properties are very

hard to achieve using classical methods and require many

coordinate frame changes and non-trivial precision matrices.

This example shows that the definition of a control law

using geometric primitives can be done entirely geometrically

and resulting equations are very simple since they are also

algebraic objects.

C. Optimization Problems with Geometric Primitives

Many problems in important domains of robotics, such as

learning and control, can be cast as optimization problems.

Hence, in this section we are providing an example on how

gafro can be used for the uniform modeling of optimization

problems using geometric algebra. Here, we cast the optimiza-

tion problem as an inverse kinematics problem for simplicity,

so we are optimizing for the joint angle configuration in which

the end-effector reaches a certain geometric primitive and

we show how GA extends the cost function to be uniformly

applicable across the different geometric primitives. The opti-

mization problem can be formulated as

q∗ = min
q

1

2

∥∥E(q)
∥∥2, (6)

where q is the joint angle configuration and E(q)
is a multivector-valued residual. In gafro this formu-

lation is implemented in the generic template class

SingleManipulatorTarget and Equation (6) can be

evaluated using the method getValue. The below code

snippet of this shows that it has the template arguments Tool

and Target, which are meant to be different geometric

primitives.

template <class T, int dof, template <class Type> class

Tool, template <class Type> class Target>

class SingleManipulatorTarget{...};

Tool is a geometric primitive at the end-effector of the

robot arm, e.g. a point, and Target is a desired geometric

primitive that should be reached by the end-effector, e.g. a

line or a circle. The problem of reaching can be expressed

as minimizing a distance measure between the two primitives.

Mathematically, this distance measure can be expressed as a

residual multivector stemming from the outer product, i.e.

E(q) = Xd ∧M(q)XM̃(q), (7)

where X corresponds to the Tool and Xd to the Target,

the motor M(q) is the end-effector motor at the current joint

configuration q, which transforms any geometric primitive to

the end-effector, expressed w.r.t. the base frame. By definition,

this outer product results in zero, if Tool has reached the

Target. Its norm therefore corresponds to a distance measure

that we want to minimize here. In the implementation this

residual multivector from Equation (7) is obtained by calling

the function getResidual, which can be seen in the code

snippet below.



Eigen::Matrix<T, Result::size, 1> getResidual(const VectorX

&q) const

{

return Result(target_ ^ arm_.getEEMotor(q).apply(tool_)

).vector();

}

The Jacobian of Equation (7) w.r.t. the joint configuration

vector q is found by applying the chain rule to the geometric

product of the motor M(q), i.e.

J
E(q) = Xd ∧

(
J

A(q)XM̃(q) +M(q)XJ̃
A(q)

)
, (8)

where J
A(q) is the analytic Jacobian of the kinematic. The

following code snippet shows the implementation of Equation

(8). Both implementations closely follow the mathematical

formulation.

Eigen::Matrix<T, Result::size, dof> getJacobian(const

VectorX &x) const

{

Motor<T> motor = arm_.getEEMotor(x);

MultivectorMatrix<Motor<T>, 1, dof> jacobian_ee = arm_.

getEEAnalyticJacobian(x);

Eigen::Matrix<T, Result::size, dof> jacobian;

for (unsigned i = 0; i < dof; ++i)

{

jacobian.col(i) = Result(target_ ^ (jacobian_ee[i]

* tool_ * motor.reverse() + motor * tool_ *
jacobian_ee[i].reverse())).vector();

}

return jacobian;

}

Note that both getResidual and getJacboian return a

matrix of the Eigen library where the size is determined based

on the combination of geometric primitives. More specifically

the size can vary depending on the primitives, but due to

the structure of the algebra and its implementation using

expression templates, the size is determined at compile time.

In practice, the actual sizes of the residual and Jacobian can

be neglected, since for solving an optimization problem, we

are actually interested in the gradient vector g ∈ R
N×1 and

Hessian matrix H ∈ R
N×N of Equation (6) and their size is

only determined by the number of degrees of freedom N of

the robot and is therefore agnostic to the choice of geometric

primitives.

Given the residual and the Jacobian, the optimization prob-

lem can easily be solved using for example a Gauss-Newton

type algorithm. Both of these quantities can be accessed

from the class via the method getGradientAndHessian

which returns them in the form of matrices from the Eigen

library. This choice fulfills one of the design goals of the

library, i.e. the seamless integration with existing optimiza-

tion solvers. Hence, it is possible to use these geometric

algebra computations in existing pipelines, without having to

fundamentally rewrite existing software to accommodate the

geometric algebra, which keeps the integration effort low. This

example is also applicable across a wider range of applications.

In previous work, we have shown the application of CGA to

modeling manipulation tasks in an optimal control framework

for model predictive control [20], which can of course be

achieved using the same cost function.

We give several examples of this inverse kinematics problem

in gafro_examples. The files are following the naming scheme

inverse_kinematics_PRIMITIVE1_PRIMITIVE2.cpp. We visu-

alize the results of optimization problems using various

geometric primitives in Figure 1. We want to point out,

that the implementations only differ in the instantiation of

the SingleManipulatorTarget template class, which

shows the ability of geometric algebra to unify formulations

and simplify their implementations.

VI. CONCLUSION

In this article we presented the implementation details as

well as some examples for our software stack around gafro,

which is a C++ library that implements conformal geomet-

ric algebra for robotics. The software stack also includes

Python bindings in pygafro as well as a ROS package in

gafro_ros. Tutorial material and toy examples can be found

in gafro_examples.

While showing comparable performance for the robot mod-

eling, geometric algebra also offers an easy and intuitive

way to model various geometric relationships as shown by

examples of intersecting geometric primitives, differential

kinematics using line objects and optimization based inverse

kinematics with different geometric primitives. The motors

are a more general concept of transformations that can be

directly applied to all geometric primitives within the algebra,

alleviating the need to compute special adjoint operations.

Combined with the fact that motors are a more compact

representation of rigid body transformations that requires less

operations, geometric algebra offers a very rich and appealing

mathematical framework for robotics, without losing any of

the existing tools that are offered by standard matrix algebra.

Our library gafro provides the standard algorithms for robot

modeling and the computation of the kinematics and dynamics.

It then augments them with concepts that are exclusive to

geometric algebra, such as direct representations of geometric

primitives and operations on them which are then used for

the implementation of general optimization problems. In fact,

by the design of the library, which exposes the parameter

vectors using Eigen, these standard libraries could directly

be replaced by gafro without having to use geometric algebra

directly. Providing this library that makes geometric algebra

easily accessible for robotics research should allow for a

wider adoption and facilitate research on using this powerful

framework for robotics.

REFERENCES

[1] E. Bayro-Corrochano, “A Survey on Quaternion Algebra and Geo-
metric Algebra Applications in Engineering and Computer Science
1995–2020,” IEEE Access, vol. 9, pp. 104 326–104 355, 2021. DOI:
10.1109/ACCESS.2021.3097756.

[2] E. Hitzer, M. Kamarianakis, G. Papagiannakis, and P. Vašík, “Survey
of new applications of geometric algebra,” Mathematical Methods in

the Applied Sciences, 2023. DOI: 10.1002/mma.9575.
[3] S. Breuils, V. Nozick, and L. Fuchs, “Garamon: A Geometric Algebra

Library Generator,” Adv. Appl. Clifford Algebras, vol. 29, no. 4, p. 69,
Jul. 22, 2019. DOI: 10.1007/s00006-019-0987-7.

https://doi.org/10.1109/ACCESS.2021.3097756
https://doi.org/10.1002/mma.9575
https://doi.org/10.1007/s00006-019-0987-7


[4] L. A. F. Fernandes, “Exploring Lazy Evaluation and Compile-Time
Simplifications for Efficient Geometric Algebra Computations,” in
Systems, Patterns and Data Engineering with Geometric Calculi,
S. Xambó-Descamps, Ed., vol. 13, Cham: Springer International
Publishing, 2021, pp. 111–131. DOI: 10.1007/978-3-030-74486-1_6.

[5] P. Colapinto, “Versor: Spatial computing with conformal geometric
algebra,” University of California at Santa Barbara, 2011.

[6] J. Ong, GAL, https://github.com/jeremyong/gal: GitHub, 2019.
[7] D. Fontijne, “Gaigen 2: A geometric algebra implementation genera-

tor,” in Proceedings of the 5th International Conference on Generative

Programming and Component Engineering - GPCE ’06, Portland,
Oregon, USA: ACM Press, 2006, p. 141. DOI: 10 .1145 /1173706 .
1173728.

[8] F. Seybold and U. Wössner, “Gaalet - a C++ expression template li-
brary for implementing geometric algebra,” in High-End Visualization

Workshop, 2010.
[9] D. Hildenbrand, J. Pitt, and A. Koch, “Gaalop—High performance

parallel computing based on conformal geometric algebra,” in Geo-

metric Algebra Computing: In Engineering and Computer Science,
E. Bayro-Corrochano and G. Scheuermann, Eds., London: Springer
London, 2010, pp. 477–494. DOI: 10.1007/978-1-84996-108-0_22.

[10] E. V. Sousa and L. A. F. Fernandes, “TbGAL: A Tensor-Based Library
for Geometric Algebra,” Adv. Appl. Clifford Algebras, vol. 30, no. 2,
p. 27, Apr. 2020. DOI: 10.1007/s00006-020-1053-1.

[11] B. V. Adorno and M. Marques Marinho, “DQ Robotics: A Library for
Robot Modeling and Control,” IEEE Robotics Automation Magazine,
vol. 28, no. 3, pp. 102–116, Sep. 2021. DOI: 10.1109/MRA.2020.
2997920.

[12] J. Carpentier, G. Saurel, G. Buondonno, et al., “The Pinocchio C++
library : A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives,” in 2019 IEEE/SICE

International Symposium on System Integration (SII), Paris, France:
IEEE, Jan. 2019, pp. 614–619. DOI: 10.1109/SII.2019.8700380.

[13] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for
Solving Contact Dynamics,” IEEE Robot. Autom. Lett., vol. 3, no. 2,
pp. 895–902, Apr. 2018. DOI: 10.1109/LRA.2018.2792536.

[14] R. Smits, KDL: Kinematics and Dynamics Library,
http://www.orocos.org/kdl.

[15] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033. DOI:
10.1109/IROS.2012.6386109.

[16] M. L. Felis, “RBDL: An efficient rigid-body dynamics library using
recursive algorithms,” Auton Robot, vol. 41, no. 2, pp. 495–511,
Feb. 1, 2017. DOI: 10.1007/s10514-016-9574-0.

[17] C. Perwass, Geometric Algebra with Applications in Engineering

(Geometry and Computing 4). Berlin: Springer, 2009.
[18] E. Bayro-Corrochano, Geometric Algebra Applications Vol. II: Robot

Modelling and Control. Cham: Springer International Publishing,
2020. DOI: 10.1007/978-3-030-34978-3.

[19] W. Benger and W. Dobler, “Massive Geometric Algebra: Visions for
C++ Implementations of Geometric Algebra to Scale into the Big Data
Era,” Adv. Appl. Clifford Algebras, vol. 27, no. 3, pp. 2153–2174, Sep.
2017. DOI: 10.1007/s00006-017-0780-4.

[20] T. Löw and S. Calinon, “Geometric Algebra for Optimal Control With
Applications in Manipulation Tasks,” IEEE Transactions on Robotics,
vol. 39, no. 5, pp. 3586–3600, 2023. DOI: 10 . 1109 / TRO . 2023 .
3277282.

https://doi.org/10.1007/978-3-030-74486-1_6
https://doi.org/10.1145/1173706.1173728
https://doi.org/10.1145/1173706.1173728
https://doi.org/10.1007/978-1-84996-108-0_22
https://doi.org/10.1007/s00006-020-1053-1
https://doi.org/10.1109/MRA.2020.2997920
https://doi.org/10.1109/MRA.2020.2997920
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/LRA.2018.2792536
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1007/978-3-030-34978-3
https://doi.org/10.1007/s00006-017-0780-4
https://doi.org/10.1109/TRO.2023.3277282
https://doi.org/10.1109/TRO.2023.3277282

	INTRODUCTION
	GEOMETRIC ALGEBRA
	IMPLEMENTATION OF CONFORMAL GEOMETRIC ALGEBRA
	Design Goals and Implementation Details
	General Multivector
	Algebraic Computations using Expression Templates
	Geometric Primitives
	Rigid Body Transformations
	Robot Modeling

	COMPARISON TO OTHER LIBRARIES
	Algebraic Operations Benchmarks
	Robotics Algorithms Benchmarks
	Advantages of gafro

	APPLICATIONS AND TUTORIAL
	Geometric Algebra
	Robot Differential Kinematics
	Optimization Problems with Geometric Primitives

	CONCLUSION

