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Geometric Algebra for Optimal Control with
Applications in Manipulation Tasks

Tobias Löw and Sylvain Calinon

Abstract—Many problems in robotics are fundamentally prob-
lems of geometry, which lead to an increased research effort in
geometric methods for robotics in recent years. The results were
algorithms using the various frameworks of screw theory, Lie
algebra and dual quaternions. A unification and generalization
of these popular formalisms can be found in geometric algebra.
The aim of this paper is to showcase the capabilities of geometric
algebra when applied to robot manipulation tasks. In particular
the modelling of cost functions for optimal control can be done
uniformly across different geometric primitives leading to a low
symbolic complexity of the resulting expressions and a geometric
intuitiveness. We demonstrate the usefulness, simplicity and com-
putational efficiency of geometric algebra in several experiments
using a Franka Emika robot. The presented algorithms were
implemented in c++20 and resulted in the publicly available
library gafro. The benchmark shows faster computation of the
kinematics than state-of-the-art robotics libraries.

Index Terms—Geometric Algebra, Optimal Control, Model-
Based Optimization

I. INTRODUCTION

Robot manipulators are used within an increased diversity
of environments and tasks, which leads to a large increase in
not only the complexity of the surroundings but also in the
systems, that need to be able to adapt to different situations.
To ensure safe and efficient interaction the corresponding algo-
rithms need to be fast and be based on accurate models of the
environment, which makes it important to think carefully about
the representations that are used. Many robotics problems are
fundamentally problems of geometry, which is why a lot of
recent research is focusing on representing and utilizing these
geometric properties for solving a wide variety of problems
more efficiently. Screw theory, Riemannian geometry, Lie
algebra and dual quaternions are just a few examples of the dif-
ferent methods that have been proposed to be used in robotics.
Traditionally the kinematics and dynamics of the robots are
expressed in different algebras, including linear algebra, vector
calculus and quaternion algebra. While quaternions offer a way
to avoid the singularities caused by Euler angles, they do not
contain position information and thus conversion operations
between algebras are required. To address this limitation, dual
quaternions were proposed to extend quaternions by a dual
unit, resulting in a translation and rotation. We propose in this
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Fig. 1: A generic cost function in geometric algebra can
consider different geometric primitives without changing its
structure.

paper to use geometric algebra instead, which can be seen as
a further unification and generalization of these concepts. In
particular conformal geometric algebra is a direct extension of
dual quaternions [1].

Geometric Algebra (GA) can be seen as a high-level math-
ematical language for geometry that unifies several known
concepts, which makes it a very effective tool when the physics
of a system need to be modeled. The roots of geometric
algebra can be found in Clifford algebra, which was a uni-
fication of quaternions and Grassmann algebra [2]. The result
was the geometric product, which is the sum of an inner
and an outer product. This unfamiliar concept actually leads
to algebraic tools that allow for the simplification of many
otherwise complex equations, making them more intuitive to
handle. A well-known example for this simplification are the
Maxwell equations, which reduce to only a single equation in
geometric algebra

(
∇+ 1

c
∂
∂t

)
F = J [3].

GA is based on a multiplication operation called the geo-
metric product, composed of an inner product and an outer
product. The latter describes an oriented plane/volume that
extends and generalizes the cross product that is restricted to
only 3 dimensions. The resulting elements are called multi-
vectors. This representation can be used to encode geometric
primitives in a uniform manner (depicted in red in Figure 1),
such as points, lines, planes, spheres, or quadric surfaces such
as ellipsoids, as well as the associated transformations u to
move from an initial state x0 to a desired state xd, which are
called motors (depicted in green in Figure 1). In robotics, these
operations allow translations and rotations to be treated in the
same way, without requiring us to switch between different
algebras, as is classically done when handling position data
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in a Cartesian space and orientation data as quaternions.
Practically, GA allows geometric operations to be computed
in a very fast way, with compact codes. In Figure 1 , it means
that u = f(x0, xd) can be described uniquely for the different
geometric objects represented in the figure.

The representational advantage of geometric algebra is the
geometric significance of its elements, meaning that an object
can directly represent geometric primitives, such as lines,
spheres and planes, as well as orthogonal transformations,
such as rotations, translations, scaling and projections. This
allows the direct extraction of geometric information about
the problem from the equations. Furthermore, its elements,
called multivectors, avoid the parameter redundancy of other
representations such as matrices, leading to less memory
consumption and optimized computation compared to analytic
geometry or vector calculus, which makes it an amenable
framework for real-time applications. In engineering the valid-
ity of equations is usually determined by a dimensional check
of the quantities of the formula. These quantities are of a
certain algebraic order when using geometric algebra, which
adds a structural check for the validity. These properties were
some fundamental criteria in the design of geometric algebra,
along with the possibility to formulate basic equations in a
coordinate-free manner and to smoothly transfer information
between formalisms [4].

We want to show the versatility of geometric algebra and
that it can be used as a single tool to solve a variety of
problems due to its unification of concepts. Simultaneously,
we want to make geometric algebra more accessible by en-
abling the usage of standard tools and solvers for minimizing
cost functions that are expressed in geometric algebra. Our
contributions are as follows:

• We extend the Lagrangian dynamics of serial manipulator
in conformal geometric algebra to include a non-trivial
inertia tensor and subsequently use the derived dynamics
in an inverse dynamics control scheme.

• We propose the usage of geometric algebra to define
objective functions for optimizations as they appear in
inverse kinematics and optimal control problems for
manipulation tasks and show the modeling of different
geometric relations in an optimization problem, while
keeping the structure of the cost function uniform.

• We demonstrate how geometric algebra formulations can
be seamlessly used within existing frameworks based
on linear matrix algebra by exploiting the sparsity of
geometric algebra in order to facilitate its adoption.

• We provide an open-source library called geometric
algebra for robotics (gafro) that implements all the
presented formulations for robotics. The library is based
on a fast and efficient custom implementation of confor-
mal geometric algebra using expression templates. The
benchmark shows faster computation of the kinematics
than state-of-the-art robotics libraries.

This paper is organized as follows: Section II presents the
related work, Section III introduces geometric algebra in a
formal manner, Section IV gives a brief overview of optimal
control, Section V explains how geometric algebra can be used

to compute the kinematics and dynamics of serial manipu-
lators, Section VI introduces geometric algebra for optimal
control and Section VII then shows the experiments. The
source code of the library gafro as well as more information
and accompanying videos can be found on our website 1.

II. RELATED WORK

The resurgence of geometric methods in robotics has
spawned a variety of different approaches to formalize con-
trol, learning and optimization problems in robotics. These
methods include screw theory, Riemannian geometry, Lie
algebra and dual quaternions. A common motivation between
these frameworks is the modeling of robot kinematics and
dynamics, which is closely tied to representing rigid body
transformations. Geometric algebra essentially presents a gen-
eralization and unification of these concepts and thus it is
naturally connected to a large variety of recent work in robotics
research.

Conceptually, geometric algebra can be seen as an extension
and generalization of dual quaternions [5], since dual quater-
nions can be identified with a certain Clifford algebra, which
forms the foundation of geometric algebra. The literature on
dual quaternions is hence the most closely related to our
work. Starting with formulating rigid body transformations,
dual quaternion algebra offers efficient ways for blending
them, which is useful in computer graphics [6]. In robotics,
there have been various works describing the kinematics and
dynamics of robots in dual quaternion algebra such as [7]
and [8] that combine the geometric understanding of screw
theory, the thoroughness of Lie Algebra and the simplicity
of spatial algebra. Efficient control is an important aspect
for using real robots and dual quaternions have been used
to design admittance controller [9] and LQR controller for
trajectory tracking [10]. Collision avoidance is an important
aspect of control and in [11] vector field inequalities based on
dual quaternions were proposed to handle them during surgical
tasks.

Along with the regained interest of using geometric methods
in robotics came various works proposing the use of differen-
tial and Riemannian geometry for learning and optimization
problems. The topic of learning from demonstration often
requires data to be represented as distributions, thus [12]
presented how to use Gaussians on Riemannian manifolds.
The manifold of semi-positive definite matrices has been used
to study manipulability ellipsoids for learning robot skills
[13]. In [14] a Riemannian metric was proposed that helps
manipulators avoid singularities. Riemannian optimization is
also used to solve the inverse kinematics problem of kinematic
chains using distance geometry [15].

Geometric algebra has been applied successfully in a variety
of different applications and fields. For example in the field
of computer graphics, which started to re-popularize it, it
found applications in mesh deformation [16] as well as ray
casting and surface representation [17]. In the domain of image
processing techniques for adaptive filtering have been devised
[18], [19].

1https://tloew.gitlab.io/geometric_algebra/

https://tloew.gitlab.io/geometric_algebra/
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A popular example in robotics to show the strengths of
geometric algebra is solving the inverse kinematics problem.
There have been various methods that proposed to utilize the
geometric primitives and their intersection such as FABRIK
[20] which finds an iterative solution and has also been
extended to include model constraints [21]. Recently another
extension, called FABRIKx [22], was proposed to address the
inverse kinematics problem of continuum robots. A similar
approach that finds a closed-form solution using the geometric
primitive intersection has been described in [23] and [24]
presented the differential and inverse kinematics of robots
using conformal geometric algebra.

Recent work has approached the topic of formulating con-
strained dynamics in conformal geometric algebra [25] and
the works in robotics also include using the motor algebra for
modeling and control of robot arms [26] as well as Newton-
Euler modeling of a multi-copter [27]. The interpolation of
motors, i.e. rigid body transformations, has been shown to
have useful applications in surgical robotics to model and plan
surgical paths using virtual reality [28]. Conformal geometric
algebra was presented for robust pose control of manipulators
in [29] and [30] used it for robot object manipulation.

Apart from our theoretical contributions we also provide
an open-source library that implements all the presented
formulations and algorithms. To this end we have implemented
the geometric algebra from scratch using expression templates.
There have been various works that published implementations
of geometric algebra such as GATL [31], GARAMON [32],
Gaigen [33], TbGAL [34], GAL [35] and Versor [36]. These
libraries all have in common that they are meant to be
generic geometric algebra implementations focusing on the
computational and mathematical aspects of the algebra itself.
In contrast to that our implementation is targeted specifically
at robotics applications and thus not only implements the low-
level algebraic computations but also features the computation
of the kinematics and dynamics of serial manipulators as well
as generic cost functions for optimal control. We therefore
have a similar objective as the DQ robotics [37] library,
but using the more general conformal geometric algebra as
opposed to dual quaternions.

III. GEOMETRIC ALGEBRA

In this section we will give a brief introduction to geo-
metric algebra with a focus on the specific variant known as
conformal geometric algebra (CGA). We will be using the
following notation throughout the paper: x to denote scalars,
x for vectors, X for matrices, X for multivectors and X for
matrices of multivectors.

Geometric algebra is a single algebra for geometric rea-
soning, alleviating the need of utilizing multiple algebras to
express geometric relations [38]. The core idea of geometric
algebra is its multiplication operation called the geometric
product

ab = a · b+ a ∧ b, (1)

which is the sum of an inner · and an outer ∧ product [39].
The resulting algebra essentially includes R and the sub-

spaces of the associated vector space as elements of com-
putations [40]. Hence, let Rp,q,r be a vector space, where

p, q and r are the number of basis vectors that square to
1,-1 and 0, respectively, i.e. the dimension of this vector
space is n = p + q + r. The associated geometric algebra
Gp,q,r then has 2n = 2p+q+r basis elements which are called
blades. A general element in geometric algebra is called a
multivector and is the linear combination of basis blades.
This high dimension looks to be leading to an increased
complexity, in practice, however, these multivectors usually
are very sparse, a fact that we exploit in our implementation.
Common variants of geometric include motor algebra G+

3,0,1,
projective geometric algebra (PGA) G3,0,1 and conformal
geometric algebra (CGA) G4,1,0 [41]. Dual quaternions can be
identified with the Clifford algebra Cl+0,3,1 [42], which means
they are based on an algebra with a degenerate metric. Due
to this many of the operations that we are presenting in this
work are not possible in dual quaternion algebra.

In this paper we are using conformal geometric algebra
(CGA) [43]. Conformal refers to angle-preserving transforma-
tions. It embeds the 3-dimensional Euclidean space R3 into the
5-dimensional one R4,1. The corresponding geometric algebra
G4,1 introduces two null-vectors (e0 and e∞) that essentially
represent a point at the origin and a point at infinity. The 5-
dimensional space means that CGA has 32 basis blades. An
explanation of that structure can be found in Appendix A.

A point x in Euclidean space R3 is embedded into CGA by
using the conformal embedding, which is bijective, meaning
that any point x ∈ R3 can be uniquely identified with a point
X ∈ G4,1

X = C(x) = eo + x+
1

2
x2e∞. (2)

Points are the basic geometric primitives that can be used
to construct others by the spanning operation of the outer
product. These geometric primitives are in general nullspace
representations with respect to either the inner (IPNS) or the
outer (OPNS) product, meaning that a geometric primitive is
defined by the set of all Euclidean points that result in zero
upon multiplication when embedded in CGA, i.e.

IPNS: NIG(A) =
{
x ∈ R3 : C(x) ·A = 0

}
, (3)

OPNS: NOG(A) =
{
x ∈ R3 : C(x) ∧A = 0

}
. (4)

The IPNS and OPNS representations are connected by a
duality relationship. Duality in this case means multiplication
with the pseudoscalar I , the highest grade element of the
algebra (i.e. I = e0123∞ for CGA)

X∗ = IX. (5)

We refer to the OPNS as the primal space for its more
convenient usage, which consequently makes the IPNS the
dual representation, although both representations can be used
to represent all geometric primitives. The primitives of con-
formal geometric algebra with their corresponding equations
for construction can be found in Appendix B. These primitives
can be extended when going to higher dimensional geometric
algebras, for example, G6,3 additionally introduces quadric
surfaces like ellipsoids and hyperboloids [44] and the Quadric
Conformal Geometric Algebra (QCGA) G9,3 allows using
arbitrary quadric surfaces [45].
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Conformal geometric algebra provides an exception-free
way of computing incidence relations between geometric
objects [46]. This is achieved via the meet operator

Y = X1 ∨X2 = (X∗1 ∧X∗2 )∗. (6)

The resulting multivector retains a geometric meaning, e.g.
when a line meets a sphere there are three possibilities:
• the line intersects the sphere, in which case Y is a point

pair;
• the line is tangential to the sphere, which results in a

single point;
• the line and the sphere are completely separate, resulting

in an imaginary point that is related to the distance
between the objects.

This geometric result is directly encoded in the result and no
special cases need to be considered.

There are several geometric operations available in geo-
metric algebra such as translations and rotations, but also
dilations, reflections, projections and rejections. For brevity
we only present rigid body transformations, i.e. translations
and rotations, in this paper. Thorough introductions can be
found in [3] and [47] and a survey of relevant research in [5]
and [48].

A. Rigid Body Motions in Geometric Algebra

The elements that describe rigid body motions are called
rotors, translators and more generally: motors. A general motor
is hence composed of a translator and a rotor (we omit other
conformal operations such as scaling in this introduction to
geometric algebra in order to keep it short), i.e.

M = TR. (7)

A motor applied to multivectors results in a sandwiching
product, similar to how quaternions rotate vectors

Y =MXM̃. (8)

Both translators and rotors can be found with an exponential
mapping of bivectors, i.e.

T = exp

(
1

2
(t ∧ e∞)

)
= 1− 1

2
t ∧ e∞, (9)

and

R = exp

(
θ

2
B

)
= cos

(
θ

2

)
− sin

(
θ

2

)
B. (10)

The bivectors are t ∧ e∞ ∈ span {e1∞, e2∞, e3∞} and
B ∈ span {e23, e13, e13}, respectively. Rotors can be seen as
isomorphic to quaternions, they are however more general and
do not require the introduction of complex numbers.

The motors in geometric algebra form a group, which is an
even sub-algebra M of G+

4,1

M = span {1, e23, e13, e12, e1∞, e2∞, e3∞, I3e∞} ⊂ G+
4,1.
(11)

It forms a Lie group with an associated Lie algebra, which is
the bivector algebra in the linear subspace B that is defined as

B = span {e23, e13, e12, e1∞, e2∞, e3∞} ⊂M. (12)

Since the motor group is a Lie group it is also a smooth
manifold. The motor manifoldM can be found with the group
constraint

M =
{
M ∈M :MM̃ = 1

}
. (13)

Motors are isomorphic to dual quaternions [47], which makes
them also isomorphic to SE(3). They represent, however,
a more general concept of transformations that is valid in
any dimension. Furthermore, due to their similarities with
dual quaternions the same advantages over transformation
matrices apply to motors as well, i.e. they require less memory
and operations for multiplication compared to transformation
matrices [49]. The motor manifold being a Lie group con-
sequently makes the bivector algebra its Lie algebra. The
operation that connects the motor manifold with the bivector
algebra is the exponential map, and its inverse the logarithmic
map

M = exp(B) ⇐⇒ B = log(M). (14)

The interpretation of the bivector is the representation of a
dual line B = L∗. This essentially defines the screw axis of
the motor. Note that L∗ is the IPNS of a line and as such a
2-blade, i.e. a bivector [50]. The motor manifold therefore
elegantly combines position and orientation. Having both
position and orientation represented by one entity removes the
need to switch between algebras for computation, e.g. linear
and quaternion algebra. Using the motor manifold optimization
problems can be solved as presented in [51].

Since the motors and the geometric primitives are part
of the same algebra, the motors can be used to apply rigid
body transformations to these primitives. This means that the
primitives can be translated, rotated, reflected and scaled using
angle-preserving transformations.

It has been shown in [28] that efficient interpolation between
motors can be achieved via the bivector space, which is similar
to SLERP. In this case the parameterized motor curve M(t)
can be found as an interpolation in the bivector space of
viapoint motors using the exponential and logarithmic map

M(t) = exp

 n∑
j=1

wj(t) log(Mj)

 . (15)

The weights need to fulfill
∑n
j=1 wj = 1 for each timestep,

but can otherwise be chosen arbitrarily. In [16] this is exploited
for mesh deformation.

IV. OPTIMAL CONTROL

In this section we present a brief review of optimal control.
Optimal control is a well-known technique that deals with

the problem of finding a control sequence that minimizes
an objective function. This objective function encodes the
requirements of the task as well as the constraints of the robot
and the environment. Modelling these mathematically requires
special care, since they will determine the quality of the
resulting solution. Furthermore optimal control can be applied
as solver to a model predictive control problem, which requires
fast convergence in order to achieve acceptable real time
control rates. We will show that by using the representations
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of geometric algebra for geometric primitives improves the
clarity of equations and thus reduces computational difficul-
ties. The modelling of the cost functions becomes easier and
is done uniformly across all different primitives and is done
directly in the error vector as opposed to the precision matrix,
which results in a low symbolic complexity of expressions and
a geometric intuitiveness, i.e. geometric meaning can directly
be inferred.

Discrete-time optimal control aims at finding a control
sequence that minimizes the cost function

min
u
L(x,u) = lf (xN ) +

N−1∑
k=1

lk(xk) + ‖u‖2R. (16)

A popular method to solve this problem is the iterative Linear
Quadratic Regulator (iLQR) [52]. It solves the problem by
linearizing the non-linear system around the current solution
and by assuming a quadratic cost. The solution is then refined
iteratively until convergence. We will be using iLQR to solve
the problem in a model predictive control (MPC) fashion in
the experiments. This means that we are solving the regulation
problem at each timestep and apply only the first control
command to the robot.

V. GEOMETRIC ALGEBRA FOR SERIAL MANIPULATORS

In this section we present how geometric algebra can be
used to express the kinematics and dynamics of serial manip-
ulators. We do this while also explicitly drawing connections
to the expressions and terminology of classical linear algebra.

A. Forward Kinematics of Serial Manipulators

The forward kinematics of a kinematic chain of N joints
can easily be defined using motors. Assuming that we only
have revolute joints, the forward motor M(q), given the
configuration q, can be computed with

M(q) =

N∏
i=1

Mi(qi) =

N∏
i=1

MF,iRi(qi). (17)

The constant joint-specific motors MF,i represent the local
frames of the joints with the rotation in that frame expressed
by the rotor

Ri(qi) = exp

(
−1

2
qiBi

)
, (18)

where the bivectors Bi essentially represent the rotation planes
of the joints. These quantities can easily be found using e.g.
DH-parameters [53].

We denote by Mk(q) the forward kinematics up the k-th
joint, i.e.

Mk(q) =

k∏
i=1

Mi(qi) =

k∏
i=1

MF,iRi(qi). (19)

B. Jacobians of Serial Manipulators
In the literature about serial kinematic chains one can

generally find the distinction between two Jacobians: the
geometric and the analytic Jacobian. In this section we will
explain how these quantities translate to geometric algebra.

Using an arbitrary representation of the end-effector forward
kinematics

ξ = f(q), (20)

the analytic Jacobian is defined as the partial derivatives of
the forward kinematic function f(q) w.r.t. the joint angles

JA(q) =
∂f(q)

∂q
(21)

and it relates the joint angle velocity to time-derivatives of the
end-effector configuration using the given representation

ξ̇ = JA(q)q̇. (22)

The geometric Jacobian on the other hand defines the rela-
tionship of the joint angle velocity to the linear and angular
velocity of the end-effector in a certain coordinate frame[

v
ω

]
= JG(q)q̇. (23)

The relationship between the analytic and the geometric Jaco-
bians can be found by a representation specific mapping

JG(q) = JM (ξ)JA(q) (24)

In geometric algebra the analytic Jacobian can be found
as the derivative of the forward kinematics motor defined in
Equation (17), i.e.

J A(q) =
∂M(q)

∂q
=
[
∂M(q)
∂q1

. . . ∂M(q)
∂qN

]
. (25)

The partial derivative of the forward motor w.r.t the i-th joint
angle is

∂M(q)

∂qi
=M1(q1) . . .MF,i

(
−1

2
Bi

)
Ri(qi) . . .MN (qN ).

(26)
Similarly, the geometric Jacobian of a serial kinematic chain

in geometric algebra can be found by transforming the rotation
bivectors of each joint using the respective motor, i.e.

J G
j (q) =

[
B′1 . . . B′j 0

]
, (27)

with the rotation bivectors

B′i =M1 . . .Mi−1MF,iBiM̃F,iM̃i−1 . . . M̃1. (28)

From Equations (26) and (28) the relationship between the
analytic and geometric Jacobians in geometric algebra can
easily be derived as

J G
kj(q) = −2J

A
kj(q)M̃

k(q). (29)

For the computation of the dynamics, the time derivative of
the geometric Jacobian is also required and it can be found as

J̇
G
(q, q̇) =


Ḃ′1 0 0 . . . 0
... Ḃ′2 0 . . . 0
...

...
...

... 0

Ḃ′1 Ḃ′2 Ḃ′3 . . . Ḃ′N

 . (30)
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The required time derivatives of the rotation bivectors Ḃ′j can
be found using

Ḃ
′
(q, q̇) =

 Ḃ
′
1

...
Ḃ′N

 = J ×(q)q̇, (31)

with

J ×ij(q) = B′i ×B′j = 0.5(B′iB
′
j −B′jB′i), (32)

where the operator × is called the commutator product.

C. Inverse Kinematics of Serial Manipulators

Using the expressions derived in Section V-B, the inverse
kinematics problem for a serial kinematic chain can be formu-
lated as an optimization problem on the motor manifold. The
goal is to find the joint angles q that minimize the following
equation

q∗ = argmin
q

∥∥∥ log (M̃targetM(q)
)∥∥∥2

2
. (33)

The forward kinematics motor M(q) can be found using
Equation (17). The expression M̃2M1 can be understood as
the shortest screw motion between two points on the motor
manifold. The log(·) operation moves the problem to Bivector
space, i.e. the Lie algebra of the motor manifold.

The Jacobian can be found as

JB(q) = EB→R6

[
∂

∂qi
log
(
M̃targetM(q)

)]
. (34)

Here JB(q) ∈ R6×N is a linear algebra matrix. The inter-
pretation of JB(q) is an embedding of the multivectors into
a matrix algebra and exploiting their sparsity. The expression
can be further untangled into

JB(q) = JM→B(q)JM(q). (35)

JM(q) ∈ R8×N is the embedding of the analytic Jacobian of
Equation (25) multiplied by the target motor, i.e.

JM(q) = EM→R8
[
M̃targetJ A(q)

]
. (36)

JM→B(q) ∈ R6×8 can be understood as the Jacobian of the
local parameterization from the motor manifold to the bivector
space and hence is the Jacobian of the log(·) operation. The
derivation of JM→B can be found in Appendix D.

With Equation (34) the Gauss-Newton step becomes

qk+1 = qk − α (JB(q)
>JB(q))

−1
JB(q)

>f(qk), (37)

where α is the line-search parameter. This shows how geomet-
ric algebra functions on the motor manifold can be optimized
using classical methods by embedding the multivectors into
a matrix algebra, which will be exploited later when defining
the cost functions for optimal control problems in geometric
algebra.

D. Dynamics of Serial Manipulators

In classical linear algebra, the manipulator equation is found
to be

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τext, (38)

where M(q) is known as the inertia or generalized mass
matrix, C(q, q̇) is representing Coriolis/centrifugal forces,
g(q) stands for the gravitational forces, τ is the vector of
joint torques and τext are the external torques.

In geometric algebra, Equation (38) can be transformed to
a simplified version, which was shown in [38]. The influence
of the link inertia in that work, however, was assumed to be
a scalar constant, which of course is not accurate for real
systems. Therefore we extend this equation by a joint position
dependent inertia tensor and subsequently derive the necessary
influence on the Coriolis/centrifugal forces. The elements of
Equation (38) can be expressed as multivector matrices, where
the generalized mass matrix becomes

M(q) = I(q) + V>(q)mV(q). (39)

The scalar valued m is an N × N matrix that contains all
link masses along its diagonal. The Coriolis/centrifugal forces
become

C(q, q̇)q̇ = İ(q, q̇) + V>(q)mV̇(q, q̇)q̇, (40)

and the gravitational forces are

G(q) = V>(q)mG. (41)

The constant matrix G ∈ GN×14,1 contains the gravitational
acceleration with the information about the direction. In the
usual case, all elements therefore are equal to ge3. The
recurring multivector matrix V(q) ∈ GN×N4,1 can be found
using the current centers of mass of the links XCoM

j and the
current axes of rotation of the joints, expressed as bivectors
B′k. An element of this matrix therefore becomes

Vj,k(q) = XCoM
j (q) ·B′k (42)

The interpretation of this matrix is the computation of the lever
arms of the centers of mass of the links w.r.t. each joint. Its
time derivative can be found to be

V̇j,k(q, q̇) =
(
IV(q)q̇

)
J G(q) +

(
IXCoM (q)

)
J̇
G
(q, q̇)

(43)
Note that I in this case is an N×N identity matrix, such that
the expression V(q)q̇ becomes a square matrix instead of a
vector. The same applies to the expression IXCoM (q), where
the matrix XCoM (q) ∈ GN×14,1 contains all centers of masses
of the links.

As mentioned, we are not assuming the inertia to be constant
in this work, since we want to use the inverse dynamics
control scheme in our experiments, which requires an exact
computation. Therefore, we have derived the influence of the
link inertia, given the current joint state I(q), as well as its
time derivative İ(q, q̇). The inertia matrix can be found as a
summation over the joint angles of the manipulator, accounting
for the influence of each joint, i.e.

I(q) =
N∑
i=0

B>
i I(Bi). (44)
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The bivector matrix Bi is a 1 × N row-vector and contains
the rotation generators of each joint w.r.t the current joint. The
j-th element of Bi can thus be found as

Bi,j = R̃i(q) log
R
(
J G
ij(q)

)
Ri(q). (45)

The expression logR(·) in these equations stands for the
logarithmic map of the rotor part of the motor that is the
ij-th element of the geometric Jacobian. It hence returns a
bivector with non-zero elements corresponding to the basis
blades e23, e13 and e12.

The time derivative of the inertia matrix thus follows as

İ(q, q̇) =
N∑
i=0

B>
i

(
I(Ḃi) + R̃i(q)B̂

w
i Ri(q)

)
. (46)

The time derivative of the rotation generators Ḃi can be found
in the same way as the elements of Bi, but using the time
derivative of the geometric Jacobian

Ḃi,j = R̃i(q) log
R
(
J̇
G

ij(q, q̇)
)
Ri(q). (47)

The variable B̂wi from Equation (46) can be found as

B̂wi = (I3B
w
i )∧

(
Ri(q)I

(
R̃i(q)I3B

w
i Ri(q)

)
R̃i(q)

)
. (48)

Note that in this case I3 stands for e123, which is the
pseudoscalar of the Euclidean geometric algebra G3, which is
a sub-algebra of CGA. Bwi on the other hand is the bivector
velocity that results from multiplying the geometric Jacobian
with the joint velocity, i.e. Bwi = J G

i (q)q̇. The quantity I3Bwi
therefore is the angular velocity and is non-zero in e1,e2 and
e3. The outer product in Equation (48) causes the quantity B̂wi
to be a bivector again, i.e. the elements e23,e13 and e12 are
non-zero.

In all the above equations I(·) expresses the inertia tensor
being applied to a multivector or to each multivector element
in the matrix case. The inertia tensor is a grade-preserving
operation since it maps bivectors to bivectors [54].

Finally, we find the manipulator inverse dynamics equation
in geometric algebra to be

τ (q, q̇, q̈) = τext + I(q)q̈ + İ(q, q̇)

+ V>(q)m
(
V(q)q̈ + V̇(q, q̇)q̇ + G

)
, (49)

and consequently the forward dynamics of a serial manipulator
can be expressed as

q̈(q, q̇, τ ) =
(
I(q) + V>(q)mV(q)

)−1
(
τ − τext − V>(q)m

(
V̇(q, q̇)q̇ + G

)
− İ(q, q̇)

)
. (50)

In the experiments, we will validate these equations by
employing an inverse dynamics control scheme on top of the
MPC in order to convert the acceleration commands to torques.

VI. GEOMETRIC ALGEBRA FOR OPTIMAL CONTROL

In this section we describe how geometric algebra can
be used in optimal control problems. We first present its
application to a pointmass and then show how it can be used
for manipulators.

A. Optimal Control on the Motor Manifold

Employing homogeneous coordinates in 4D geometric alge-
bra effectively allows us to linearize rigid body motions in 3D
Euclidean space. In order to exploit this useful property, we
demonstrate how to solve reaching tasks for rigid body motion
using the motor manifold. The linear system is defined in the
linear 6-dimensional bivector space, i.e. the Lie algebra of the
motor manifold. The state x is defined to be the stacked vector
of the parameter vectors b and ḃ of the bivector B and its time
derivative Ḃ, respectively. From this follows the definition of
the linear dynamical system as

xt+1 =

[
bt+1

ḃt+1

]
= A

[
bt
ḃt

]
+Cut, (51)

where the command u corresponds to bivector accelerations.
Using the optimal control formulation that was presented in

Equation (16), we now need to define appropriate state costs
based on geometric algebra. Naturally the inverse kinematics
cost function that was presented in Section VII-C can be used
in order to define pose targets for reaching motions. This cost
function is therefore the most equivalent to classical methods
using e.g. transformation matrices. Of course, when using this
linear bivector system, the current motor Mt is not found using
the forward kinematics, but instead using the exponential map,
i.e.

Mt = exp(B(bt)). (52)

The corresponding cost function therefore becomes

l(xt) =
∥∥e(xt)∥∥22 =

∥∥∥ log (M̃targetMt

)∥∥∥2
2
. (53)

Note that due to the logarithmic map that is used here, the error
vector e(xt) is the parameter vector of a bivector and is hence
6-dimensional as well. Since the motors include orientation as
well as position, it essentially is an oriented pointmass system.

Apart from defining target poses using the motor manifold,
geometric algebra additionally offers the possibility to define
targets using its geometric primitives and the accompanying
incidence relationships. We exploit the nullspace representa-
tions of the primitives for the formulation of the reaching
objectives, more specifically we use the OPNS representation.
By definition of the OPNS the outer product is zero for any
point that is on a geometric primitive. The multivector valued
error can therefore be defined as

E(q) = Xd ∧MtXM̃t, (54)

with X = e0, i.e. the point at the origin, in this case and Xd

can be any geometric primitive that can be expressed in the
algebra. It is important to highlight that other combinations are
possible as well and X is not restricted to be a point, it can for
example also be a line with Xd being a point, which will be
shown later in the form of a pointing task for a manipulator.
Note that the structure of equation remains the same regardless
of the combination of primitives.
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B. Optimal Control for Serial Manipulators

In this section we are presenting the formulation of objective
functions for optimal control problems with serial manipu-
lators based on geometric algebra. Similarly to the previous
section, the inverse kinematics cost function can be used to
define target poses for a manipulator to reach. More interesting
is to consider Equation (54) for manipulators, of course in this
case the motor again corresponds to the forward kinematics
function. Using X = e0 therefore means that the expression
M(q)XM̃(q) corresponds to the tip of the end-effector. Xd

again is free to be any geometric primitive. In all cases the
Jacobian can be found by applying the chain rule to the
multivector expressions

J E(q) = Xd ∧
(
J A(q)XM̃(q) +M(q)XJ̃ A(q)

)
, (55)

where the J A(q) is the analytic Jacobian that was presented
in Equation (25) and the reverse of a multivector matrix is
defined as the element-wise multivector reverse.

Of course, depending on the combination of X and Xd, the
resulting E(q) will represent a different geometric meaning,
which can be seen by the different non-trivial blades it holds.
It is, however, known a priori what the resulting non-trivial
blades are. From this it follows that the embedding function
E actually becomes dependent on X and Xd, i.e.

JE(q) = E(X,Xd)
[
J E(q)

]
. (56)

The purpose of the embedding function thus is the removal
of the trivial blades of the multivector, i.e. removing the zero
rows from the matrix. This is in line with the goal of keeping
the representations compact to allow for efficient computation.
Furthermore, the embedding now allows the usage of off-the-
shelf tools for optimal control.

Note that in general no special cases, such as division
by zero, need to be considered for here. The exception-free
incidence property of conformal geometric algebra allows for
the equations to be coded exactly as they are presented in this
paper.

VII. EXPERIMENTS

In this section we are presenting implementation details of
the provided library gafro as well as benchmarks of the kine-
matics computation. Afterwards we show various experiments
with the Franka Emika robot to demonstrate how geometric
algebra can used to model different tasks.

A. Implementation Details

We implemented the presented robotics kinematics and
dynamics algorithms along with cost functions for optimal in
control in c++20. This resulted in the library gafro, which is
publicly available. In this section we are presenting this library
on a high-level and highlight some of its features. A more in-
depth presentation, exhaustive benchmarks and comparison to
other libraries will be part of future work.

At the core of gafro is a custom implementation of confor-
mal geometric algebra. It exploits the sparsity of the mul-
tivector by only storing the data blades that are non-zero

by the structure of the objects. The geometric, inner and
outer products are implemented as expression templates, that
are further exploiting this structure by only evaluating the
elements of the resulting type that are known to be non-zero.
The types are evaluated at compile time and the evaluation
tree is constructed, which is then evaluated at runtime in a
lazy fashion. One of our design goals for the library was the
seamless integration with existing tools for robotics such as
libraries for optimization and optimal control. To this end we
used the Eigen library 2, which is de facto the standard tool
in robotics, to implement the sparse parameter vector of the
multivectors.

Since this library implements robot kinematics and dynam-
ics algorithms, we are comparing and benchmarking gafro
against several libraries that are commonly used in robotics
applications. These libraries include Raisim [55], Pinocchio
[56] and KDL [57]. An excerpt of the benchmarking results
can be found in Figure 2. As can be seen, our library can
compute these important quantities considerably faster than
the other libraries that are based on more classical methods
and transformation matrices.

Forward Kinematics
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(a) Results for benchmarking the forward kinematics. The reference
robotic system is the Franka Emika robot.
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(b) Results for benchmarking the geometric Jacobian.

Fig. 2: Benchmarking results for gafro compared to Raisim,
Pinocchio and KDL. The benchmarks were all performed on
an AMD Ryzen 7 4800U CPU using the compiler flags -O3
-msse3 -march=native. The presented results are the
average of 10000 executions with 10 repetitions.

We want to point out that these benchmarks are preliminary
results only, since there are some code optimizations that still
need to be done. This especially applies to the computation

2https://eigen.tuxfamily.org

https://eigen.tuxfamily.org
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of the dynamics that was presented in this paper. While it is
possible to do real-time control with our implementation, it
is still naive in the sense that algorithmic improvements of
the implementation will make the computation faster. Both
these issues will be addressed in future work that will be
dedicated to the implementation details as well as an in-depth
benchmarking against a wider range of libraries. At this point
we will then also provide python bindings for the library.

B. Torque Control of Serial Manipulators

The optimal control methods derived in Section IV are used
in a model predictive control framework. In order to achieve
fast, online computation we are employing a double integrator
system in the joint space, which results in acceleration com-
mands for the control of the manipulator. However standard
practice is using torque commands, which means that we have
to convert the accelerations to torques. This can be realized
using an inverse dynamics controller, the required control
command can thus be found as

uτ = τ (q, q̇, q̈d) +Kp(qd − q) +Kd(q̇d − q̇) (57)

where the torque vector τ is computed as presented in Equa-
tion (49). Kp and Kd are the stiffness and damping gains,
respectively.

While the formulation of the inverse dynamics controller
is following standard practice, the computation of the torques
τ (q, q̇, q̈d) is done using the geometric algebra approach that
was presented in Section V-D. The experiments on the real
robot therefore not only show GA can be used for tracking
different geometric primitives online with MPC, it also verifies
the dynamics computation in GA. Most importantly it validates
the non-trivial inertia matrix that we derived in this paper.

C. Inverse Kinematics

In order to evaluate the numerical inverse kinematics using
the motor formulation, we repeated the following experiment
10000 times. We sampled a random target from within the
workspace of the Franka Emika robot and an initial joint con-
figuration. Then using the standard Gauss-Newton approach
that we also described in Section V-C, we computed the
optimal solution. The resulting final cost was in the order of
1 × 10−10 on average and was found within 11.2 iterations,
which corresponds to a time of 79 µs on our system.

D. Pointmass System

In Sections V-C and VI-A we first presented the cost
function to minimize the difference between two motors and
then optimal control for an oriented pointmass formulated as a
linear system in the bivector space. Here we present an optimal
trajectory for such a system using several target motors. This
example of a control problem using several target motors along
the trajectory is shown in Figure 3.

Note that the same objective can be formulated for ma-
nipulators as well, which would correspond to reaching target
poses with the end-effector, which makes it similar to classical
methods, albeit with a different mathematical formulation.

Fig. 3: Optimal trajectory for an oriented pointmass system.
We placed four target motors along the trajectory at T/4, T/2,
3T/4 and T , respectively. The target motors are highlighted
along the trajectory. The optimal trajectory was then found
using the system defined in Equation (51) and the cost function
from Equation (33).

Therefore we omit this showing it for manipulators for brevity
and concentrate on modeling and reaching tasks using the
geometric primitives in the following sections.

E. Reaching Tasks

Using the cost function formulation of geometric algebra
that was presented in Equation (54) various reaching tasks
can be defined. In general, for a reaching task, the end-effector
should reach a certain position. This can be modeled by using
a point for X . Then the desired multivector Xd can be any
other geometric primitive, which in turn means that instead
of only reaching a point, we can also reach lines, planes,
circles and spheres. Higher order quadrics are possible as
well, this however remains the subject of further investigations.
We present optimal trajectories that were computed using the
iterative linear quadratic regulator to explain how different
geometric primitives can be reached using the same structure
of the cost function, which is shown in Figure 4. In the
experiments using the real Franka Emika we are then using
nominal MPC, which results in an offset for the steady-state.
This effect is expected but negligible in our work, since the
focus of this paper are the modeling aspects. Since we are
using an MPC framework we do not need to use fixed points
for the reaching but can have movable targets. In practice
we use Aruco markers to track the target online or we are
disturbing the robot while it is moving.

1) Reaching a Point: Reaching a point means that the
desired geometric primitive is a point, i.e. Xd = P in Equation
(54). The reference primitive Xr is a point as well and
represents the tip of the end-effector. Figure 4a shows an
example trajectory for reaching a fixed point from a random
initial configuration.

In the real robot experiments we used a single Aruco marker
for reaching a movable point. For safety reasons the target
point was set 10cm above the marker. We then moved the
marker around allowing the robot to follow the reference.
We present the results of the real experiment in Figure 5. In
both plots that are presented we show the values of the 10-
dimensional error vector that results from the outer product of
two points. If the magnitude of this vector is zero it means that
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(a) Reaching a point. (b) Reaching a plane.

(c) Reaching a line. (d) Reaching a circle.

Fig. 4: Examples of optimal trajectories for reaching tasks
using different geometric primitives. The initial configuration
is always shown in gray and the final one in white. The target
geometric primitive is shown in red. And the trajectory is
depicted as the frames corresponding to the end-effector.

the reference point is in the nullspace of the desired point w.r.t
to the outer product. In the case of points, this means that they
are identical and the target is reached. Figure 5a presents the
static case where we neither moved the point nor disturbed the
robot while it moved. We did both of these in the plot shown
in Figure 5b. It can be seen that the MPC controller is fast
and reactive, reaching the targets in a stable manner.
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(a) Regulation of the end-effector to a target point using MPC without
disturbing it. It can be seen that the offset that is induced by the
nominal MPC is only very small.
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(b) Regulation of the end-effector to a target point using MPC while
disturbing it.

Fig. 5: Error of reaching a fixed target point in MPC for a
total duration of 20s. The individual lines show the elements
of resulting 10-dimensional error vector that results from the
outer product of two points.

Reaching a point is in this context a trivial example, since
it can be easily done using classical methods as well, but it
serves to show that reaching problems can be solved for all
geometric primitives in the same way as they are solved for a
point using geometric algebra.

2) Reaching a Pointpair: Using a pointpair as the target
presents a special opportunity to model a control problem
with options. A pointpair is the result of the outer product of
two points. From this outer product nullspace representation,
it follows that the outer product of the point pair and any point
P = C(x) with x ∈ R3 is zero if and only if P is identical
to one of the points that constructed the pointpair.

The two possibilities are shown in Figure 6, where Figure
6a shows the robot reaching the first point and Figure 6b the
second one. The point that is reached depends on the initial
configuration and there are no conditional statements required.
The corresponding Jacobian is thus always computed in the
same way, i.e. as presented in Equation (55), and is valid
without exceptions. The same is true for the other geometric
primitives that we are considering here, but we wanted to
specifically highlight the pointpair primitive due to its power
to model a binary target.

(a) Left (b) Right

Fig. 6: Depending on the initial configuration, either the left
or the right point of the pointpair is reached.

3) Reaching a Plane: A plane in geometric algebra is
represented by three individual points and e∞ using the outer
product nullspace, i.e. Xd = E = P1∧P2∧P3∧e∞. Note that
we do not need to know the orientation, i.e. its normal vector,
of the plane in order to define it. It is sufficient to know three
points that lie in the plane. When multiplying the plane with a
point using the outer product, any point that lies in the plane
will result in zero, E ∧ P = 0 if P ∈ E. Equation (54) will
therefore minimize the reaching motion to the plane from any
random initial configuration as shown in Figure 4b.

4) Reaching a Line: A line is similar to a plane, but requires
only two known points along the line in order to construct it.
We show an optimal trajectory for reaching a line in Figure 4c.
For the real robot experiment we again used an Aruco marker,
in this case one construction point was on the marker and the
other one was 10cm above it. The target line therefore always
is perpendicular to the y− z−plane. In Figure 7 we show the
results of the experiment. The corresponding error vector has
6 components and is geometrically equivalent to a circle.

5) Reaching a Circle: A target circle is constructed by the
outer product of three points, i.e. Xd = C = P1 ∧ P2 ∧ P3.
These three points uniquely define the circle and no further
knowledge about its radius or orientation is required (but both
of these can of course be obtained from the circle for the
visualization shown in Figure 4d). The target is here only the
boundary of circle (not the full disc).
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Fig. 7: Components of the error vector resulting from the
outer product of a line and a point. Error of reaching a fixed
target point in MPC for a total duration of 20s. The individual
lines show the resulting error vector that results from the outer
product of a line and a point.

F. Pointing Task

The modelling of a pointing task only requires the usage of
a line instead of a point for X in Equation (54). A possible
scenario where this task would be applied is tracking an object
with a robot arm endowed with a camera. The line can in
this case be interpreted as the line of sight of the camera.
Again different geometric primitives can be used as the target,
since the intersection of a line with any other primitive can
be calculated in closed form without exceptions. The setup is
shown in Figure 8. Figure 9 shows the moving target.

Fig. 8: optimal trajectory example for a pointing task. The
target is shown as the red point. The pointing line is defined
to be collinear to the z-axis of the end-effector frame. It is
shown in green for the initial configuration and in blue for the
final configuration.
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Fig. 9: Experimental results of the pointing task showing the
components of the error vector during 20s. The Aruco marker
representing the target point was constantly moved around,
which is the reason why the error vector is more jittery than
in other experiments.

G. Circular Object Grasping Task

In this task the goal is to give an object with a round
opening to the robot. The setup is depicted in Figure 10.
The opening is modeled as a circle, i.e. the robot can grasp

the object all around its opening. However, two additional
constraints on the orientation are necessary to model this task.
These constraints are shown in Figure 10a. The end-effector
is required to be perpendicular to the plane that the circle lies
in. A plane in geometric algebra can be obtained from a circle
by a multiplying the circle with e∞ and the normal vector is
then obtained as

nE = E∗ − 0.5(E∗ · e0)e∞. (58)

The second constraint is that the direction that the gripper
is actuated in needs to be perpendicular to the circle, which
expressed mathematically means that this direction needs to
be coaxial with the line that connects the grasping position
and the center of the circle when it is projected into the plane
of the circle. The projection of a point P to the plane E is
computed as

P ′ = (E · P )E−1. (59)

(a) Constraints defining the cir-
cular object grasping task: 1) the
green point representing the end-
effector position needs to lie on
the circle (i.e. the boundary of
the red disc), 2) the green arrows
representing the y-axis of the end-
effector frame and the radial vec-
tor of the circle must be collinear,
3) the blue arrows representing
the z-axis of the end-effector
frame and the normal vector of
the circle must be collinear and
pointing in opposite directions.

(b) Franka Emika robot grasping
a box with a circular opening. An
Aruco marker is attached to the
box to mark its location. The three
points defining the circular open-
ing are measured with respect to
the marker frame.

Fig. 10: Experiment setup of the circular object grasping task.
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Fig. 11: Experimental results of the circular object grasping
task. In this figure three repetitions are depicted, the location
of the target box was changed in-between.

In Figure 10 we show the setup of the experiment with
the Franka Emika robot. The box that we used has a circular
opening and we defined it by measuring three points relative to
an Aruco marker that we attached to the side of the box. Then
during the experiment the robot was reaching for the box while
satisfying the aforementioned constraints using MPC. As soon
as it reached (i.e. the cost was below a threshold) the robot
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closed its gripper in order to hold the box. We repeated this
experiment multiple times and changed the box position by
holding in our hands for giving it to the robot. An excerpt of
the resulting error vector over time can be found in Figure 11.

VIII. CONCLUSION

We presented in this paper the usage of geometric algebra
for the modelling of optimal control tasks and how to use
the dynamics of serial manipulators computed with geometric
algebra for inverse dynamics control.

The provided library, gafro, is currently specialized for
conformal geometric algebra. The implementation of the mul-
tivectors and expressions that define the algebra is generic.
Thus it would be possible to use geometric algebras with
different signatures, which can be used to explore the usage
of different geometric primitives such as quadric surfaces in
this optimal control framework.

Higher order quadric surfaces of e.g. G6,3 or G9,6 are still
a topic of ongoing research. In theory it should be possible
to use them seamlessly in combination with the methods that
we presented in this paper, since the properties of the different
geometric algebras such as the outer product nullspace, which
we rely on, remain the same. It is therefore the topic of future
work to investigate the integration of these algebras into our
formulation. The benefit of this would be a more versatile and
generic modeling of surfaces that can be exploited for various
manipulation tasks.

A possible extension and application of this work would
be grasping and in-hand manipulation. Using the geometric
representations and the corresponding optimization functions
presented in this we can actually very easily derive a model
for grasping in geometric algebra. The three contact types
point, line and plane can directly be represented as geometric
primitives. In most cases the contact points are surface points
of objects. Especially the most commonly used point-on-plane
model, which is always stable.
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APPENDIX

A. Structure of a Multivector in Conformal Geometric Algebra

Conformal geometric algebra has 32 basis blades, following
the rule k = 2r+p+q . Grade 5 is the highest grade of CGA,
consequently that makes e0123∞ the pseudoscalar of the alge-
bra. In practice the multivectors are sparse and usually at most
10 elements are non-zero. We call the vector containing the
known non-zero blades of a multivector its parameter vector.
Note that the grade 0 element is a scalar which means that
vectors and matrices known from linear algebra are actually
part of this algebra and can therefore be seamlessly multiplied
with multivector matrices.

B. Geometric Primitives in Conformal Geometric Algebra

Table II shows the geometric primitives that are avail-
able in conformal geometric algebra. We define the outer
product nullspace as the primal representation, because of
its more convenient construction of the primitives. Note that
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grade 0 1

grade 1 e1, e2, e3, e∞, e0

grade 2 e23, e13, e12, e1∞, e2∞, e3∞, e01, e02, e03, e0∞

grade 3 e123, e12∞, e13∞, e23∞, e012, e013, e023, e01∞, e02∞, e03∞

grade 4 e123∞, e0123, e012∞, e023∞, e013∞

grade 5 e0123∞

TABLE I: Basis blades of conformal geometric algebra.

all primitives can be used as the argument of the sandwich
product MXM̃ , i.e. applying rigid body transformations to
the primitives. Higher dimensional algebras such as G9,6

extend these primitives by quadric surfaces such as ellipsoids
and hyperboloids. There are several geometric operations that

OPNS (primal) IPNS (dual)

Point P C(x) C(x)

Point Pair A P1 ∧ P2 S1 ∧ S2 ∧ S3

Sphere S P1 ∧ P2 ∧ P3 ∧ P4 P − 1
2
ρ2e∞

Plane E P1 ∧ P2 ∧ P3 ∧ e∞ x+ 1
2
x2e∞ − 1

2
ρ2e∞

Line L P1 ∧ P2 ∧ e∞ E1 ∧ E2

Circle C P1 ∧ P2 ∧ P3 S1 ∧ S2

TABLE II: Geometric primitives in CGA [47]

allow for reasoning about the relationships between primitives
such as projections and intersections. The latter can actually be
found as well in the construction of the geometric primitives,
for example a circle in its IPNS representation is constructed
as the outer product of two spheres, i.e. the intersection of two
spheres.

C. Embedding

This section explains the embedding function E [X ] that is
used to obtain the non-trivial parameter matrix of a multivector
matrix. Suppose you have an arbitrary multivector matrix
X ∈ RI×J with elements Xij that have K known non-
trivial blades ek. The resulting parameter matrix then is of
size IK × J , i.e. the parameter vectors of each multivector
element get expanded along the columns of the matrix. The
embedding function E is therefore defined as

X = E [X ] =



X11,1 . . . X1J,1

...
. . .

...
X11,K . . . X1J,1

...
. . .

...
XI1,K . . . XIJ,1

...
. . .

...
XI1,K . . . XIJ,K


. (60)

D. Derivation of the Jacobian of the Motor Logarithmic Map

From Equation (14) we know that B = log(M). We define
the parameters of the motor and bivector as follows

M = m1 +m2e23 +m3e13 +m4e12

+m5e1∞ +m6e2∞ +m7e3∞ +m8e123∞, (61)

and

B = b1e23+ b2e13+ b3e12+ b4e1∞+ b5e2∞+ b6e3∞. (62)

Standard results show that the motor M can be split into a
rotor R and a translator T , such that M = TR

R = −e0 ·Me∞, (63)
T = MR̃. (64)

Using the Equations (10) and (9) it becomes straightforward
to derive the bivector components bi in function of the motor
components mi

b1 = −m2
2 cos−1 (m1)

sin (cos−1 (m1))
, (65)

b2 = −m3
2 cos−1 (m1)

sin (cos−1 (m1))
, (66)

b3 = −m4
2 cos−1 (m1)

sin (cos−1 (m1))
, (67)

b4 = −2(m1m5 +m4m6 +m3m7 +m2m8), (68)
b5 = −2(−m4m5 +m1m6 +m2m7 −m3m8), (69)
b6 = −2(−m3m5 −m2m6 +m1m7 +m4m8). (70)

The Jacobian of the motor logarithmic map can be found
as the partial derivatives of the bivector components bi w.r.t
the motor components mi, i.e.

JM→B(M) =


∂b1
∂m1

. . . ∂b1
∂m8

...
. . .

...
∂b6
∂m1

. . . ∂b6
∂m8

 . (71)

Using the Equations (65) the non-trivial partial derivatives can
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be found to be
∂b1
∂m1

= −2m2

(
1

m2
1 − 1

+m1 cos
−1 (m1)

)
, (72)

∂b2
∂m1

= −2m3

(
1

m2
1 − 1

+m1 cos
−1 (m1)

)
, (73)

∂b3
∂m1

= −2m4

(
1

m2
1 − 1

+m1 cos
−1 (m1)

)
, (74)

∂b1
∂m2

=
∂b2
∂m3

=
∂b3
∂m4

=
−2 cos−1 (m1)

sin (cos−1 (m1))
, (75)

∂b4
∂m1

= − ∂b5
∂m4

= − ∂b6
∂m3

= −2m5, (76)

∂b4
∂m2

= − ∂b5
∂m3

=
∂b6
∂m4

= −2m8, (77)

∂b4
∂m3

=
∂b5
∂m2

=
∂b6
∂m1

= −2m7, (78)

∂b4
∂m4

=
∂b5
∂m1

= − ∂b6
∂m2

= −2m6, (79)

∂b4
∂m5

=
∂b5
∂m6

=
∂b6
∂m7

= −2m1, (80)

∂b4
∂m6

= − ∂b5
∂m5

=
∂b6
∂m8

= −2m4, (81)

∂b4
∂m7

= − ∂b5
∂m8

= − ∂b6
∂m5

= −2m3, (82)

∂b4
∂m8

=
∂b5
∂m7

= − ∂b6
∂m6

= −2m2, (83)

which concludes the derivation.
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