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A Unified Framework for Probabilistic Dynamic-,

Trajectory- and Vision-based Virtual Fixtures

Maximilian Mühlbauer1,2, Freek Stulp2, Sylvain Calinon3,4, Alin Albu-Schäffer2,1, João Silvério2

Abstract—Probabilistic Virtual Fixtures (VFs) enable the adap-
tive selection of the most suitable haptic feedback for each
phase of a task, based on learned or perceived uncertainty.
While keeping the human in the loop remains essential, for
instance, to ensure high precision, partial automation of certain
task phases is critical for productivity. We present a unified
framework for probabilistic VFs that seamlessly switches be-
tween manual fixtures, semi-automated fixtures (with the human
handling precise tasks), and full autonomy. We introduce a novel
probabilistic Dynamical System-based VF for coarse guidance,
enabling the robot to autonomously complete certain task phases
while keeping the human operator in the loop. For tasks re-
quiring precise guidance, we extend probabilistic position-based
trajectory fixtures with automation allowing for seamless human
interaction as well as geometry-awareness and optimal impedance
gains. For manual tasks requiring very precise guidance, we
also extend visual servoing fixtures with the same geometry-
awareness and impedance behaviour. We validate our approach
experimentally on different robots, showcasing multiple operation
modes and the ease of programming fixtures.

Index Terms—Human-Centered Automation, Space Robotics
and Automation, Learning and Adaptive Systems, Telerobotics
and Teleoperation.

I. INTRODUCTION

V IRTUAL Fixtures (VFs) [1], [2] guide humans through

tasks by providing haptic feedback. They have been

applied to diverse areas such as medical robotics [3], man-

ufacturing on Earth [4] and in space applications [5]–[8] and

underwater manipulation [9]. Depending on the task phase,

fixtures can be based on different perceptual input, e.g.,

on robot position or visual measurements [7], [8]. A main

limitation of state-of-the-art VFs is however that tasks cannot

be accomplished without a human in the loop, raising the

need for fixtures that can progress autonomously by outputting

actions, e.g. velocities, while still keeping the human in full

control. Having a set of complementary fixtures with different

input modalities, output types and models, as summarized in

Table I, a principled arbitration between them is required. The

main contribution of our work is a framework for the fusion

of probabilistic fixtures, ensuring both an optimal guidance for

the human and automated operation when needed. A novel set

of VFs, providing different types of assistance depending on

required guidance precision (Table I), forms the backbone of

our framework. Common to all our VFs is that they output
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Fig. 1: Overview of the proposed unified framework. 1 (yellow): The combi-
nation of all fixture types through probabilistic fusion of Cartesian wrenches
to deliver optimal assistance. 2 (red): A new class of learned, Dynamical
System based virtual fixtures to assist an operator in progressing along the
task while staying near training data. 3 (orange): A novel variable stiffness
formulation applicable to position-based fixtures with varying (e.g. cylindrical)
geometries 4 (blue). 5 (green): An improved formulation of visual servoing
fixtures building on 4 to account for non-Euclidean geometries.

a probabilistic wrench with covariance in pose space. This

allows to formulate this fusion of different VFs in a principled

way using an arbitration scheme (Section IV-A), thus solving

the problem of selecting and switching between VF in a flexi-

ble and adaptive manner based on learned and/or perceived

uncertainties. An illustration of concurrently active fixtures

provided by our framework, fused through such arbitration

policy, can be seen in Fig. 1.

To create automated VFs, we propose a novel probabilistic

VF for coarse guidance based on learned Dynamical Systems

(DSs) [10], [11] which have been studied extensively in

robotics [12]–[20] and are a promising approach to model a

wide range of autonomously executed tasks. Commonly, they

are equipped with a single attractor and the method ensures

that the system converges to that point. Using probabilistic

methods providing epistemic uncertainty we model DSs that

do not necessarily converge to a single attractor but may also

contain recurring motions and can be composed of multi-

ple demonstrated dynamics in different areas of the robot’s

workspace while supporting user interaction (Section V).

While DS-based fixtures offer a very flexible automated

assistance, probabilistic position-based trajectory fixtures are

better suited for precise guidance when a demonstrated path

has to be followed. Although such fixtures are abundant in

the literature [8], [21], in scenarios of potential data scarcity,

learning efficiency becomes crucial. To facilitate data efficient

learning when object and task geometries are known, we

propose an extension of a state-of-the-art formulation [22] to

https://arxiv.org/abs/2506.10239v1
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TABLE I: TYPES OF FIXTURES CONSIDERED IN OUR FRAMEWORK.

Fixture Input Output Accuracy Workspace

Dynamical System (V) Pose Velocity Coarse Everywhere
Position-based Trajectory (VI) Pose Pose Fine Near trajectory

Visual servoing (VII) Image Pose Very fine Near target

take different geometries into account (Section III-A). Fur-

thermore, as the preferred direction of such VF is known from

demonstration data, we automate the execution of such fixtures

by extending them with a novel control scheme inspired by

the DS based VF (Section VI).

For very precise guidance, particularly near relevant ob-

jects or targets in the robot workspace, we leverage prob-

abilistic visual measurements. The visual servoing fixture

formulation [8] can help to arbitrate between multiple possible

targets. We extend this formulation to cylindrical and spherical

manifolds, taking special arrangements of those targets into

account (Section VII).

Both position- and vision-based fixtures rely on an

impedance control scheme, pulling the end effector towards a

probabilistic attractor point. As this attractor point may exhibit

significant uncertainty in some directions, previously, variable

stiffness formulations have been employed to modulate the

controller stiffness accordingly [8]. Currently available stiff-

ness scaling methods however fail to model couplings between

positional and rotational degrees of freedom (DoFs). We

therefore propose a novel method to derive a stiffness matrix

from the fixture’s covariance, taking all possible couplings into

account (Section IV-B).

Our proposed probabilistic VF framework allows to re-

produce the whole range of automation levels, starting with

teleoperation aided by VFs over partial automation, where the

human operator still performs certain tasks, up to full automa-

tion. The key contributions of our work are the following:

1) An extended arbitration scheme taking different types

of VFs and different underlying geometries into account

(Section IV-A);

2) A novel dynamical system based VF (Section V);

3) A novel variable stiffness formulation allowing to model

couplings between positional and orientational DoFs

(Section IV-B);

4) An extension of position-based fixtures to different man-

ifolds as well as their automation (Section VI);

5) An extension of visual servoing fixtures to different

manifolds (Section VII).

For evaluating our framework, we have implemented it

on different robotic systems under different automation lev-

els. After experimentally validating the individual fixtures

(Sections VIII-A to VIII-D), we evaluate the combination

of fixtures both in partially automated scenarios with human

interaction (Sections VIII-F and VIII-G) as well as in a fully

automated scenario on a space-ready robot (Section VIII-E).

II. RELATED WORK

Our approach builds upon a range of techniques from robot

learning and control which we review in this section. The

proposed DS-based VF formulation (Section V) builds on the

learning of DS body of work [10], [11], [15], [18] as well

as on methods for human interaction with them explored in

Sections II-A and II-B. For position-based trajectory fixtures

(Section VI), related automation approaches (Section II-C) as

well as adaptive stiffness scaling (Section II-E) are explored.

Finally, we review existing techniques for the adaptive arbi-

tration of VFs in Section II-D.

A. Dynamical Systems

Dynamical Systems (DSs) model actions as a function

of the system state. As such, they can for example encode

velocity policies ẋ = f(x). Dynamic Movement Primitives

(DMPs) [10], [11] model such systems with a single attractor

by combining a stable attractor dynamic with forcing terms.

Those forcing terms deform the attractor field to e.g. follow

complex trajectories. A DMP can be learned by optimizing

the parameters of its forcing terms to follow a set of demon-

strations as closely as possible. For an overview of popular

DMP-based approaches, the reader is referred to [12].

Stable Estimators of Dynamical Systems (SEDS) [15] learns

a Gaussian Mixture Model (GMM) and ensures stability of

the resulting DS towards an attractor point. For the case of

multiple attractors, [16] proposes a clustering method. For

complex DSs, [17] proposes to learn the non-linearity of the

DS, allowing for an easy adaptation of the learned dynamics

with the use case of obstacle avoidance. Learning implicit

manifolds promises to better model complex DSs [14]. Neural

networks allow for even more powerful estimations of DSs. In

[18], global stability of the learned system is ensured through

a special network architecture. Other approaches [19], [20]

design a special loss function to shape the learned system. At

the cost of a loss of a global stability proof, the more powerful

expressivity of deep neural networks can be leveraged. Closest

to our approach are [23]–[25] which also utilize a stabilizing

policy together with the learned nonparametric velocity field.

They however integrate the velocity field to positions, leaving

user interaction for future work which our methods allows for.

While ensuring convergence to an attractor point, many

of the proposed methods exhibit motions which were not

demonstrated when far away from demonstrated data and

therefore might surprise the operator. Furthermore, it is not

possible to fuse multiple of such motion policies in one unified

framework. We here propose a non-parametric approach based

on Kernelized Movement Primitives (KMPs) leveraging the

fusion of different policies (Section V). This allows us to

have multiple DSs active in the workspace in parallel that can

e.g. each handle a specific portion of a task. Our formulation

without fixed attractor points also allows to model periodic

motions, e.g. limit cycles. A probabilistic stabilizing policy

ensures that the robot always stays close to demonstrated data

by computing a velocity towards the closest known dynamic.

By using appropriate Riemannian distance metrics in the

kernel function, we can account for the full pose as state input.

B. User Interaction with Dynamical Systems

Conventionally, DSs are used to program autonomous robot

motions. Interactions from a human are treated as perturbations
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and therefore cancelled. In contrast, [26] design a DMP for hu-

man interaction. The DMP evolution is synchronized with the

human movement and a penetrable VF provides force feedback

when the user would deviate from the programmed trajectory.

Stiffness scaling is used to allow for user corrections. In [27],

a similarly time-synchronized DMP is designed allowing for

a shared control scheme where the autonomous agent controls

repetitive DoFs while the human operator is responsible for

the required accuracy in the more variable DoFs. Chen et al.

[28] sample attractor points from a DS and employ variable

stiffness with impedance control which they also combine with

a human operator [29].

Closest to our approach is [30] who hand-program a DS for

user interaction. An impedance controller is used for torque

control of the robot allowing for human interactions. For force-

based tasks, a force overlay is added when the robot is in

surface contact. The stabilizing properties of the DS are used

to bring the robot back to the surface in case of perturbations.

In general, using learned DSs as haptic aids for human

operators has received little attention so far. We aim to fill

this gap by employing a damping controller (Section V-C)

enabling the guidance of a human operator through a state-

based DS. The system state evolves both through the actions

of the DS as well as through user input. The probabilistic

formulation achieves an optimal fusion of different policies as

well as between different VFs.

C. Position-based Trajectory VF Automation

Position-based VFs, which take the robot pose as input

and output a desired pose (Table I), have been applied to

many teleoperation tasks for example in medical [3], [31] and

industrial robotics [32]. They have also been used together

with vision [33]. Closest to our work are the probabilistic

trajectory fixtures [21], [34]. An overview of different types of

fixtures can be found in [2], [35]. Traditionally, VFs constrain

the user by keeping them outside of forbidden regions or

guiding them along a path without directional guidance [2].

For our framework, an automated version of such fixtures

is required. To this end, [36] propose to use the path direction

to guide the user along a path. In [3], a cylindrical VF is

used to move along a path. For full automation, radius and

length of the cylinder are set to 0 which makes the user follow

a given trajectory. Automation is achieved by introducing a

point mass which is accelerated by a user-defined force - this

force is being counteracted by a virtual damping as well as a

damping potentially introduced by the user, therefore limiting

the maximum velocity. Transitions between different levels of

autonomy are possible by enlarging or shrinking the guiding

cylinder. None of these approaches however implements more

than one concurrently active fixture. Furthermore, no fusion

with other types of fixtures is possible with those works.

Through a probabilistic fusion, our approach allows to both

model multiple concurrently active trajectory fixtures as well

as to fuse the automated fixture with other fixtures.

D. Virtual Fixture Arbitration

As shown previously [8], a function to arbitrate between

different VFs is required, which extends the concept of ar-

bitration between human operator and system (see [37] for

a survey). To this end, special controllers to stabilize hard

switches [38] or hand-tuned weights [7], [39] can be used. One

major limitation of these works is that the arbitration function

or stabilizing controller does not make use of information from

the fixtures but instead needs to be handcrafted.

This limitation can be resolved using probabilistic formula-

tions [21]. Further extensions allow for an individual weighting

along all DoFs instead of a single scalar weight value. This can

also be used to arbitrate between system and human operator

[34], [40]. In a previous work [8] a Gaussian product has

been used to perform DoF-specific arbitration. We build on

this foundation to include all fixtures highlighted in Table I in

a unified framework, showing how DS based VFs (Section V)

and VFs on different geometries can be fused (Section IV-A).

E. Virtual Fixtures with Variable Stiffness

Impedance control [41] allows for compliant interaction

with the environment and is therefore crucial for safe ma-

nipulation as well as robot-human interaction. A key element

of this approach is the choice of stiffness matrix, as this

matrix determines the relationship between position offset and

excerted forces. This key property can be changed according

to the task needs using variable stiffness formulations.

To this end, [40] suggest to learn the coupling stiffness

for teleoperation. Learned from task properties, the coupling

between input device and remote robot is realized with a low

stiffness for safe interactions or with high stiffness to achieve

a high tracking accuracy. Other approaches [28], [29] learn a

DS with variable stiffness along an orthogonal to the motion

direction and furthermore demonstrate it in a shared control

application. The approach is also extended to incorporate a

learned stiffness for rotational DoFs [42].

Closer to our requirements is [43] where based on the

uncertainty of a perception algorithm, the stiffness of the

robot controller is adapted through a scaling factor. Covariance

matrices can however model complex relationships between

the individual DoFs which cannot be represented by a scalar

factor. In [44], a block diagonal matrix with submatrices

for position and orientation stiffness based on the covariance

matrix of a learned trajectory is used. While this choice of stiff-

ness matrix can model a wide range of stiffness behaviours,

couplings between positional and orientational DoFs which

e.g. full covariance matrices can represent are neglected.

As our experiments underline (Section VIII-A), covariance

matrices with couplings between position and orientation are

important for variable stiffness control. Note that simply using

a scaled version of the precision matrix P = Σ
−1 is not

possible as this might lead to too high stiffness values that

might render a physical system unstable. We therefore build

upon the findings of [45], [46] who decompose a stiffness

matrix into eigenscrews. This can be performed similarily us-

ing precision matrices to design a desired stiffness matrix with

such couplings while respecting stiffness limits (Section IV-B).
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(a) M1: R3 × S3. (b) M2: S1×R
2×S3. (c) M3: S2 ×R

1 ×S3.

Fig. 2: Coordinate systems used in this work inspired by and using the notation
of [22]. Depending on the task, properties can be expressed more efficiently in
cylindrical (M2) or spherical (M3) compared to Cartesian (M1) coordinates.
The coordinate systems in each image depict the orientation basis, i.e. the unit
quaternion (0, 0, 0, 1)⊤ for different positions on the manifold.

III. BACKGROUND

A. Riemannian Manifolds and Probabilities

The geometry of a task can be modeled using Riemannian

manifolds – this is already required for orientations which are

non-Euclidean. A full pose x can therefore be expressed by

the product of manifolds representing a 3-dimensional position

and the unit quaternion.1 Following the notation of [22], we

consider the manifolds M shown in Fig. 2 in this work:

1) M1 with x ∈ R
3 × S3: We use this manifold to repre-

sent Cartesian poses as product of the position expressed

in 3-dimensional Euclidean space and a unit quaternion.

2) M2 with x ∈ S1 × R
2 × S3: This manifold represents

cylindrical poses as product of the angle ϕ from the x-

axis, the radius r measured as distance from the origin in

the xy plane and the z coordinate and a unit quaternion.

The base of the orientation is adjusted such that its y
axis is always pointing in direction of increasing radius.

3) M3 with x ∈ S2 × R
1 × S3: We use this manifold to

represent spherical poses as product of the angles from

the x and z axis (often denoted as azimuthal angle ϕ
and polar angle θ), the radius r and a unit quaternion.

The base of the orientation is adjusted such that the z
axis is always pointing in direction of increasing radius.

The manifold logarithm LogMx1
x2 on M calculates the

tangent vector u12 ∈ Tx1
M from x1 in the direction of x2,

its magnitude is equal to the geodesic distance between the

points. Its inverse, the manifold exponential ExpMx1
u12, allows

to recover x2 on the manifold. Parallel transport is required

to move vectors between different tangent spaces centered at

xi. The reader is referred to [47], [48] for a more exhaustive

treatment of these Riemannian operations. Between tangent

spaces of different manifolds, manifold-specific Jacobians JM

(see Appendix E) transform vectors contravariantly [49].

With the logarithm map and the Gaussian distribution

proposed by [47], [48], we compute the probability of x to

N (x|µ,Σ) =
1

√

(2π)
d |Σ|

e−
1
2
LogM

µ (x)⊤Σ
−1LogM

µ (x), (1)

which is parameterized by a mean µ ∈ M and a covariance

matrix Σ ∈ R
6×6 in the tangent space TµM.

1To avoid issues with S3 double-covering SO(3), we wrap the logarithm
at a full rotation, ensuring that Log

q
(−q) = 0.

Finally, a weighted distance measure between x1 and x2 is

often required. For this, we define the on-manifold distance

dMA (x1,x2) =
∣

∣

∣

∣LogMx1
x2

∣

∣

∣

∣

2

A

= LogMx1
(x2)

⊤A LogMx1
(x2) . (2)

with a weighting matrix A expressed in tangent space Tx1
M.

B. Impedance-controlled Virtual Fixtures

Our Virtual Fixtures framework outputs a Cartesian wrench

wVF which is applied to the robot’s end effector (Section IV).

Assuming a gravity-compensated, torque-controlled manipula-

tor, the corresponding desired joint torques evaluate to

τ = J⊤wVF. (3)

Note that wVF is a covector in cotangent space T ∗
xee

M (η :
Txee

M → R) requiring the covariant transformation with J⊤
M

[49] following from the conservation of power τ⊤q̇ = w⊤ẋ.

We assume that wVF is a combination of NVF = NDS+NPB+
NVS individual wrenches associated with different VFs. For

position-based VFs (Section VI), this wrench is computed as

wVF,i = KVF,iLog
M
xee

(xVF,i) +DVF,i
d

dt
LogMxee

(xVF,i) ,

(4)

where xee ∈ M is the end effector pose. KVF,i, DVF,i and

xVF,i are the stiffness, damping and attractor of the fixture.

LogMxee
(xVF) denotes the manifold logarithm [47] of xVF at

xee, which is the on-manifold equivalent to the Euclidean

xVF,i−xee, taking orientation and different manifolds M into

account. d
dtLog

M
xee

(xVF) is the corresponding time derivative.

We compute a single Cartesian wrench wVF to be used in

(3) from multiple individual impedance- as well as velocity-

controlled fixtures wVF,i on different manifolds through a

probabilistic fusion (Section IV-A).

C. Probabilistic Learning from Demonstration

Different probabilistic models encoding assistive behaviors

can be learned from demonstration data using Gaussian dis-

tributions. We are specifically interested to model both the

aleatoric uncertainty which is inherent to the data, i.e. the

variability in demonstrations, as well as the epistemic uncer-

tainty, which is the uncertainty caused by a lack of data. We

argue that fixture activation should be inversely proportional

to uncertainty – both epistemic and aleatoric – such that strong

guidance corresponds to low uncertainty levels.

GMMs [48], [50] encode the joint distribution between input

x and output y with M Gaussians, i.e.

[

x

y

]

∼
M
∑

m=1

πmN
([

x

y

]
∣

∣

∣

∣

µm,Σm

)

. (5)

Using Gaussian Mixture Regression (GMR), the conditional

distribution of y given the input x can be computed as

p(y|x) =
M
∑

m=1

πm(x)N (y|µm|x,Σm|x). (6)

Note that this is a Mixture of Experts (MoE) [51] model,

computing a multi-modal weighted sum of different experts
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represented by Gaussian distributions in an “or” operation.

Subsequently, a unimodal approximation can be computed as

p(y|x) = N (y|µGMR,ΣGMR) (7)

which can then, for example, be used in the position-based

trajectory fixture (Section VI) where time as input and pose

as output are jointly encoded. The reader is referred to [50] for

details of the computation in (5) – (7). We use the on-manifold

Gaussian operations from [47]. The GMM encodes aleatoric

uncertainty, the resulting covariance matrix can therefore be

used to scale the stiffness (Section IV-B) of a fixture to allow

the operator to reproduce this encoded variability.

Kernel-based methods such as Gaussian Processes (GPs)

[52] and KMPs [53] are well-known in imitation learning

for representing epistemic uncertainty. Notably, the latter is

capable of capturing both aleatoric and epistemic uncertain-

ties. With these methods, particularly when using stationary

kernels (e.g., squared-exponential or Matérn), the predicted

uncertainty increases with the distance between training data

and new inputs. This is used in the DS-based VF (Section V)

to find validity regions for learned dynamics. In KMPs, a

function y(x) is approximated via a weighted superposition

of basis functions y(x) = Θ(x)⊤w, where Θ(x) is a matrix

of basis functions and w is a vector of normally distributed

weights, w ∼ N (µw,Σw), resulting in a parametric tra-

jectory distribution. It further assumes that a probabilistic

reference trajectory distribution {µn,Σn}Nn=1 extracted from

a dataset of observations of x, y using GMM/GMR at inputs

xn is available. By minimizing the KL divergence between

parametric and reference trajectory distributions and applying

the kernel trick k(xi,xj) = Θ(xi)
⊤
Θ(xj) = k(xi,xj)I ,

where k(xi,xj) is a kernel function, the mean and covariance

prediction of a KMP are computed, for a test point x∗, as

µ∗ = K(x∗,x) (K(x,x) + λΣ)
−1

µ (8)

Σ
∗ = α (K(x∗,x∗)

− K(x∗,x) (K(x,x) + λcΣ)
−1

K(x,x∗)
)

(9)

where λ, λc and α are regularization and scaling hyperparame-

ters and µ = [µ⊤
1 , . . . ,µ

⊤
N ]⊤, Σ = blockdiag (Σ1, . . . ,ΣN ).

Please see [53] for a detailed derivation. Note the connection

between GPs and KMPs, where in classical GPs [52] we have

λc = λ and Σ = I (homoscedasticity), α = 1 and µ are

directly the observations y.

As both GPs and KMPs require kernels, a special treatment

for manifold-valued input data is required. We therefore use

(2) to calculate the on-manifold distance with weight A = I .

Note that this distance is only valid for sufficiently close x1

and x2. This is a reasonable assumption in our VF approach,

as the expected level of assistance is inversely proportional to

the distance between inputs. More complex treatments might

be required depending on the manifold and input data [54].

By treating the output of GMMs and KMPs as experts, they

can be fused using a Product of Experts (PoE) [55] in an “and”

operation where the constraints of each expert are satisified

approximately. As we will see in the next section, this allows

to arbitrate between different VFs, even if they do not share

the same underlying representation.

BASE TOOL

TASK

FIXTURE

Fig. 3: Coordinate systems used by our method. The task coordinate
system TASK defined with respect to the robot base BASE allows to account
for different object placements in the workspace while the specification
of fixture coordinate systems FIXTURE relative to the TASK coordinate
system is crucial for cylindrical and spherical coordinates. Finally, the tool
frame TOOL depends on the current end effector pose of the robot.

IV. VIRTUAL FIXTURE FRAMEWORK

We assume that depending on the specific task at hand,

Virtual Fixtures with different properties are required to op-

timally guide an operator or for automating the task. Table I

summarizes the properties of the individual VFs we consider

in this work. Common for all fixtures we propose is that their

wrenches are modeled as random variables with on-manifold,

multivariate Gaussian densities

p(wVF,i) = N (µVF,i,ΣVF,i) (10)

where µVF,i is the mean of the wrench calculated by each

fixture in its specific coordinate system (Fig. 2), under the

assumptain that xVF,i is Gaussian-distributed. This allows for

a natural arbitration between the individual fixtures using their

uncertainty expressed by the covariance ΣVF,i, taking also

DoF-specific uncertainty and correlations into account.

Figure 3 shows the different coordinate systems used by our

method. An easy transfer between different object placements

is possible through the task coordinate system. Coordinates

for individual fixtures placed relative to this coordinate system

allow us to exploit the properties of different geometries.

A. Virtual Fixture Arbitration

Previous works [8] use a PoE [55] to perform the arbitration

of different fixture wrenches expressed in the same coordinate

system. Extending this, we furthermore consider the fixture-

specific coordinate systems depicted in Fig. 2. Each fixture

outputs a mean wrench µVF,i,M in the cotangent space

T ∗
xee

M of a specific coordinate systems M through (4). This

prohibits a direct fusion of the fixture wrenches as the entries

in the wrench covector correspond to different DoFs. In order

to stay robot agnostic, we propose to transform covariances

and mean wrenches into the (co)tangent space T (∗)
xee

M1 using

µVF,i,M1
= J⊤

i,MµVF,i,M (11)

ΣVF,i,M1
= J−1

i,MΣVF,i,MJ−1
i,M

⊤
(12)

with the manifold Jacobian Ji,M =
∂xee,i,M

∂xee,M1

[56] given in

Appendix F. This corresponds to the transformation of the
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covector µVF,i from T ∗
xee

M into T ∗
xee

M1 as well as of the

twice contravariant tensor ΣVF from Txee
M into Txee

M1.

The wrench µVF,i,M1
in cotangent space T ∗

xee
M1 expresses

the forces of the wrench in the FIXTURE coordinate system

while the torques are expressed in TOOL coordinates (Fig. 3).

Compared to that, the SE(3) wrench required by (3) expects

also the forces in TOOL coordinates which corresponds to a

rotation of the position part of the tangent space. The mean

wrench µVF,i of each fixture i to be commanded at the end

effector is thus transformed from T ∗
xee

M1 to se(3) using

µVF,i,SE3 =

[

R⊤
ee 0

0 I

]

µVF,i,M1
, (13)

where Ree expresses the rotation of xee in the fixture’s

coordinate system. The same rotation has to be applied to

the covariance matrix of the fixture as well

ΣVF,i,SE3 =

[

R⊤
ee 0

0 I

]

ΣVF,i,M1

[

Ree 0

0 I

]

. (14)

The aligned Cartesian mean wrench and covariance matrices

can then be used as experts in a PoE (cf. [8]) to calculate the

arbitrated wrench as result of the optimization

ŵ = arg min
w

NVF
∑

i=1

(w − µVF,i,SE3)
⊤
Σ

−1
VF,i (w − µVF,i,SE3) ,

(15)

solved as product of NVF = NDS +NPB +NVS Gaussians

ŵ = Σ̂VF

NVF
∑

i=1

Σ
−1
VF,iwVF,i, Σ̂ =

(

NVF
∑

i=1

Σ
−1
VF,i

)−1

. (16)

The resulting ŵ is then applied to the robot through (3).

B. Variable Impedance Control

Modulating the controller stiffness, as a form of authority

allocation, allows to assign a higher importance to the fixture

in case of low uncertainty and give the operator more freedom

otherwise. Using a full covariance matrix, our fixtures can

also express DoF specific as well as coupled uncertainties.

For reproducing these properties in the robot’s impedance

behaviour, we propose a method to match the stiffness ma-

trix characteristics to those of the covariance matrix. Unlike

previous works [43], [44], we aim to create a full stiffness

matrix with nonzero coupling terms Ktr

K =

[

Kt Ktr

K⊤
tr Kr

]

. (17)

A first approach could compute the stiffness to Ki = kΣ−1
VF,i

where k is used to scale the precision matrix. Such approach

is however too naive, as it fails to respect maximum stiffness

values attainable in a robotic system. Furthermore, the vastly

different scales of stiffness values for translation (e.g. 2000 N
m )

and rotation (e.g. 50 Nm
rad ) are neglected.

We therefore propose to decompose the covariance matrix

PVF,i and reassemble it to a stiffness matrix while preserving

its properties to the extent possible. Building on the findings

of [57], [58] on the decomposition of spatial stiffness matrices,

we decompose a rotated precision matrix P ′
VF,i into transla-

tional (Pt,VF,i) and rotational (Pr,VF,i) components

P ′
VF,i =

[

A B

B⊤ C

]

= Pt,VF,i + Pr,VF,i =

[

A B

B⊤ B⊤A−1B

]

+

[

0 0

0 C −B⊤A−1B

]

. (18)

PVF,i is rotated with Rdiag,i to obtain

P ′
VF,i =

[

Rdiagi
0

0 Rdiag,i

]⊤

PVF,i

[

Rdiag,i 0

0 Rdiag,i

]

(19)

where Rdiag,i is chosen such that A only contains diagonal

entries.

Pt,VF,i and Pr,VF,i can be further decomposed and after

a scaling be realized using three screw springs and three

rotational springs, respectively [57]. An eigendecomposition of

Pr,VF,i yields the torsional spring axes (j = 4, 5, 6) as eigen-

vectors wj = (0, 0, 0, wrx,j , wry,j , wrz,j)
⊤ and corresponding

eigenvalues λj . Those eigenvalues allow to compute a scaling

sj =















0, λj < λ−
rot

λj−λ
−

rot

λ
+
rot−λ

−

rot

1, λj ≥ λ+
rot

, (20)

where λ−
rot and λ+

rot are empirically determined hyperparame-

ters for “low” and “high” eigenvalues which will be translated

to full and zero stiffness. The torsional springs are then

realized as (j = 4, 5, 6)

K ′
j = knom,jsjwjw

⊤
j (21)

with the nominal stiffnesses knom = (kt, kt, kt, kr, kr, kr)
⊤

where kt is the nominal translational and kr the nominal

rotational stiffness. Eigenvalues ≥ λ+
rot thus result in a nom-

inal stiffness along the corresponding rotational DoF while

eigenvalues < λ−
rot result in zero stiffness with linear scaling

in between.

The remaining screw springs (j = 1, 2, 3) are given

by wrench axes wj = (e⊤j , wtx,j , wty,j , wtz,j)
⊤ with

[

e1 e2 e3
]

= I3 and corresponding λj from the diagonal

entries of A in Pt. The scaling sj of (20) is also computed for

those springs with factors λ−
trans and λ+

trans. We furthermore

ensure that the rotational entries of wj do not get a too high

stiffness by limiting

sj ≤
kr

knom,j

√

w2
tx,j + w2

ty,j + w2
tz,j

. (22)

While this operation also impacts the coupling introduced by

the screw spring, it ensures that the resulting stiffness matrix is

realizable and still as close as possible to the original precision

matrix PVF,i. Finally, the wrench springs are also realized to

(j = 1, 2, 3)

K ′
j = knom,jsjwjw

⊤
j . (23)

The resulting stiffness matrix is then calculated from wrench

(j = 1, 2, 3) and torsional (j = 4, 5, 6) springs to

K ′ =

6
∑

j=1

K ′
j (24)
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and rotated back using

Ki =

[

Rdiag,i 0

0 Rdiag,i

]

K ′

[

Rdiag,i 0

0 Rdiag,i.

]⊤

(25)

The calculated stiffness Ki is then used in the the impedance

control (68) for the i-th fixture. In Section VIII-A, we show

how this formulation creates a stiffness matrix with couplings

between translational and rotational DoFs.

Please see Appendix B for the extension to manifolds M2

and M3 and Appendix C for an optimal damping calculation.

V. PROBABILISTIC DYNAMICAL SYSTEM VIRTUAL

FIXTURES

We introduce automated DS based VFs which model the

relationship between assistive velocities ẋDS and the current

robot state xee probabilistically, i.e.

p(ẋDS|xee) = N (ẋDS|µDS,ΣDS), (26)

where µDS denotes the mean of the dynamical system eval-

uated at xee and ΣDS the associated covariance. In contrast

to time-driven motions, these models encode state-dependent

dynamic behaviors that support user progression along the

task, adapting their guidance with varying granularity – such

as modulating velocity magnitude based on the task phase or

enabling periodic motions. This distinguishes DS-based fix-

tures from the trajectory-based fixtures (Section VI) which can

only encode a trajectory with start and end point. By providing

motion information for the whole robot workspace, they are

especially suited to the approaching phase of a manipulation

where the robot may start at arbitrary configurations.

We adopt an uncertainty-aware, non-parametric approach

that is highly flexible to composition and modulation without

requiring parameter re-computation. Based on demonstration

data, we use KMPs (Section III-C) to encode a specific task

in a region of the workspace which results in NDS concur-

rently active velocity fields on possibly different manifolds.

In the following, pn (ẋDS) denotes the n-th of NDS − 1
probabilistic DS models learned from demonstrations using

KMPs (see Section V-A), and pstab(ẋDS) a probabilistic policy

(see Section V-B) with a constant, pre-defined uncertainty

that drives the robot toward the closest known dynamic. A

proportional control scheme (Section V-C) allows us to use the

learned dynamical system as probabilistic VFs. Through the

arbitration scheme introduced in Section IV-A we leverage the

epistemic uncertainty encoded by KMPs to automatically pri-

oritize models with low uncertainty. When all models exhibit

high uncertainty, the formulation defaults to the stabilizing

policy pstab(ẋ) or to another type of fixtures, such as those

introduced in Sections VI and VII.

A. Non-parametric Learning of Dynamical Systems

We define the n-th DS as a probabilistic mapping

pn(ẋDS|xee) = N (ẋDS|µDS,n,ΣDS,n) (27)

which can be learned from a dataset of demonstrations

{xj , ẋj}Nj=1 where e.g. a full pose x ∈ R
3 × S3 (M1) or

only the position part x ∈ R
3 with velocities in the tangent

spaces ẋ ∈ TxM respectively ẋ ∈ TxR3 = R
3 are used. This

dataset is subsampled with equal spacing of the input poses to

achieve a tradeoff between accuracy and computational cost.

The demonstrations are then used to learn a KMP (Sec-

tion III-C). For the use in a DS, we deviate from the approach

outlined therein for computing the reference distribution. First,

we approximate the joint distribution between x and ẋ in

a GMM with M components and use GMR to compute

the probabilistic reference velocities N (ẋDS|µGMR,ΣGMR).
Through the averaging of the GMM, this results in a smooth

velocity field. As the wrench calculated from this DS is later

fused with wrenches from other VFs, we only use the velocity

µGMR resulting from the mixture regression. The covariance

output ΣGMR of the regression is discarded, as it would

correspond to a covariance in velocity space which is not well

suited for the fusion with fixtures with covariance in pose

space. To obtain a better suiting covariance in pose space, we

decompose datapoints ξj and the M Gaussians of the GMM

into

ξj =

[

xj

ẋj

]

, µm =

[

µI
m

µO
m

]

, Σm =

[

Σ
I
m Σ

IO
m

Σ
OI
m Σ

O
m

]

(28)

which in turn allows to write a marginalized GMM using the

weight factors πm from the joint encoding (5)

pn(x) =

M
∑

m=1

πmN (x|µI
m,ΣI

m) (29)

and to compute the likelihood of each Gaussian generating x

em =
πmN (x|µI

m,ΣI
m)

∑M
m=1 πmN (x|µI

m,ΣI
m)

. (30)

Using those weighting factors, we compute Σ̂ through a

unimodal approximation (7) of the GMM (29). This results

in a probabilistic velocity field N (µGMR, Σ̂). We sample this

velocity field at a subsampled set of Nref poses from the

demonstrated trajectories to obtain a probabilistic reference

{µGMR,n, Σ̂n}Nref

n=1 which is then encoded into the KMP.

Finally, KMP mean and covariance predictions (8), (9) provide

µDS, ΣDS in (27) at each end effector pose xee.

We propose to use an on-manifold kernel as covariance

function in our experiments. Particularly we use the Radial

Basis Function (RBF) kernel with the distance function (2)

k(x,xee) = exp

(

−dMI (x,xee)

2l2

)

, (31)

where l denotes the length scale. Similarly to GPs, we assume

a zero-mean prior, so predictions from (8) yield ẋDS = 0 in

regions far from the demonstrations. Moreover, (9) captures

aleatoric uncertainty near the data and reflects increasing epis-

temic uncertainty in regions with limited or no demonstrations.

Note that the distance function in (31) naturally extends to

the manifold M chosen for the task. We treat the output as

Euclidean, therefore, only the kernel has to be adapted to the

manifold case assuming that the learned velocities are smooth

and the length scale parameter of the kernel is small compared

to the changes of the velocity.
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Fig. 4: 2D motion policy learned using a KMP. Black arrows depict the velocity profile from the training data, an “A” from the letter dataset [59]. The left
image shows the output of the KMP (Section V-A) at rastered locations, blue ellipsoids and red arrows depict centers, position covariances and velocities
of the Gaussians of the GMM used to learn the KMP. The middle image shows the probabilistic base policy (Section V-B) and the right image the final
velocities resulting from the arbitration. The colormap of each plot depicts log(det(Σ)).

B. Probabilistic Stabilizing Policy

Outside of the task space regions where demonstrations

were provided, the robot actions computed from (27) are zero,

rendering the resulting velocity fields invalid. A probabilistic

stabilizing policy2

pstab(ẋDS|xee) = N (ẋDS|µstab,Σstab), (32)

which brings the robot back into the demonstrated areas, is

therefore necessary. To achieve this, we compute the distance

to the reference poses of all NDS velocity fields using (2)

to dj = dM1

I (xj ,xee) and obtain the closest pose xj∗ of a

known dynamic with

j∗ = argmin
j

dj . (33)

We then calculate a normalized velocity µstab in direction of

this closest pose

µstab = ẋ0

LogM1

xee
(xj∗)

√

dMI (xee,xj∗)
(34)

using the on-manifold distance function (2) and a default

velocity ẋ0 which is then equipped with a constant covariance

Σstab = σstabI6. (35)

The covariance σstab of this policy is an important hyper-

parameter – it has to be chosen such that Σstab is bigger

than the covariances ΣDS,n of the learned DSs in the areas

where demonstrations have been provided. Thanks to KMPs

providing epistemic uncertainty, the covariances ΣDS,n in-

crease outside of the demonstrated areas, therefore activating

the stabilizing policy which brings the robot back inside the

demonstrated areas through the arbitration (16).

Fig. 4 shows a DS learned using our approach on 2D data

[59]. For this example, we use a RBF kernel with length scale

l = 0.3, the KMP is initialized from a GMM with 5 Gaussians

sampled at the location of the input data and base policy with

Σ = diag(0.1, 0.1). We show the advantages of such KMP-

based policy over GPs in Section VIII-C.

2This policy is not stabilizing in a sense of ensuring convergence but a soft

stability bringing the robot back to regions of learned DSs.

C. Control Law for DS-based Virtual Fixtures

In order to use velocity fields as VFs, we use a proportional

control law computing the mean wrenches wVF,i as

wVF,i = DVF,i (ẋVF,i − ẋee) (36)

with the end effector velocity ẋee, VF velocity ẋVF,i (µDS

from (26)) both expressed in the tangent space Txee
M and

the constant damping matrix DVF,i. Note that (36) can be

derived from (4) by setting KVF,i = 0.

Note that wVF,i is expressed in the cotangent space T ∗
xee

M.

As detailed in Section IV-A, wVF,i and the associated covari-

ance ΣVF,i have to be transformed to the (co)tangent space

of R
3 × S3 which allows for a natural arbitration between

different velocity fixtures and other types of VFs.

VI. POSITION-BASED TRAJECTORY FIXTURES:

LEARNING, ARBITRATION AND AUTOMATION

In contrast to DS based VFs (Section V), position-based

trajectories output a probabilistic attractor pose

p(xPB|xee) = N (xPB|µPB,ΣPB) (37)

which is then applied to the robot using impedance control

with variable stiffness (Section IV-B). This formulation re-

quires both a probabilistic trajectory as well as a distance func-

tion for mapping the robot end effector pose xee to the closest

pose on the trajectory. To benefit from the different manifolds

M introduced in Section III-A, we show the extension of [8]

from the manifold R
3 ×S3 to M. Furthermore, we introduce

an automation of this fixture in Section VI-D. In our approach,

we consider NPB concurrently active trajectory fixtures.

A. Learning of Trajectory Fixtures on different Manifolds M
We assume to have access to a dataset of trajectories

{ti,xi}Ni=1 from demonstrations with time t ∈ R
1 and pose

x ∈ M for each of the NPB fixtures. We rely on dynamic

time warping (DTW) [61] for aligning the individual demon-

strations in t ∈ [0, 1] to encode them in a GMM (5) with M
components.
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Fig. 5: 2D projection of xee and the closest poses µj and µj+1 on a trajectory
(red points) in R

3 ×S3 (xcart) as well as S1 ×R
2 ×S3 (xcyl). The x axis

through xee as well as the circle with the same radius on S1 × R
2 × S3 is

plotted in dashed gray, note that according to the manifold metric the closest
pose is much further to the right than for Cartesian coordinates.

To benefit from the properties of different manifolds M, we

use the square root of the distance function defined in (2) with

A = I as distance measure between the two poses xj and xk

in the DTW calculation. This for example allows us to learn

trajectories in cylindrical coordinates M2, see Section VIII-D

for evaluation details. The effect of this distance measure

for Cartesian and cylindrical coordinate systems is shown in

Fig. 5. The result of this DTW operation is comparable to the

introduction of a phase variable [22].

Using GMR, we condition the GMM on time t to ob-

tain probabilistic poses p(x|t) (6). Section VI-B details how

a single attractor can be computed from such time-based

probabilistic trajectory which is then used in an on-manifold

impedance controller (4) with variable stiffness (Section IV-B).

B. On-Manifold Attractor Point Calculation

For impedance control, a single attractor point as in (7) is

needed. In the Euclidean case, a closed form solution exists for

extracting this point on a time-based probabilistic trajectory

[21]. As on-manifold Gaussian operations require iterations

with a variable number of steps [47], they are not well suited

for real-time control. We therefore extract a trajectory from the

conditional distribution p(x|t) by calculating {µn,Σn}Nn=1

for N equally spaced samples of t ∈ [0, 1]. This trajectory

is then sent to the real-time controller for interpolation.

In the real-time controller, the two closest poses µj and

µj+1 of this trajectory according to the on-manifold Maha-

lanobis distance dM
Σ

−1

j

(µn,xee) (2) are extracted. For sim-

plicity we use only the position part of the pose in the

distance function, where we set the last three entries of µj

and xee, which correspond to the orientation, to the identity.

We then perform linear interpolation between both extracted

poses along the covariance-deformed geodesic on the manifold

(Fig. 5), using

∆µj,j+1 = LogMµj
µj+1, ∆µj,ee = LogMµj

xee, (38)

ν =
∆µ⊤

j,eeΣ
−1
j ∆µj,j+1

∆µ⊤
j,j+1Σ

−1
j ∆µj,j+1

, xPB = ExpMµj
(ν ·∆µj,j+1)

(39)

where ∆µj,j+1 is the vector between µj and µj+1 and

∆µj,ee between µj and xee in tangent space and Σ
−1
j the

precision matrix corresponding to µj . The interpolation factor

0 ≤ ν ≤ 1 represents the closeness of xee to µj and µj+1

and xVF the final VF pose which is used in (4) to calculate

the wrench wVF,i associated to the fixture. Its computation

through (39) takes the Mahalanobis distance between the end

effector and the two closest means into account. As we assume

the covariance matrix to only vary slowly between points

we set ΣPB = Σj which is associated with µj , however,

interpolation could be performed similiarily on the manifold

of symmetric positive definite matrices [48].

The manifold-aware attractor calculation through (38) and

(39) ensures that only forces orthogonal to the trajectory are

being applied by the fixture and thus the user is in full control

of motion along to the trajectory.

C. Distance-based Covariance Adaptation

The covariance matrix ΣPB is used for subsequent variable

impedance control (Section IV-B) and for the arbitration with

other fixtures (IV-A). By default, the covariance matrix only

depends on the closest point of the trajectory, thus only

modeling aleatoric uncertainty, and does not incorporate the

end effector distance to the trajectory. This results in large

wrenches wPB when the end effector xee is far away from the

fixture even though the trajectory might not be valid anymore

for the current robot pose. We therefore propose to adapt the

original covariance output of the fixture by a linear distance-

based scaling of the precision matrix PPB = Σ
−1
PB

P̂PB = s · PPB (40)

using

s =











1, d < dmin

1− dM

PPB
(xPB,xee)−dmin

dmax−dmin
, dmin ≤ d ≤ dmax

0, d > dmax

(41)

with the Mahalanobis distance dPPB

M (xPB,xee) between end

effector xee and fixture attractor xPB weighted by the preci-

sion matrix PPB. The parameters dmin and dmax determine

the distances at which the precision matrix scaling starts and

ends, respectively. Using the Mahalonobis distance takes the

influence of specific DoFs into account, thus leaving the fixture

active for longer in directions with high uncertainty. This

is relevant to exploit the variable stiffness formulation (Sec-

tion IV-B) where those directions get much lower stiffnesses,

thus allowing the operator to move more freely. The resulting

behaviour is showcased in Section VIII-G.
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D. Automating the Fixture

As the position-based fixture is derived from a time-driven

motion, we can compute a preferred direction along the

trajectory. Inspired by [36], we calculate the current direction

δ = µj+1,pos − µj,pos (42)

where µj,pos and µj+1,pos are the R
3 positions of the inter-

polation points of the fixture. Subsequently, we normalize δ

to δ̃ = δ
||δ|| . The same velocity controller as employed for DS

based fixtures (Section V-C) is used to calculate an automation

wrench wVF,aut,i from δ̃. The resulting wrench is then added

to the wrench coming from the impedance controller (4)

w̃VF,i = wVF,i +wVF,aut,i. (43)

Finally, the wrenches w̃VF,i of all NPB trajectory fixtures are

arbitrated with the other fixture types through (16).

VII. GEOMETRIC VISUAL SERVOING FIXTURE

Probabilistic visual servoing VFs as introduced in [8] model

the attractor point of a fixture based on visual input I

p(xVS|I) = N (xVS|µVS,ΣVS) . (44)

We consider NVS concurrently active visual servoing VFs,

each modeling the combination of M individual fixtures, one

for every visual detection pm(xVS|xee) = N (xVS|µm,Σm),
depending on the end effector pose xee. A MoE model [51],

[62] allows to model the fixture as a multi-modal distribution

p(xVS|xee) =

M
∑

m=1

ĥm(xee,µm)pm(xVS|xee). (45)

A. Geometry-aware Mixture of Experts Gating Functions

In [63], the gating function hm computes the influence of

each expert based on the distance between expert and end

effector poses in R
3 × S3. Here, we introduce a generalized

formulation for the manifolds defined in Section III-A. Lever-

aging the geometry-aware distance function (2), we have

hm(xee,µm) = exp

(

−1

2
dML (xee,µm)

)

+γ (46)

where γ is a regularization factor and the hyperparameter L =
diag(l20, l

2
1, l

2
2, l

2
wx, l

2
wy, l

2
wz)

−1 allows to specify the relevance

of each direction. For the M1, l0, l1 and l2 correspond to x,

y and z. For M2, l0 and l1 instead correspond to the angular

DoF and the radius r. In case of M3, l0 and l1 weigh the two

angular DoFs and l2 the radius r.

When far from all detections, γ assigns equal weights for

each expert, reflecting the overall uncertainty of all detections.

Similarly to [8] we compute a unimodal distribution from (45)

via moment matching resulting in mean µVS and covariance

ΣVS, used by the impedance controller (4). The variable

stiffness formulation introduced in Section IV-B, in contrast

to [8], also allows to model off-diagonal stiffness directions as

well as couplings between positional and rotational DoFs. This

e.g. permits to render the transition between detections with

different orientations as shown in Section VIII-A. Arbitration

with other fixtures is again performed using (16).

B. Geometric Expert Customization

While the gating function hm of [8] naturally extends to

other manifolds, the expert customization also found therein

needs to be flexibilised and formalized.

1) Zero force along insertion axis: We assume that the

insertion that should be controlled by the operator is to be

performed along one DoF of the chosen manifold. Therefore,

the stiffness in the corresponding row of K is set to zero to

not generate any forces along this axis and allow the operator

full control over the insertion.

2) Deadzones: In the victinity of a connector, the operator

should receive strong guidance. This can be achieved by

modifying LogMxee
(µm), setting its entries to zero for distances

smaller than a predefined radius and scaling it for larger

distances. To flexibly parameterize these differences, we use a

length vector ldead to deform the difference vector as well as

the scalar deadzone value rdead. Using those parameters, we

calculate Log
′M
xee

(µm) from LogMxee
(µm) as follows:

Ldead = diag(l−2
dead) (47)

r =
√

dMLdead
(xee,µm) (48)

d =
LogMxee

(µm)

r
(49)

rcrop = min(r, rdead) (50)

d′j =

{

dj , ldead,j > 0

0, ldead,j = 0
(51)

Log
′M
xee

(µm) = LogMxee
(µm)− rcrop · d′ (52)

(48) uses the on-manifold distance (2), (51) ensures that only

directions with length vector > 0 get modified. The modified

value Log
′M
xee

(µm) is then used in the gating function (46).

3) Expert Initialization: As in [8], we initialize the MoE

with an additional expert at the end effector pose with high

covariance. This additional expert ensures that the fixture does

not generate forces outside its valid region. It is parameterized

with length scale ldead,add and dead zone rdead,add, calculating

the modified difference Log
′M
xee

(µm) using (47) through (52).

Its influence factor hM+1 is then calculated as in [8]

hM+1(xee,xtarg) = 1−exp

(

−1

2
dMLadd

(xee,µm)

)

, (53)

where Ladd = diag(ladd) is the length vector for the addi-

tional expert, xtarg the expected mean of the visual servoing

experts and the modified logarithmic map from (52) is again

used in the distance calculation.

VIII. EVALUATION

For evaluating the method, we have implemented the frame-

work on three different robotic systems (Fig. 6). First, we

use a torque-controlled 7-DoF manipulator where fixtures

are integrated into the real-time controller, rendering forces

at 8 kHz. We use this robot in hand-guided mode, i.e. an

operator directly interacts with the robot arm where the fixtures

are rendered. A space-ready, 4-DoF robot arm mounted on a

base plate with various interaction elements is used as second
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Fig. 6: Overview of the robotic systems used for the evaluation. A torque-controlled 7-DoF manipulator shown in the leftmost image is used in hand-guided
mode, where the operator directly interacts with the robot. It is used for evaluating individual fixtures in Sections VIII-A to VIII-C as well as their combinations
in Sections VIII-F and VIII-G. The middle image depicts a space-ready, 4-DoF robot arm which is used with fully automated fixtures only. It is used for
evaluation in Sections VIII-C to VIII-E. The rightmost image shows a bilateral teleoperation setup with two torque-controlled 7-DoF manipulators which is
used for evaluating the fixtures in a teleoperation task in Section VIII-F.

system. This setup is meant to be tested in outer space. As

preparatory experiment, we have evaluated our methods in

weightlessness on a parabolic flight. During the flight no direct

interaction with the robot was possible and no haptic device

was coupled to it. Thus, we tested all fixtures on the system

in fully automated mode. Only the position of the robot was

controlled to allow for a one DoF nullspace of the robot. Third

system was a bilateral teleoperation setup with two torque-

controlled 7-DoF manipulators where one robot arm was used

as haptic input device and the other arm as remote robot to test

the fixtures in a teleoperation setup. All fixtures are arbitrated

through (16) and applied to the robot using (3).

We first start by a componentwise evaluation of the in-

dividual fixtures, beginning with the visual servoing fixture

with variable stiffness in Section VIII-A. In this experiment,

we exploit that our variable stiffness formulation allows for

couplings between translational and rotational DoFs. Next,

we evaluate the position-based fixture on a spherical manifold

in Section VIII-B showcasing the on-manifold attractor point

calculation (VI-B) combined with variable stiffness for a

pointing task. We then focus on the novel dynamical system

VFs in Section VIII-C. Finally, we evaluate the automated

position-based fixture (Section VIII-D).

As our framework supports the probabilistic fusion of VFs,

we then evaluate multiple fixture combinations. We evaluate

the combination of dynamical system and position-based fix-

tures (Section VIII-E) as well as of dynamical system and

visual servoing fixtures (Section VIII-F). Finally, we show a

combination of the full set of fixtures (Section VIII-G).

A. Visual Servoing Fixture with Coupled Variable Stiffness

Section IV-B introduces a variable stiffness formulation

taking full 6 × 6 covariance matrices into account. Such

matrices with couplings between translational and rotational

DoFs can e.g. result from the MoE formulation of the Visual

Servoing Fixture (Section VII) when two neighbouring de-

tections have different orientations. Figure 7 shows the result

of this algorithm on the use case of robotic chess playing

on a torque-controlled 7-DoF manipulator in hand-guided

operation, where two chess figures with different orientation

can be grasped. Simulated visual detections on the fields 1a

and 8h (NVS = 1, M = 2) with covariance Σ = 5×10−6 ·I6
on a chess field with size of 40 cm × 40 cm and parameters

Fig. 7: Visual servoing fixture (Section VII) on M1 with two targets with
an orientation difference of 180◦ around the z axis and position differences
both along the x and y axis. This leads to a covariance matrix with couplings
both inside the positional as well as between positional and rotational DoFs,
therefore necessitating a fully populated stiffness matrix.

lx = ly = lz = 0.06, lwx = lwy = lwz = 0.2, γ = 1× 10−20

leads to an in-between attractor point with the precision matrix

P =






2.0×105 2.3×103 −1.8×101 1.4×10−1
−1.4×10−1

−2.2×104

2.4×103 2.0×105 1.8×101 −1.4×10−1 1.4×10−1 2.2×104

−1.8×101 1.8×101 2.0×105 1.0×10−3
−1.0×10−3

−1.6×102

1.4×10−1
−1.4×10−1 1.0×10−3 2.0×105 −4.0 1.2

−1.4×10−1 1.4×10−1
−1.0×10−3

−4.0 2.0×105 −1.3

−2.2×104 2.2×104 −1.6×102 1.2 −1.3 4.8×103






.

(54)

The variable stiffness formulation (Section IV-B) with λ−
rot =

λ−
trans = 1000, λ+

rot = λ+
trans = 2500, ktrans,nom = 1000 and

krot,nom = 40 computes the coupled stiffness matrix

K =









1000.0 ∗ ∗ ∗ ∗ −111.4
∗ 1000.0 ∗ ∗ ∗ 111.5
∗ ∗ 1000.0 ∗ ∗ −0.8
∗ ∗ ∗ 40.0 ∗ ∗
∗ ∗ ∗ ∗ 40.0 ∗

−111.4 111.5 −0.8 ∗ ∗ 24.8









, (55)

with entries ∗ < 1e− 3, allowing the operator to freely move

along the geodesic between both detections. This geodesic

couples translational movement with an orientation change as

can be seen in Fig. 7 as well as in the accompanying video

and is further discussed in Section IX-C. Note that along this

geodesic, unlike in [8], the operator is not always attracted to

one of the simulated detections as the choice of length scales

assigns approximately equal weights to both detections when

the end effector is located between them.
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B. Position-based Fixture with Variable Stiffness

The variable stiffness formulation (Section IV-B) is also

well suited for spherical manifolds S2 ×R
1 ×S3. From only

four demonstrations of a movement towards the origin of

the spherical coordinate system M3, we are able to learn a

trajectory fixture (NPB = 1) supported by M = 2 Gaussians

as visualized in Fig. 8. The resulting fixture exhibits a large

covariance around the two rotational DoFs of S2 as can be

seen by the turqoise Gaussian visible behind the robot’s end

effector as well as from the precision matrix with relatively

small entries P1,1, P2,2 and P3,3

P =









344 −23 −109 −110 280 −166
−23 46 58 133 48 31
−109 58 723 −74 −22 78
−110 133 −74 794 58 112
280 48 −22 58 533 −81
−166 31 78 112 −81 94









. (56)

With λ−
rot = 0.5, λ+

rot = 1.5, λ−
trans = 400, λ+

trans = 500,

ktrans,nom = 500 and krot,nom = 40, the stiffness matrix

K =









5 −2 −20 ∗ 2 −3
−2 ∗ 7 ∗ ∗ 1
−20 7 74 −3 −9 12
∗ ∗ −3 40 ∗ ∗
2 ∗ −9 ∗ 41 −1
−3 1 12 ∗ −2 42









(57)

with entries ∗ < 1 results, which has much scaled-down

values compared to the nominal stiffness matrix Knom =
diag(80, 80, 500, 40, 40, 40) at r = 16 cm. Therefore, the

fixture allows a human operator to freely move around the

object centered at the coordinate origin while always pointing

at it which is e.g. valuable for inspection tasks.

Crucial for this fixture is also the correct attractor point

selection through (38), (39). It ensures that the attractor point

stays the same when moving along a zero-force direction ex-

tracted by the variable impedance control Section IV-B. This is

achieved by computing both attractor point as well as stiffness

from the precision matrix PVF = Σ
−1
VF, ensuring that length

scales in the distance calculation correspond to stiffness scales.

The difference between attractor points computed through this

weighted as well as a non-weighted formulation can clearly be

seen in Fig. 8, highlighting the importance of this formulation

as the attractor point computed without weighting would result

in forces along the trajectory. Please see the supplementary

video for details on how the fixture allows a human operator

to move the robot in hand-guided mode.

C. Probabilistic Dynamical System Virtual Fixtures

To evaluate the novel dynamical system VF (Section V),

we demonstrate two transport motions from right to left in the

robot’s workspace (Figs. 9 and 10). The right motion consists

of five demonstrations diverging towards the middle of the

workspace while the left motion consists of four demonstra-

tions which are very close together. For evaluation purposes

we compare the performance of GP and KMP representations

on M1. To limit the amount of data used in the models, the

recorded trajectories are subsampled at a distance of 5 cm
before calculating the velocities based on time differences.

Through empirical trials we have found that with human in-

teraction, encoding velocity policies using a full pose x ∈ M

Fig. 8: Position-based fixture (Section VI) on the spherical manifold M3

(S2 × R
1 × S3) with variable stiffness learned from four demonstrations

(right side). The trajectory with red mean and covariance visualized as yellow
tube consists of M = 2 Gaussians plotted as green ellipsoids. The task
exhibits a high variance along the two angular DoFs of the spherical manifold
as visualized by the turquoise ellipsoid at the end effector; a corresponding
low stiffness allows the operator to point to an object located at the center
of the coordinate system from any angle. The green dot on the red mean
trajectory depicts the attractor point computed using the Mahalanobis distance
(A = Σ

−1 in (2)) while the yellow dot would be computed using a non-
weighted distance metric (A = I in (2)).

12

Fig. 9: DS based VF using a GP model. Turquoise dots represent points of
known velocities visualized by yellow arrows. The green arrow corresponds
to the output of the velocity policy 1 on the right side while the red arrow
depicts the velocity output of the velocity policy 2 . Both counteract each
other due to erroneous velocity measurements at the borders of the dataset,
leading to a stuck evolution of the system unable to transition from 1 to 2 .

as input and outputting a velocity ẋ ∈ R
6 leads to non-

smooth behaviour due to the curse of dimensionality. When a

human interacts with the robot and perturbs its orientation,

the epistemic uncertainty of the velocity policy increases,

activating the base policy. The base policy only pulls the

operator to the closest known pose x without the forward

motion component ẋ, therefore halting the evolution of the

DS. Splitting the DS in two compontents, one with position

input xpos ∈ R
3 and output velocity ẋpos ∈ R

3 and the other

with the full pose as input x ∈ M and rotational velocity

ω ∈ T S3

xrot
as output, this problem can be mitigated. The full

set of velocity policies for this experiment therefore consists

of NDS = 5 concurrently active policies: one base policy and

two policies each for the left and the right side of the motion.

All policies are fused through the arbitration in (16).
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s
t

1

2

Fig. 10: DS-based VF using a KMP model for the robot in start s and
transition t configurations. As in Fig. 9, turquoise dots represent points of
known velocities visualized by yellow arrows. The positional uncertainty of
the GMM underlying the KMP model is visualized as green Gaussians with
their velocity as red arrows. The dark green Gaussian with green velocity
arrow at the end effector represents the covariance output of the KMP 1 .
The orange-red Gaussian with red velocity arrow at the end effector visible
for the t configuration corresponds to the velocity policy 2 . In t , a smooth
transition between both policies is happening. In the s configuration, no
output for policy 1 is visible due to its high uncertainty.

In Fig. 9, velocity policies encoded using a GP are vi-

sualized. For the positional GP we use a RBF kernel (31)

with l = 0.1 and for the rotational GP l = 0.03. We set

the process variance for both to λ = 0.01. As shown in

the supplementary video, the evolution of the DS closely

follows the demonstration trajectories but fails to capture their

variance, both for the left and right side policies. Furthermore,

the velocities generated by the GP encoding, as seen in Fig. 11,

exhibit abrupt changes, suggesting limited smoothness in the

generated trajectories. A higher value of λ could smoothen

the prediction of the process output, which would however

have a global effect and not be restricted to the demonstrated

high-variance zone. The robot also fails to transition between

policies, halting at the final pose of the rightmost demonstra-

tions and requiring operator input to proceed.

Fig. 10 shows the same data encoded in a DS using

a KMP based on a GMM with M = 5 Gaussians with

hyperparameters λ = 0.05, λc = 10, α = 0.1 and l = 0.1 in

the RBF kernel for the positional KMP respectively l = 0.03
for the rotational KMP. The KMP allows to encode a small

start covariance at s configuration and a bigger end covariance

at t configuration for the right motion policy. This also enables

a system evolution across the gap from the right to the left

policy where the GP-based policy halted. Unlike the previous

model, the learned covariance permits smoother motion in

the high-variance region of the right-side policy, allowing the

robot to deviate from the demonstrations when appropriate, as

also evident in the supplementary video. Furthermore, a much

smoother velocity profile can be obtained (Fig. 11).

The same policy representation can be used to encode

repetitive motions as shown in Fig. 12. This fixture (N = 1)

is learned on the S1 × R
2 manifold from a demonstration

of circling the launch adapter ring of the space robot setup

4 times. It is encoded in a KMP based on a GMM with

M = 5 Gaussians with hyperparameters λ = 0.1, λc = 10,

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

t (s)
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Fig. 11: Translational (upper plot) and rotational (lower plot) velocities
observed during a human interaction with GP- and KMP-based velocity
fixtures. Especially the rotational velocities of the KMP are much smoother
than those of the GP. Furthermore, the transition from policy 1 to 2 at
t = 6.5 s is much smoother.

Fig. 12: Dynamical system VF on the space robot setup. The fixture contains
a repeating motion in S1×R

2 around the launch lock situated just in front of
the robot’s end effector. This motion is overlaid with a local policy excerting
a force perpendicular to the launch lock. The 5 green ellipsoids visualize
the position-based covariances of the underlying GMM model with the red
arrows depicting its velocities. The green arrow in the back visualizes the
current output of the velocity fixture along the launch lock.

LL
S

LAR

PB1

PB2S

LAR

Fig. 13: Left image: The space robot setup approaching the spring S using an
automated position-based fixture during the 0g phase of a parabolic flight. Also
shown are the launch adapter ring segment LAR and the launch lock LL .
Right image: PB1 denotes a position-based fixture for approaching and
pressing the spring assembly S while PB2 shows the second position-based
fixture for the robot moving along the launch adapter ring segment LAR .
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(d) Successfull docking.

Fig. 14: Dynamical system VF DS combined with a position-based fixture PB on the space robot setup. The dynamical system VF guides the robot towards
the start of the automated position-based fixture which performs a docking maneuvre, where the docking interface mounted at the robot’s end effector is to
be docked to the interface mounted on the rack DOCK .

α = 0.1, h = 1 and l = 0.03. The combination of learned

policy and base policy pushing the robot back inside the

learned region makes the robot move around the ring reliably.

In addition, we make use of the probabilistic arbitration to

overlay a probabilistic wrench pointing to the inside of the

cylinder along the radius coordinate r with

wLP =





0
−10N

0



 ΣLP =





0 0 0
0 2× 10−4 0
0 0 0



 . (58)

We evaluate the motion both on Earth as well as under 0g

conditions on the parabolic flight with success. This shows

that the velocity policy is not only suited to assist a human

operator in hand-guided motion but also in fully autonomous

execution. Please see the supplementary video for details of

the robot motion using our proposed DS-based formulation.

D. Automated Position-based Fixtures

For higher precision motions, where following a defined

trajectory is required, an automated position-based trajectory

fixture (Section VI) is well suited. We first demonstrate this

fixture on the fully automated task of pressing a spring on

the space robot setup with the pin end effector of the robot as

visualized in Fig. 13. We learn this fixture from two kinesthetic

demonstrations of pressing the spring and model the motion

using M = 5 Gaussians. Through GMR, we retrieve a

reference trajectory denoted as PB1 . For the evaluation, we

first move the robot to the start position of the fixture. During
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the zero gravity phase of the parabolic flight, we press the

spring four times with different velocities as seen in the video.

Concurrently (NPB = 2), a second position-based fixture

PB2 is present in the robot’s workspace. However, thanks to

the distance-based covariance adaptation (40), only the fixture

to which the robot end effector is close to creates forces acting

on the robot’s end effector. For activating this second fixture,

the robot’s end effector is placed close to the LAR . There, the

second position-based fixture learned from 4 demonstrations

on the S1 × R
2 manifold using M = 5 Gaussians gets

activated. The origin of this manifold is placed at the center of

the launch adapter ring radius, thus making the motion along

the ring follow a perfect circle with constant radius. As in

the previous section, we again overlay a probabilistic force of

−10N along the radius of the cylindrical manifold, leading

to the robot pressing against the LAR . The motion is again

executed during the zero gravity phase of the parabolic flight,

where the robot follows the ring while always being in contact

with it guided by the perpendicular force.

E. Combining Dynamical System and Position-based Fixtures

One of the core strengths of our method is the uncertainty-

aware probabilistic fusion of fixtures through (16). We there-

fore now evaluate the combination of VFs based on dynamical

systems and position-based fixtures on the space robot setup.

Figure 14 shows the scenario of docking the iBOSS “iSSi”

interface mounted to the end effector of the space robot

with its counterpart mounted to the rack, which we solve

by combining a dynamical system VF DS (NDS = 1) with

a position-based trajectory fixture PB (NPB = 1), both on

the R
3 manifold. The DS is encoded in a KMP based on a

GMM with M = 5 Gaussians with hyperparameters λ = 0.1,

λc = 10, α = 0.1, h = 1 and l = 0.03. The trajectory

fixture is encoded in a GMM with M = 5 Gaussians. As

can be seen from the covariance ellipsoids of both fixtures

in Fig. 14, they have similar covariance values thanks to

the formulation chosen in Section V which allows for an

arbitration of their wrenches even though they do not share the

same representation. This allows to combine a more flexible

velocity fixture with the precision coming from a position-

based trajectory fixture that can model the exact approach

trajectory required for a successful mating of the interface,

as can be seen in the accompanying video.

F. Combining Dynamical System and Visual Servoing Fixtures

As explored in previous works [6]–[8], visual input is often

required to successfully accomplish the precision requirements

of a task. We therefore analyze the task of CubeSat subsystem

assembly on the bilateral teleoperation setup with the aim of

automating it to the extent possible. To this end, DS-based VFs

allow for a flexible but relatively coarse automation. As such,

they are well suited for a combination with the very precise

visual servoing fixtures combined with human control.

We thus train two velocity fixtures (one for position and one

for rotation guidance) resulting in NDS = 3 on the data of [7],

modelling it using a KMP with λ = 0.1, λc = 10, α = 0.1 and

l = 0.03 based on a GMM model with each M = 5 Gaussians.

velocity fixture 
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arbitration 

result

velocity 

command

visual 

detections

vision 

target

vision 

covariance

known points

velocity fixture 

means
gripper

in-hand 

camera
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Fig. 15: Combination of DS-based and visual servoing VFs on the CubeSat
subsystem assembly scenario [6]–[8]. A DS-based fixture takes the operator
in the vicinity of the insertion pose where the manual visual servoing fixture
takes over. This allows for a collaborative automation of the first phase of
the task with no high precision requirements while the combination of the
highly precise manual visual servoing fixture with human abilities allow for
a successful connector insertion.

The velocity fixtures bring the subsystem to be assembled

close to the assembly position where the visual servoing

fixture (NVS = 1) ensures precise alignment. Figure 15 shows

the system setup, where as before two velocity fixtures, one

controlling the position and the other the orientations, are

combined with the visual servoing fixture taken from [8].

At the end effector pose visualized in Fig. 15, the covariance

of the visual servoing fixture is, for the first time in the

experiment, smaller than the covariance of the DS-based

fixture. Thus, the velocity output of the latter, visualized by

the yellow arrow, is not guiding the robot anymore. Instead,

only the visual servoing fixture is active, reproducing the

assistive behaviour introduced in [8], but combining it with the

increased flexibility of the novel DS-based fixture. Notably,

this enables the robot to begin from any position within its

workspace, eliminating the need for initial alignment. Please

see Appendix D for a description of the teleoperation coupling.

To also show the extension of the visual servoing fixture to

the cylindrical manifold M2, we set up an experiment where

the task is to move test tubes from a linear holder H1 to a

cylindrical holder H2 visualized in Fig. 16 with NVS = 2. To

simplify the implementation, we simulate visual measurements

for all tube holder positions with Σ = 2.25 × 10−1 · I6. For

the visual servoing fixture in M1, we use the length scale

l = (0.006, 0.006, 0.2, 0, 0, 0) and a deadzone of 5mm in the

xy-plane. For the visual servoing fixture in M2, we set the

length scale l = (0.1, 0.05, 0.2, 0, 0, 0) and use a deadzone of

0.2 rad along the angular DoF. For the DS (NDS = 3), we

again use a KMP based on a GMM with M = 5 Gaussians

with hyperparameters λ = 0.05, λc = 10, α = 0.1, h = 1 and

l = 0.1 for positions respectively 0.03 for orientations. As

can be seen from the supplementary video, this setup allows

an operator to easily choose a test tube to pick up through

guidance from a visual servoing fixture, transport it to the
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Fig. 16: Combination of dynamical system and visual servoing fixtures on
the scenario of transporting test tubes from a linear holder H1 on the right
side to a circular holder H2 on the left side. The operator is supported by
a visual servoing fixture at each holder as well as a dynamical system DS

supporting with the transportation between both holders.

other holder while the velocity fixture supports with a velocity

field and by keeping the tube upright where the other visual

servoing fixture eases the placement.

G. Semi-Automated Combination of All Fixtures

Finally, we combine position-based, velocity and visual

servoing fixtures in one scenario (NPB = 1, NDS = 3,

NVS = 1; Fig. 17). The task is to pick up a bottle B

and place it in the crate C supported by a position-based

trajectory fixture for picking up the bottle, a velocity fixture for

transporting it towards the crate and a visual servoing fixture

allowing to select from multiple placement locations.

We demonstrate picking up the bottle with 3 demonstrations

approaching it from different angles and learn a trajectory

fixture supported by a GMM consisting of M = 2 Gaussians

on the cylindrical manifold M2 with its coordinate system

centered in the bottle. Due to its high covariance along the

angle ϕ of the manifold, the variable stiffness formulation

sets a very low stiffness for this DoF, allowing the bottle to be

picked up from multiple angles (Fig. 17). As in Section VIII-B,

using the covariance-aware attractor point calculation from

(38) and (39) is again crucial. Through this formulation, the

robot end effector can be moved in the plane while always

pointing the gripper towards the bottle. The precision matrix

at the robot configuration of Fig. 17 evaluates to

P =









10 11 8 −11 17 31
11 762 −18 79 9 54
8 −18 990 −7 27 1

−11 79 −7 738 97 −11
17 9 27 97 312 42
31 54 1 −11 42 822









. (59)

With λ−
rot = 100, λ+

rot = 500, λ−
trans = 100, λ+

trans = 500,

ktrans,nom = 500 and krot,nom = 40, we obtain the stiffness

K =









∗ 3.6 8.2 5.4 5.5 2.8
7.3 490 −2.1 49 4.5 35
4.1 ∗ 490 −2.7 13 1.2
∗ 50 −2.6 43 6.5 3.7
∗ −23 9.6 1.8 12 −2.6
∗ 35 1.3 3.8 ∗ 41









(60)

with ∗ denoting values < 1. Another crucial component

is the covariance adaptation using the Mahalanobis distance

(Section VI-C). Setting a maximum distance value of 5 for

the unitless Mahalanobis distance, the fixture remains active

for larger displacements around the rotational DoF (up to 41◦)

than for the other DoFs (up to 7.1 cm) for the given precision.

Once the bottle has been picked up, the operator can easily

escape this fixture by achieving a displacement larger than this

threshold to deactivate the position-based fixture.

After leaving the position-based VF, the DS-based VF takes

over. This DS learned from 5 demonstrations is encoded in

a KMP based on a GMM with M = 5 Gaussians with

hyperparameters λ = 0.1, λc = 10, α = 0.1, h = 1 and

l = 0.1 for the position velocity and l = 0.03 for the

orientation velocity field. This DS moves the operator towards

the visual servoing VF while keeping the bottle upright.

We again simulate visual measurements for all M = 20
crate positions with Σ = 2.25×10−1 ·I6. For the visual servo-

ing fixture, we use a length scale l = (0.006, 0.006, 0.2, 0, 0, 0)
and a deadzone of 5mm in the xy plane.

The supplementary video shows how the combination of

VFs based on different representations ensures required guid-

ance through the task with smooth transitions.

IX. DISCUSSION

A. Dynamical-Systems-based Virtual Fixtures

VFs based on DSs as evaluated also in combination with

other fixtures in Sections VIII-C and VIII-E to VIII-G allow

for a collaborative automation. By default, the task is being

performed autonomously while human interaction is always

possible as can be seen in the supplementary video.

A major challenging problem in DS-based VFs is the need

to find the right hyperparameters both for modeling the learned

policy as well as for the base policy. When using a GP for

modeling the DS, it is especially important to choose the

covariance while ensuring its covariance output fits the other

fixtures in the workspace, i.e. it should not output a too low

covariance when another, better suited fixture should take over.

On the other hand, its uncertainty should also not be too high

as it would not take any effect otherwise. This modelling

is greatly simplified through the use of KMP-based policies,

where the underlying GMM already models the covariance

appropriately. This leaves the covariance tuning to the base

policy, which is equipped with a constant covariance through

(35). Future work should consider approaches to automatically

select viable hyperparameters in the fixture’s kernel as well as

for this constant covariance value from demonstrations.

A limitation of the current formulation is that only a global,

but no per-DoF epistemic uncertainty estimate of the velocity

policy is available through the kernels (31). This was alleviated

in the the evaluation through the usage of different policies

for positional and orientational control; however, as for the

coupled stiffness (Section IV-B), a policy unifying all DoFs

would be desirable. Such policy could then, through the

arbitration (16), progress some DoFs through the DS evolution

while the remaining DoFs would be brought back to the

demonstration data thanks to the base policy. Such behaviour

is especially relevant in shared control, where perturbations

induced by the operator are a desired property of the overall

system.
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Fig. 17: Picking up a bottle B for moving it into a crate C using position-based trajectory, velocity and visual servoing fixtures. As visualized on the
left, the rotationally symmetric bottle can be picked up from any angle thanks to a probabilistic trajectory fixture learned from demonstrations on M2 with
variable stiffness leading to the stiffness matrix in (60). After B has been picked up, the velocity fixture takes over, fusing a base policy with the learned
policy (right side). This fixture aids the operator to move to C where a probabilistic visual servoing fixture allows to select different placement positions.

B. Probabilistic Policy Arbitration via Products of Experts

Previous works have already shown that a probabilistic

arbitration scheme allows for an optimal combination of

different VFs [8]. Throughout the evaluation, we have seen

how this arbitration naturally extends to other types of VFs

and how different geometries can be incorporated. This allows

to always choose the best VF representation for a specific task

phase without manually designing transitions, highlighting the

advantages of our fully probabilistic VF formulation. One

key distinction to previous works is that our formulation

supports different manifolds M by transforming the wrench to

a common representation in the cotangent space of R
3 × S3.

By fusing the different fixtures in wrench space, naturally,

different types of VFs are supported. This allows to easily

fuse fixtures calculating an attractor point, a target velocity or

directly a wrench in a unified formulation which in turn allows

to model guiding behaviour for each portion of a task using

the best available fixture representation.

C. Variable Stiffness

Previous works [8], [44] either considered diagonal or

block-diagonal stiffness matrices. While such formulations are

well suited for scenarios where high covariance only appears

within positions or orientations, block-diagonal stiffness ma-

trices fail with the experiment described in Section VIII-A

as this requires to respect a lower stiffness along a coupled

DoF. Clearly, such coupled variable stiffness is only possible

with our method. In this experiment, our approach achieves to

model a stiffness that makes the robot’s end effector follow the

geodesic between two detections. Our approach furthermore

provides reasonable stiffness values for the precision matrices

observed in all experiments. This underlines that the proposed

approach is suitable for the generation of stiffness matrices

from arbitrary precision matrices.

X. CONCLUSION

In this work we introduced a unified, probabilistic Virtual

Fixture framework that provides different types of assistance

to operators – particularly coarse, precise and very precise

guidance – where each type of fixture can be either manually

defined or learned from human demonstrations. To address a

gap in the literature – namely, the limited attention given to

learned virtual fixtures that actively support task progression

– we propose a novel, uncertainty-aware Dynamical System-

based Virtual Fixture formulation that enables flexible task

automation while keeping the operator in control. We fur-

ther introduce geometry-awareness in shared control through

object-specific coordinate systems, including Cartesian, cylin-

drical and spherical frames. Combined with a novel variable

impedance formulation – which robustly captures demon-

strated correlations between DoFs – our framework brings

together the different fixture types using a product of experts

approach, enabling a principled and uncertainty-aware fusion

of assistance commands.

We have shown experimentally that the approach can be

readily applied across diverse use cases, thanks to its ease of

programming and flexibility with respect to fixture represen-

tations, input modalities, and uncertainty sources. While we

demonstrated its use in factory automation and space scenar-

ios, we believe the approach is also well-suited for medical

and personal assistance robotics, which we plan to investigate

in future work. We furthermore envision developing methods

to interactively modify position-based fixtures, allowing an

operator to modify them adaptively based on novel task needs

[64]. Finally, to enable the use of the proposed framework in

high-latency applications such as on-orbit servicing, we plan

to integrate it with controllers that can provide stable force

feedback despite such delays.
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APPENDIX

A. Key Notations

Table II summarizes the key notations of our framework.

B. Variable Impedance Control on Cylindrical and Spherical

Manifolds

The variable impedance formulation of Section IV-B can

also be extended to cylindrical and spherical manifolds in-

TABLE II: KEY NOTATIONS USED IN OUR FRAMEWORK.

N ∈ N ≜ Number of data points per demonstration

NDS, NPB, NVS ≜ Number of fixtures of each type

M ≜ Number of Gaussian components in a fixture

xVF,i ≜ Attractor of the i-th fixture

wVF,i ≜ Wrench of the i-th fixture

ΣVF,i ≜ Covariance of the i-th fixture

KVF,i ≜ Stiffness matrix of the i-th fixture

DVF,i ≜ Damping matrix of the i-th fixture

knom ≜ Diagonal nominal stiffness values

λ−

trans, λ+
trans ≜ “High” and “low” translational stiffness

eigenvalues

λ−

rot, λ+
rot ≜ “High” and “low” rotational stiffness eigen-

values

λ, λc, α ≜ Regularization and scaling factors of the
KMP

l ≜ Length scale for the RBF kernel

L ≜ Length scale of the visual servoing fixture

γ ≜ Regularization factor

Ldead ≜ Length scale of the deadzone

troduced in Section III-A. For this, we scale the nominal

translational stiffness knom,j by the radius r for the angular

DoFs (M2: j = 1, M3: j = 1, 2), i.e.

k∗nom,j = r · knom,j . (61)

This ensures a stiffness comparable to the Euclidean case for

those DoFs, avoiding too high stiffness values for r << 1.

As the calculation of the stiffness values is performed in a

coordinate system rotated by R⊤
diag, the maximum transla-

tional stiffness values for each DoF in those coordinates has

to be limited further s.t. when rotating the stiffness matrix

back, the nominal stiffness value is not exceeded. This can

be achieved by limiting the maximum value of the stiffness

knom,trans denoting the translational (j = 1, 2, 3) DoFs of

knom in rotated DoFs through

krot = diag(RT
diagdiag(knom,trans)Rdiag) (62)

krotback = diag(Rdiagdiag(krot)R
⊤
diag) (63)

β = max(krotback ⊘ knom,trans) (64)

k′
nom,trans = βkrot (65)

where diag transforms a vector to a diagonal matrix re-

spectively extracts the diagonal of a matrix and ⊘ is the

elementwise vector division. In (62), we take the diagonal

elements of knom,trans rotated into coordinates of P ′
VF,i. As

the maximum values of the translational stiffnesses correspond

to diag(krot), we can rotate that matrix back and check for

potentially increased stiffness values in (64). The maximum

value of this increase is then used to scale the translational

stiffnesses.

C. Optimal Damping using Double Diagonalization

To achieve an optimal damping for Ki from Section IV-B,

we design the damping matrix Di using the factorization

approach presented in [65] with ζ = 0.7, in particular

Di = ζ
(

Mi,1K
∗
i,1 +K∗

i,1Mi,1

)

(66)

with the stiffness matrix K∗
i = K∗

i,1K
∗
i,1 and the mass matrix

Mi,M = Mi,1Mi,1. Similar to the wrench transformation in

https://elib.dlr.de/189970/
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the previous section, a Cartesian stiffness matrix Mcart at the

end effector has to be transformed to the manifold using

Mi,M =
(

Ji,MM−1
cartJ

⊤
i,M

)−1
. (67)

To also achieve damping along DoFs with no stiffness, we

calculate K∗
i with scaling factors sj used in (21) and (23)

lower-bounded to a small value ϵ > 0. This small damping

ensures smoothly decaying robot motions.

D. Teleoperation System

To supply the operator with force feedback, we use the

bilateral teleoperation system of [7], [8]. We assume that the

haptic input device can also be controlled using Cartesian

wrenches; in case of a torque-controlled robot, (3) can be used

to compute joint torques. Using a simple position-computed

force architecture that does not require a force-torque sensor

at the end effector, the Cartesian wrenches of remote robot

wee,rem and input device wee,inp are

wee,rem = χ

(

KLogMxee
(xinp) +D

d

dt
LogMxee

(xinp)

)

+wVF

(68)

wee,inp = −χAdirwee,remote. (69)

The user receives force feedback from both the environment

as well as the VFs through the coupling introduced by χ, the

adjoint Adir transforms wrenches between coordinate systems

of the remote robot and the input device. By applying the

VF wrench to the robot performing the task, we can support

a user while avoiding potential inaccuracies resulting from a

teleoperated coupling.

E. Coordinate System Conversions

1) Conversion between S1×R
2×S3 and R

3×S3: Position

quantities can be converted from M1 to M2 using

θc = x/r, θs = y/r, r =
√

x2 + y2, z = z (70)

where θc and θs denote the angle θ around the z axis as

complex number. For small r, the angle θ is not well-defined.

The quaternion has to be rotated by −θ, specifically

qM2 = ExpS
3

I





0
0
−θ



 · qM1 . (71)

The inverse conversion can be performed as follows

x = r · θc, y = r · θs, z = z, qM1 = ExpS
3

I





0
0
θ



 · qM2

(72)

with θ = arctan2(θs, θc) where arctan2 is the modified arcus

tangens mapping to the full circle [−π, π].

2) Conversion between S2×R
1×S3 and R

3×S3: Position

quantities can be converted from M1 to M3 using

s0 = x/r, s1 = y/r, s2 = z/r, r =
√

x2 + y2 + z2

(73)

Note that for very small r, the values si are not well-defined.

The quaternion expressing the orientation has to be rotated

by the inverse of the rotation qalign aligning [0, 0, 1] with

[s0, s1, s2], specifically

qM3 = q−1
align · qM1 . (74)

The inverse conversion can be performed as follows

x = r · s0, y = r · s1, z = r · s2, qM1 = qalign · qM3 .
(75)

F. Manifold Jacobians

The manifold Jacobian JM =
∂xee,i,M

∂x
ee,R3×S3

relating ẋM =

JMẋR
3×S3

and wR
3×S3

= J⊤
MwM is derived as in [56]

JM =

[

Jpx 0

Jωx Jωω

]

(76)

where Jpx denotes position quantities and Jωx the coupling

between position and orientation. Both are given for M2 and

M3 in the following. We furthermore have Jωω = I for M
as the axes of the orientation always coincide.

1) S1 × R
2 × S3 Jacobian: Both Cartesian x and y

coordinates have an influence on the angular DoF of the

manifold and on r, specifically

Jpx =







−y
x2+y2

x
x2+y2 0

x√
x2+y2

y√
x2+y2

0

0 0 1






. (77)

As the y axis of the base of the orientation points in direction

of increasing r, a coupling between Cartesian x / y velocities

and rotational velocities of the manifold is given by

Jωx = R⊤





0 0 0
0 0 0
y

x2+y2
−x

x2+y2 0



 (78)

where R⊤ denotes the orientation in manifold coordinates.

2) S2 ×R
1 ×S3 Jacobian: Cartesian x, y, z contribute to

angular and r parts of M3

Jpx =





1
r

0 0
0 1

r
0

0 0 1



 ·R⊤
align (79)

where Ralign is the rotation matrix equivalent to qalign. For

the couplings, we get

Jωx = R⊤ ·





0 1
r

0
− 1

r
0 0

0 0 0



 ·R⊤
align (80)

where R⊤ again denotes the orientation in manifold coordi-

nates.
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